1 | /**@file
|
---|
2 | Memory Detection for Virtual Machines.
|
---|
3 |
|
---|
4 | Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
|
---|
5 | Copyright (c) 2019, Citrix Systems, Inc.
|
---|
6 |
|
---|
7 | SPDX-License-Identifier: BSD-2-Clause-Patent
|
---|
8 |
|
---|
9 | Module Name:
|
---|
10 |
|
---|
11 | MemDetect.c
|
---|
12 |
|
---|
13 | **/
|
---|
14 |
|
---|
15 | //
|
---|
16 | // The package level header files this module uses
|
---|
17 | //
|
---|
18 | #include <IndustryStandard/Q35MchIch9.h>
|
---|
19 | #include <PiPei.h>
|
---|
20 |
|
---|
21 | //
|
---|
22 | // The Library classes this module consumes
|
---|
23 | //
|
---|
24 | #include <Library/BaseLib.h>
|
---|
25 | #include <Library/BaseMemoryLib.h>
|
---|
26 | #include <Library/DebugLib.h>
|
---|
27 | #include <Library/HobLib.h>
|
---|
28 | #include <Library/IoLib.h>
|
---|
29 | #include <Library/PcdLib.h>
|
---|
30 | #include <Library/PciLib.h>
|
---|
31 | #include <Library/PeimEntryPoint.h>
|
---|
32 | #include <Library/ResourcePublicationLib.h>
|
---|
33 |
|
---|
34 | #include "Platform.h"
|
---|
35 | #include "Cmos.h"
|
---|
36 |
|
---|
37 | UINT8 mPhysMemAddressWidth;
|
---|
38 |
|
---|
39 | STATIC UINT32 mS3AcpiReservedMemoryBase;
|
---|
40 | STATIC UINT32 mS3AcpiReservedMemorySize;
|
---|
41 |
|
---|
42 | STATIC UINT16 mQ35TsegMbytes;
|
---|
43 |
|
---|
44 | VOID
|
---|
45 | Q35TsegMbytesInitialization (
|
---|
46 | VOID
|
---|
47 | )
|
---|
48 | {
|
---|
49 | UINT16 ExtendedTsegMbytes;
|
---|
50 | RETURN_STATUS PcdStatus;
|
---|
51 |
|
---|
52 | if (mHostBridgeDevId != INTEL_Q35_MCH_DEVICE_ID) {
|
---|
53 | DEBUG ((
|
---|
54 | DEBUG_ERROR,
|
---|
55 | "%a: no TSEG (SMRAM) on host bridge DID=0x%04x; "
|
---|
56 | "only DID=0x%04x (Q35) is supported\n",
|
---|
57 | __FUNCTION__,
|
---|
58 | mHostBridgeDevId,
|
---|
59 | INTEL_Q35_MCH_DEVICE_ID
|
---|
60 | ));
|
---|
61 | ASSERT (FALSE);
|
---|
62 | CpuDeadLoop ();
|
---|
63 | }
|
---|
64 |
|
---|
65 | //
|
---|
66 | // Check if QEMU offers an extended TSEG.
|
---|
67 | //
|
---|
68 | // This can be seen from writing MCH_EXT_TSEG_MB_QUERY to the MCH_EXT_TSEG_MB
|
---|
69 | // register, and reading back the register.
|
---|
70 | //
|
---|
71 | // On a QEMU machine type that does not offer an extended TSEG, the initial
|
---|
72 | // write overwrites whatever value a malicious guest OS may have placed in
|
---|
73 | // the (unimplemented) register, before entering S3 or rebooting.
|
---|
74 | // Subsequently, the read returns MCH_EXT_TSEG_MB_QUERY unchanged.
|
---|
75 | //
|
---|
76 | // On a QEMU machine type that offers an extended TSEG, the initial write
|
---|
77 | // triggers an update to the register. Subsequently, the value read back
|
---|
78 | // (which is guaranteed to differ from MCH_EXT_TSEG_MB_QUERY) tells us the
|
---|
79 | // number of megabytes.
