VirtualBox

source: vbox/trunk/src/VBox/Devices/EFI/Firmware/StdLib/Include/math.h@ 78782

Last change on this file since 78782 was 48674, checked in by vboxsync, 11 years ago

EFI: Export newly imported tinaocore UEFI sources to OSE.

  • Property svn:eol-style set to native
File size: 13.2 KB
Line 
1/** @file
2 Floating-point Math functions and macros.
3
4 Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials are licensed and made available under
6 the terms and conditions of the BSD License that accompanies this distribution.
7 The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 * ====================================================
14 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
15 *
16 * Developed at SunPro, a Sun Microsystems, Inc. business.
17 * Permission to use, copy, modify, and distribute this
18 * software is freely granted, provided that this notice
19 * is preserved.
20 * ====================================================
21
22 NetBSD: math.h,v 1.44 2006/03/25 16:41:11 xtraeme Exp
23 dlibm.h 5.1 93/09/24
24**/
25#ifndef _MATH_H_
26#define _MATH_H_
27
28#include <sys/EfiCdefs.h>
29#include <sys/featuretest.h>
30
31/** @{
32 @brief These are forward references to unions and macros used internaly
33 by the implementation of the math functions and macros.
34**/
35union __float_u {
36 unsigned char __dummy[sizeof(float)];
37 float __val;
38};
39
40union __double_u {
41 unsigned char __dummy[sizeof(double)];
42 double __val;
43};
44
45union __long_double_u {
46 unsigned char __dummy[sizeof(long double)];
47 long double __val;
48};
49
50#include <machine/math.h> /* may use __float_u, __double_u, or __long_double_u */
51
52#ifdef __HAVE_LONG_DOUBLE
53#define __fpmacro_unary_floating(__name, __arg0) \
54 /* LINTED */ \
55 ((sizeof (__arg0) == sizeof (float)) \
56 ? __ ## __name ## f (__arg0) \
57 : (sizeof (__arg0) == sizeof (double)) \
58 ? __ ## __name ## d (__arg0) \
59 : __ ## __name ## l (__arg0))
60#else
61#define __fpmacro_unary_floating(__name, __arg0) \
62 /* LINTED */ \
63 ((sizeof (__arg0) == sizeof (float)) \
64 ? __ ## __name ## f (__arg0) \
65 : __ ## __name ## d (__arg0))
66#endif /* __HAVE_LONG_DOUBLE */
67
68extern const union __double_u __infinity;
69extern const union __float_u __infinityf;
70extern const union __long_double_u __infinityl;
71
72/* C99 7.12.3.1 int fpclassify(real-floating x) */
73#define fpclassify(__x) __fpmacro_unary_floating(fpclassify, __x)
74
75/* C99 7.12.3.3 int isinf(real-floating x) */
76#ifdef __isinf
77 #define isinf(__x) __isinf(__x)
78#else
79 #define isinf(__x) __fpmacro_unary_floating(isinf, __x)
80#endif
81
82/* C99 7.12.3.4 int isnan(real-floating x) */
83#ifdef __isnan
84 #define isnan(__x) __isnan(__x)
85#else
86 #define isnan(__x) __fpmacro_unary_floating(isnan, __x)
87#endif
88/*@)*/
89
90/*#############################################################
91 * ISO C95
92 */
93
94/**@{
95 Double, float, and long double versions, respectively, of HUGE_VAL.
96*/
97#define HUGE_VAL __infinity.__val
98#define HUGE_VALF __infinityf.__val
99#define HUGE_VALL __infinityl.__val
100/*@)*/
101
102__BEGIN_DECLS
103/*
104 * ANSI/POSIX
105 */
106/** Compute the principal value of the arc cosine of Arg.
107
108 @param[in] Arg The value to compute the arc cosine of.
109
110 @return The computed value of the arc cosine of Arg in the interval [0,pi] radians.
111 If Arg is not in the interval [-1,+1], errno is set to EDOM.
112**/
113double acos(double Arg);
114
115/** Compute the principal value of the arc sine of Arg.
116
117 @param[in] Arg The value to compute the arc sine of.
118
119 @return The computed value of the arc sine of Arg in the interval [-pi/2,+pi/2] radians.
120 If Arg is not in the interval [-1,+1], errno is set to EDOM.
121**/
122double asin(double Arg);
123
124/** Compute the principal value of the arc tangent of Arg.
125
126 @param[in] Arg The value to compute the arc tangent of.
127
128 @return The computed value of the arc tangent of Arg in the interval [-pi/2,+pi/2] radians.
129**/
130double atan(double Arg);
131
132/** Compute the value of the arc tangent of (Num / Denom).
133 The sign of both arguments is used to determine the quadrant of the return value.
134
135 @param[in] Num The numerator of the value to compute the arc tangent of.
136 @param[in] Denom The denominator of the value to compute the arc tangent of.
137
138 @return The computed value of the arc tangent of (Num / Denom) in the interval [-pi,+pi] radians.
139**/
140double atan2(double Num, double Denom);
141
142/** Compute the value of the cosine of Arg, measured in radians.