|
---|
80 | //
|
---|
81 | PciWrite16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB), MCH_EXT_TSEG_MB_QUERY);
|
---|
82 | ExtendedTsegMbytes = PciRead16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB));
|
---|
83 | if (ExtendedTsegMbytes == MCH_EXT_TSEG_MB_QUERY) {
|
---|
84 | mQ35TsegMbytes = PcdGet16 (PcdQ35TsegMbytes);
|
---|
85 | return;
|
---|
86 | }
|
---|
87 |
|
---|
88 | DEBUG ((
|
---|
89 | DEBUG_INFO,
|
---|
90 | "%a: QEMU offers an extended TSEG (%d MB)\n",
|
---|
91 | __FUNCTION__,
|
---|
92 | ExtendedTsegMbytes
|
---|
93 | ));
|
---|
94 | PcdStatus = PcdSet16S (PcdQ35TsegMbytes, ExtendedTsegMbytes);
|
---|
95 | ASSERT_RETURN_ERROR (PcdStatus);
|
---|
96 | mQ35TsegMbytes = ExtendedTsegMbytes;
|
---|
97 | }
|
---|
98 |
|
---|
99 | STATIC
|
---|
100 | UINT64
|
---|
101 | GetHighestSystemMemoryAddress (
|
---|
102 | BOOLEAN Below4gb
|
---|
103 | )
|
---|
104 | {
|
---|
105 | EFI_E820_ENTRY64 *E820Map;
|
---|
106 | UINT32 E820EntriesCount;
|
---|
107 | EFI_E820_ENTRY64 *Entry;
|
---|
108 | EFI_STATUS Status;
|
---|
109 | UINT32 Loop;
|
---|
110 | UINT64 HighestAddress;
|
---|
111 | UINT64 EntryEnd;
|
---|
112 |
|
---|
113 | HighestAddress = 0;
|
---|
114 |
|
---|
115 | Status = XenGetE820Map (&E820Map, &E820EntriesCount);
|
---|
116 | ASSERT_EFI_ERROR (Status);
|
---|
117 |
|
---|
118 | for (Loop = 0; Loop < E820EntriesCount; Loop++) {
|
---|
119 | Entry = E820Map + Loop;
|
---|
120 | EntryEnd = Entry->BaseAddr + Entry->Length;
|
---|
121 |
|
---|
122 | if (Entry->Type == EfiAcpiAddressRangeMemory &&
|
---|
123 | EntryEnd > HighestAddress) {
|
---|
124 |
|
---|
125 | if (Below4gb && (EntryEnd <= BASE_4GB)) {
|
---|
126 | HighestAddress = EntryEnd;
|
---|
127 | } else if (!Below4gb && (EntryEnd >= BASE_4GB)) {
|
---|
128 | HighestAddress = EntryEnd;
|
---|
129 | }
|
---|
130 | }
|
---|
131 | }
|
---|
132 |
|
---|
133 | //
|
---|
134 | // Round down the end address.
|
---|
135 | //
|
---|
136 | return HighestAddress & ~(UINT64)EFI_PAGE_MASK;
|
---|
137 | }
|
---|
138 |
|
---|
139 | UINT32
|
---|
140 | GetSystemMemorySizeBelow4gb (
|
---|
141 | VOID
|
---|
142 | )
|
---|
143 | {
|
---|
144 | UINT8 Cmos0x34;
|
---|
145 | UINT8 Cmos0x35;
|
---|
146 |
|
---|
147 | //
|
---|
148 | // In PVH case, there is no CMOS, we have to calculate the memory size
|
---|
149 | // from parsing the E820
|
---|
150 | //
|
---|
151 | if (XenPvhDetected ()) {
|
---|
152 | UINT64 HighestAddress;
|
---|
153 |
|
---|
154 | HighestAddress = GetHighestSystemMemoryAddress (TRUE);
|
---|
155 | ASSERT (HighestAddress > 0 && HighestAddress <= BASE_4GB);
|
---|
156 |
|
---|
157 | return HighestAddress;
|
---|
158 | }
|
---|
159 |
|
---|
160 | //
|
---|
161 | // CMOS 0x34/0x35 specifies the system memory above 16 MB.
|
---|
162 | // * CMOS(0x35) is the high byte
|
---|
163 | // * CMOS(0x34) is the low byte
|
---|
164 | // * The size is specified in 64kb chunks
|
---|
165 | // * Since this is memory above 16MB, the 16MB must be added
|
---|
166 | // into the calculation to get the total memory size.
|
---|
167 | //
|
---|
168 |
|
---|
169 | Cmos0x34 = (UINT8) CmosRead8 (0x34);
|
---|
170 | Cmos0x35 = (UINT8) CmosRead8 (0x35);
|
---|
171 |
|
---|
172 | return (UINT32) (((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);
|
---|
173 | }
|
---|
174 |
|
---|
175 | /**
|
---|
176 | Initialize the mPhysMemAddressWidth variable, based on CPUID data.
|
---|
177 | **/
|
---|
178 | VOID
|
---|
179 | AddressWidthInitialization (
|
---|
180 | VOID
|
---|
181 | )
|
---|
182 | {
|
---|
183 | UINT32 RegEax;
|
---|
184 |
|
---|
185 | AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
|
---|
186 | if (RegEax >= 0x80000008) {
|
---|
187 | AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
|
---|
188 | mPhysMemAddressWidth = (UINT8) RegEax;
|
---|
189 | } else {
|
---|
190 | mPhysMemAddressWidth = 36;
|
---|
191 | }
|
---|
192 |
|
---|
193 | //
|
---|
194 | // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
|
---|
195 | //
|
---|
196 | ASSERT (mPhysMemAddressWidth <= 52);
|
---|
197 | if (mPhysMemAddressWidth > 48) {
|
---|
198 | mPhysMemAddressWidth = 48;
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 | /**
|
---|
203 | Calculate the cap for the permanent PEI memory.
|
---|
204 | **/
|
---|
205 | STATIC
|
---|
206 | UINT32
|
---|
207 | GetPeiMemoryCap (
|
---|
208 | VOID
|
---|
209 | )
|
---|
210 | {
|
---|
211 | BOOLEAN Page1GSupport;
|
---|
212 | UINT32 RegEax;
|
---|
213 | UINT32 RegEdx;
|
---|
214 | UINT32 Pml4Entries;
|
---|
215 | UINT32 PdpEntries;
|
---|
216 | UINTN TotalPages;
|
---|
217 |
|
---|
218 | //
|
---|
219 | // If DXE is 32-bit, then just return the traditional 64 MB cap.
|
---|
220 | //
|
---|
221 | #ifdef MDE_CPU_IA32
|
---|
222 | if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
|
---|
223 | return SIZE_64MB;
|
---|
224 | }
|
---|
225 | #endif
|
---|
226 |
|
---|
227 | //
|
---|
228 | // Dependent on physical address width, PEI memory allocations can be
|
---|
229 | // dominated by the page tables built for 64-bit DXE. So we key the cap off
|
---|
230 | // of those. The code below is based on CreateIdentityMappingPageTables() in
|
---|
231 | // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c".
|
---|
232 | //
|
---|
233 | Page1GSupport = FALSE;
|
---|
234 | if (PcdGetBool (PcdUse1GPageTable)) {
|
---|
235 | AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
|
---|
236 | if (RegEax >= 0x80000001) {
|
---|
237 | AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
|
---|
238 | if ((RegEdx & BIT26) != 0) {
|
---|
239 | Page1GSupport = TRUE;
|
---|
240 | }
|
---|
241 | }
|
---|
242 | }
|
---|
243 |
|
---|
244 | if (mPhysMemAddressWidth <= 39) {
|
---|
245 | Pml4Entries = 1;
|
---|
246 | PdpEntries = 1 << (mPhysMemAddressWidth - 30);
|
---|
247 | ASSERT (PdpEntries <= 0x200);
|
---|
248 | } else {
|
---|
249 | Pml4Entries = 1 << (mPhysMemAddressWidth - 39);
|
---|
250 | ASSERT (Pml4Entries <= 0x200);
|
---|
251 | PdpEntries = 512;
|
---|
252 | }
|
---|
253 |
|
---|
254 | TotalPages = Page1GSupport ? Pml4Entries + 1 :
|
---|
255 | (PdpEntries + 1) * Pml4Entries + 1;
|
---|
256 | ASSERT (TotalPages <= 0x40201);
|
---|
257 |
|
---|
258 | //
|
---|
259 | // Add 64 MB for miscellaneous allocations. Note that for
|
---|
260 | // mPhysMemAddressWidth values close to 36, the cap will actually be
|
---|
261 | // dominated by this increment.
|
---|
262 | //
|
---|
263 | return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB);
|
---|
264 | }
|
---|
265 |
|
---|
266 |
|
---|
267 | /**
|
---|
268 | Publish PEI core memory
|
---|
269 |
|
---|
270 | @return EFI_SUCCESS The PEIM initialized successfully.
|
---|
271 |
|
---|
272 | **/
|
---|
273 | EFI_STATUS
|
---|
274 | PublishPeiMemory (
|
---|
275 | VOID
|
---|
276 | )
|
---|
277 | {
|
---|
278 | EFI_STATUS Status;
|
---|
279 | EFI_PHYSICAL_ADDRESS MemoryBase;
|
---|
280 | UINT64 MemorySize;
|
---|
281 | UINT32 LowerMemorySize;
|
---|
282 | UINT32 PeiMemoryCap;
|
---|
283 |
|
---|
284 | LowerMemorySize = GetSystemMemorySizeBelow4gb ();
|
---|
285 |
|
---|
286 | if (mBootMode == BOOT_ON_S3_RESUME) {
|
---|
287 | MemoryBase = mS3AcpiReservedMemoryBase;
|
---|
288 | MemorySize = mS3AcpiReservedMemorySize;
|
---|
289 | } else {
|
---|
290 | PeiMemoryCap = GetPeiMemoryCap ();
|
---|
291 | DEBUG ((DEBUG_INFO, "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",
|
---|
292 | __FUNCTION__, mPhysMemAddressWidth, PeiMemoryCap >> 10));
|
---|
293 |
|
---|
294 | //
|
---|
295 | // Determine the range of memory to use during PEI
|
---|
296 | //
|
---|
297 | MemoryBase =
|
---|
298 | PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);
|
---|
299 | MemorySize = LowerMemorySize - MemoryBase;
|
---|
300 | if (MemorySize > PeiMemoryCap) {
|
---|
301 | MemoryBase = LowerMemorySize - PeiMemoryCap;
|
---|
302 | MemorySize = PeiMemoryCap;
|
---|
303 | }
|
---|
304 | }
|
---|
305 |
|
---|
306 | //
|
---|
307 | // Publish this memory to the PEI Core
|
---|
308 | //
|
---|
309 | Status = PublishSystemMemory(MemoryBase, MemorySize);
|
---|
310 | ASSERT_EFI_ERROR (Status);
|
---|
311 |
|
---|
312 | return Status;
|
---|
313 | }
|
---|
314 |
|
---|
315 |
|
---|
316 | /**
|
---|
317 | Publish system RAM and reserve memory regions
|
---|
318 |
|
---|
319 | **/
|
---|
320 | VOID
|
---|
321 | InitializeRamRegions (
|
---|
322 | VOID
|
---|
323 | )
|
---|
324 | {
|
---|
325 | XenPublishRamRegions ();
|
---|
326 |
|
---|
327 | if (mBootMode != BOOT_ON_S3_RESUME) {
|
---|
328 | //
|
---|
329 | // Reserve the lock box storage area
|
---|
330 | //
|
---|
331 | // Since this memory range will be used on S3 resume, it must be
|
---|
332 | // reserved as ACPI NVS.
|
---|
333 | //
|
---|
334 | // If S3 is unsupported, then various drivers might still write to the
|
---|
335 | // LockBox area. We ought to prevent DXE from serving allocation requests
|
---|
336 | // such that they would overlap the LockBox storage.
|
---|
337 | //
|
---|
338 | ZeroMem (
|
---|
339 | (VOID*)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),
|
---|
340 | (UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize)
|
---|
341 | );
|
---|
342 | BuildMemoryAllocationHob (
|
---|
343 | (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),
|
---|
344 | (UINT64)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize),
|
---|
345 | EfiBootServicesData
|
---|
346 | );
|
---|
347 | }
|
---|
348 | }
|
---|