143
144 @param[in] Arg The value to compute the cosine of.
145
146 @return The computed value of the cosine of Arg.
147**/
148double cos(double Arg);
149
150/** Compute the value of the sine of Arg.
151
152 @param[in] Arg The value to compute the sine of.
153
154 @return The computed value of the sine of Arg.
155**/
156double sin(double Arg);
157
158/** Compute the value of the tangent of Arg.
159
160 @param[in] Arg The value to compute the tangent of.
161
162 @return The computed value of the tangent of Arg.
163**/
164double tan(double Arg);
165
166
167/** Compute the value of the hyperbolic cosine of Arg.
168
169 @param[in] Arg The value to compute the hyperbolic cosine of.
170
171 @return The computed value of the hyperbolic cosine of Arg.
172 If the magnitude of Arg is too large, errno is set to ERANGE.
173**/
174double cosh(double Arg);
175
176/** Compute the value of the hyperbolic sine of Arg.
177
178 @param[in] Arg The value to compute the hyperbolic sine of.
179
180 @return The computed value of the hyperbolic sine of Arg.
181 If the magnitude of Arg is too large, errno is set to ERANGE.
182**/
183double sinh(double Arg);
184
185/** Compute the value of the hyperbolic tangent of Arg.
186
187 @param[in] Arg The value to compute the hyperbolic tangent of.
188
189 @return The computed value of the hyperbolic tangent of Arg.
190**/
191double tanh(double Arg);
192
193
194/** Compute the base-e exponential of Arg.
195
196 @param[in] Arg The value to compute the base-e exponential of.
197
198 @return The computed value of e**Arg.
199 If the magnitude of Arg is too large, errno is set to ERANGE.
200**/
201double exp(double Arg);
202
203/** Break a floating-point number into a normalized fraction and an integral power of 2.
204
205 @param[in] Value The floating-point value to be broken down.
206 @param[out] Exp A pointer to an integer object to receive the integral power of 2 exponent.
207
208 @return The frexp function returns a value R, such that Value == R**Exp.
209 If Value is zero, both parts of the result are zero.
210**/
211double frexp(double Value, int *Exp);
212
213/** Multiply a floating-point number, Value, by an integral power of 2, Exp.
214
215 @param[in] Value The floating-point value to be multiplied.
216 @param[out] Exp The integral power of 2 to multiply Value by.
217
218 @return The ldexp function returns a value R, such that R = Value x 2**Exp.
219 If a range error occurs, errno will be set to ERANGE.
220**/
221double ldexp(double Value, int Exp);
222
223/** Compute the natural logarithm of Arg.
224
225 @param[in] Arg The value to compute the natural logarithm of.
226
227 @return The log function returns log base-e of Arg. If Arg is negative, errno is set to EDOM.
228 Otherwise, errno will be set to ERANGE if a range error occurs.
229**/
230double log(double Arg);
231
232/** Compute the common (base-10) logarithm of Arg.
233
234 @param[in] Arg The value to compute the common logarithm of.
235
236 @return The log10 function returns log base-10 of Arg. If Arg is negative, errno is set to EDOM.
237 Otherwise, errno will be set to ERANGE if Arg is 0.
238**/
239double log10(double Arg);
240
241/** Compute the base-2 logarithm of Arg.
242
243 @param[in] Arg The value to compute the base-2 logarithm of.
244
245 @return The log function returns log base-2 of Arg. If Arg is negative, errno is set to EDOM.
246 Otherwise, errno will be set to ERANGE if Arg is 0.
247**/
248double log2(double Arg);
249
250/** Break Value into integral and fractional parts, each of which has the same type and sign
251 as Value. Store the integral part in the object pointed to by Integ and return the
252 fractional part.
253
254 @param[in] Value The value to compute the arc cosine of.
255 @param[out] Integ Pointer to where the integral component is to be stored.
256
257 @return The fractional part of Value is returned directly while the integral part is
258 returned in the location pointed to by Integ.
259**/
260double modf(double Value, double *Integ);
261
262/** Compute Value raised to the power Exp.
263
264 @param[in] Value The value to be raised.
265 @param[in] Exp The power Value is to be raised to.
266
267 @return The pow function returns Value**Exp. If an error occurs, errno will be set as follows:
268 - EDOM: Value is finite and negative and Exp is finite and not an integer.
269 - EDOM: Both Value and Exp are zero.
270 - EDOM: Value is zero and Exp is less than zero.
271**/
272double pow(double Value, double Exp);
273
274/** Compute the non-negative square root of Arg.
275
276 @param[in] Arg The value to compute the square root of.
277
278 @return The square root of Arg. If Arg is less than zero, errno is set to EDOM.
279**/
280double sqrt(double Arg);
281
282
283/** Compute the smallest integer value not less than Arg.
284
285 @param[in] Arg The value to compute the ceiling of.
286
287 @return The ceiling of Arg expressed as a floating-point number.
288**/
289double ceil(double Arg);
290
291/** Compute the absolute value of Arg.
292
293 @param[in] Arg The value to compute the absolute value of.
294
295 @return The absolute value of Arg.
296**/
297double fabs(double Arg);
298
299/** Compute the largest integer value not greater than Arg.
300
301 @param[in] Arg The value to compute the floor of.
302
303 @return The largest integer value not greater than Arg, expressed as a floating-point number.
304**/
305double floor(double);
306
307/** Compute the floating-point remainder of A1 / A2.
308
309 @param[in] A1 The dividend.
310 @param[in] A2 The divisor.
311
312 @return The remainder of A1 / A2 with the same sign as A1. If A2 is zero, the fmod function
313 returns 0.
314**/
315double fmod(double A1, double A2);
316
317
318int finite(double);
319double expm1(double);
320
321/**@{
322 C99, Posix, or NetBSD functions that are not part of the C95 specification.
323**/
324/*
325 * Functions callable from C, intended to support IEEE arithmetic.
326 */
327double copysign(double, double);
328double scalbn(double, int);
329
330/*
331 * Library implementation
332 */
333int __fpclassifyf(float);
334int __fpclassifyd(double);
335int __isinff(float);
336int __isinfd(double);
337int __isnanf(float);
338int __isnand(double);
339
340#ifdef __HAVE_LONG_DOUBLE
341 int __fpclassifyl(long double);
342 int __isinfl(long double);
343 int __isnanl(long double);
344#endif /* __HAVE_LONG_DOUBLE */
345/*@}*/
346
347__END_DECLS
348
349/**@{
350 Extensions provided by NetBSD but not required by the C95 standard.
351**/
352extern int signgam;
353
354enum fdversion {fdlibm_ieee = -1, fdlibm_svid, fdlibm_xopen, fdlibm_posix};
355
356#define _LIB_VERSION_TYPE enum fdversion
357#define _LIB_VERSION _fdlib_version
358
359/** If global variable _LIB_VERSION is not desirable, one may
360 * change the following to be a constant by:
361 * #define _LIB_VERSION_TYPE const enum version
362 * In that case, after one initializes the value _LIB_VERSION (see
363 * s_lib_version.c) during compile time, it cannot be modified
364 * in the middle of a program
365 */
366extern _LIB_VERSION_TYPE _LIB_VERSION;
367
368#define _IEEE_ fdlibm_ieee
369#define _SVID_ fdlibm_svid
370#define _XOPEN_ fdlibm_xopen
371#define _POSIX_ fdlibm_posix
372
373#ifndef __cplusplus
374struct exception {
375 int type;
376 char *name;
377 double arg1;
378 double arg2;
379 double retval;
380};
381#endif
382
383#define HUGE MAXFLOAT
384
385/** set X_TLOSS = pi*2**52 **/
386#define X_TLOSS 1.41484755040568800000e+16
387
388#define DOMAIN 1
389#define SING 2
390#define OVERFLOW 3
391#define UNDERFLOW 4
392#define TLOSS 5
393#define PLOSS 6
394/*@}*/
395
396/* 7.12#4 INFINITY */
397#ifdef __INFINITY
398#define INFINITY __INFINITY /**< float constant which overflows */
399#else
400#define INFINITY HUGE_VALF /**< positive infinity */
401#endif /* __INFINITY */
402
403/* 7.12#5 NAN: a quiet NaN, if supported */
404#ifdef __HAVE_NANF
405extern const union __float_u __nanf;
406#define NAN __nanf.__val
407#endif /* __HAVE_NANF */
408
409/**@{
410 C99 7.12#6 Number classification macros represent mutually exclusive kinds of floating-point
411 values.
412**/
413#define FP_INFINITE 0x00
414#define FP_NAN 0x01
415#define FP_NORMAL 0x02
416#define FP_SUBNORMAL 0x03
417#define FP_ZERO 0x04
418/* NetBSD extensions */
419#define _FP_LOMD 0x80 /**< range for machine-specific classes */
420#define _FP_HIMD 0xff
421/*@)*/
422
423/**@{
424 * Constants ala XOPEN/SVID.
425 */
426#define M_E 2.7182818284590452354 /**< e */
427#define M_LOG2E 1.4426950408889634074 /**< log 2e */
428#define M_LOG10E 0.43429448190325182765 /**< log 10e */
429#define M_LN2 0.69314718055994530942 /**< log e2 */
430#define M_LN10 2.30258509299404568402 /**< log e10 */
431#define M_PI 3.14159265358979323846 /**< pi */
432#define M_PI_2 1.57079632679489661923 /**< pi/2 */
433#define M_PI_4 0.78539816339744830962 /**< pi/4 */
434#define M_1_PI 0.31830988618379067154 /**< 1/pi */
435#define M_2_PI 0.63661977236758134308 /**< 2/pi */
436#define M_2_SQRTPI 1.12837916709551257390 /**< 2/sqrt(pi) */
437#define M_SQRT2 1.41421356237309504880 /**< sqrt(2) */
438#define M_SQRT1_2 0.70710678118654752440 /**< 1/sqrt(2) */
439#define MAXFLOAT ((float)3.40282346638528860e+38)
440/*@}*/
441
442#endif /* _MATH_H_ */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette