/* $Id: DevIommuIntel.cpp 99280 2023-04-04 13:05:53Z vboxsync $ */ /** @file * IOMMU - Input/Output Memory Management Unit - Intel implementation. */ /* * Copyright (C) 2021-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_IOMMU #include "VBoxDD.h" #include "DevIommuIntel.h" #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** Gets the low uint32_t of a uint64_t or something equivalent. * * This is suitable for casting constants outside code (since RT_LO_U32 can't be * used as it asserts for correctness when compiling on certain compilers). */ #define DMAR_LO_U32(a) (uint32_t)(UINT32_MAX & (a)) /** Gets the high uint32_t of a uint64_t or something equivalent. * * This is suitable for casting constants outside code (since RT_HI_U32 can't be * used as it asserts for correctness when compiling on certain compilers). */ #define DMAR_HI_U32(a) (uint32_t)((a) >> 32) /** Asserts MMIO access' offset and size are valid or returns appropriate error * code suitable for returning from MMIO access handlers. */ #define DMAR_ASSERT_MMIO_ACCESS_RET(a_off, a_cb) \ do { \ AssertReturn((a_cb) == 4 || (a_cb) == 8, VINF_IOM_MMIO_UNUSED_FF); \ AssertReturn(!((a_off) & ((a_cb) - 1)), VINF_IOM_MMIO_UNUSED_FF); \ } while (0) /** Checks if the MMIO offset is valid. */ #define DMAR_IS_MMIO_OFF_VALID(a_off) ( (a_off) < DMAR_MMIO_GROUP_0_OFF_END \ || (a_off) - (uint16_t)DMAR_MMIO_GROUP_1_OFF_FIRST < (uint16_t)DMAR_MMIO_GROUP_1_SIZE) /** Acquires the DMAR lock but returns with the given busy error code on failure. */ #define DMAR_LOCK_RET(a_pDevIns, a_pThisCC, a_rcBusy) \ do { \ int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), (a_rcBusy)); \ if (RT_LIKELY(rcLock == VINF_SUCCESS)) \ { /* likely */ } \ else \ return rcLock; \ } while (0) /** Acquires the DMAR lock (can fail under extraordinary circumstance in ring-0). */ #define DMAR_LOCK(a_pDevIns, a_pThisCC) \ do { \ int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VINF_SUCCESS); \ PDM_CRITSECT_RELEASE_ASSERT_RC_DEV((a_pDevIns), NULL, rcLock); \ } while (0) /** Release the DMAR lock. */ #define DMAR_UNLOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnUnlock(a_pDevIns) /** Asserts that the calling thread owns the DMAR lock. */ #define DMAR_ASSERT_LOCK_IS_OWNER(a_pDevIns, a_pThisCC) \ do { \ Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns)); \ RT_NOREF1(a_pThisCC); \ } while (0) /** Asserts that the calling thread does not own the DMAR lock. */ #define DMAR_ASSERT_LOCK_IS_NOT_OWNER(a_pDevIns, a_pThisCC) \ do { \ Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns) == false); \ RT_NOREF1(a_pThisCC); \ } while (0) /** The number of fault recording registers our implementation supports. * Normal guest operation shouldn't trigger faults anyway, so we only support the * minimum number of registers (which is 1). * * See Intel VT-d spec. 10.4.2 "Capability Register" (CAP_REG.NFR). */ #define DMAR_FRCD_REG_COUNT UINT32_C(1) /** Number of register groups (used in saved states). */ #define DMAR_MMIO_GROUP_COUNT 2 /** Offset of first register in group 0. */ #define DMAR_MMIO_GROUP_0_OFF_FIRST VTD_MMIO_OFF_VER_REG /** Offset of last register in group 0 (inclusive). */ #define DMAR_MMIO_GROUP_0_OFF_LAST VTD_MMIO_OFF_MTRR_PHYSMASK9_REG /** Last valid offset in group 0 (exclusive). */ #define DMAR_MMIO_GROUP_0_OFF_END (DMAR_MMIO_GROUP_0_OFF_LAST + 8 /* sizeof MTRR_PHYSMASK9_REG */) /** Size of the group 0 (in bytes). */ #define DMAR_MMIO_GROUP_0_SIZE (DMAR_MMIO_GROUP_0_OFF_END - DMAR_MMIO_GROUP_0_OFF_FIRST) /** Number of implementation-defined MMIO register offsets - IVA_REG and * FRCD_LO_REG (used in saved state). IOTLB_REG and FRCD_HI_REG are derived from * IVA_REG and FRCD_LO_REG respectively */ #define DMAR_MMIO_OFF_IMPL_COUNT 2 /** Implementation-specific MMIO offset of IVA_REG (used in saved state). */ #define DMAR_MMIO_OFF_IVA_REG 0xe50 /** Implementation-specific MMIO offset of IOTLB_REG. */ #define DMAR_MMIO_OFF_IOTLB_REG 0xe58 /** Implementation-specific MMIO offset of FRCD_LO_REG (used in saved state). */ #define DMAR_MMIO_OFF_FRCD_LO_REG 0xe70 /** Implementation-specific MMIO offset of FRCD_HI_REG. */ #define DMAR_MMIO_OFF_FRCD_HI_REG 0xe78 AssertCompile(!(DMAR_MMIO_OFF_FRCD_LO_REG & 0xf)); AssertCompile(DMAR_MMIO_OFF_IOTLB_REG == DMAR_MMIO_OFF_IVA_REG + 8); AssertCompile(DMAR_MMIO_OFF_FRCD_HI_REG == DMAR_MMIO_OFF_FRCD_LO_REG + 8); /** Offset of first register in group 1. */ #define DMAR_MMIO_GROUP_1_OFF_FIRST VTD_MMIO_OFF_VCCAP_REG /** Offset of last register in group 1 (inclusive). */ #define DMAR_MMIO_GROUP_1_OFF_LAST (DMAR_MMIO_OFF_FRCD_LO_REG + 8) * DMAR_FRCD_REG_COUNT /** Last valid offset in group 1 (exclusive). */ #define DMAR_MMIO_GROUP_1_OFF_END (DMAR_MMIO_GROUP_1_OFF_LAST + 8 /* sizeof FRCD_HI_REG */) /** Size of the group 1 (in bytes). */ #define DMAR_MMIO_GROUP_1_SIZE (DMAR_MMIO_GROUP_1_OFF_END - DMAR_MMIO_GROUP_1_OFF_FIRST) /** DMAR implementation's major version number (exposed to software). * We report 6 as the major version since we support queued-invalidations as * software may make assumptions based on that. * * See Intel VT-d spec. 10.4.7 "Context Command Register" (CCMD_REG.CAIG). */ #define DMAR_VER_MAJOR 6 /** DMAR implementation's minor version number (exposed to software). */ #define DMAR_VER_MINOR 0 /** Number of domain supported (0=16, 1=64, 2=256, 3=1K, 4=4K, 5=16K, 6=64K, * 7=Reserved). */ #define DMAR_ND 6 /** @name DMAR_PERM_XXX: DMA request permissions. * The order of R, W, X bits is important as it corresponds to those bits in * page-table entries. * * @{ */ /** DMA request permission: Read. */ #define DMAR_PERM_READ RT_BIT(0) /** DMA request permission: Write. */ #define DMAR_PERM_WRITE RT_BIT(1) /** DMA request permission: Execute (ER). */ #define DMAR_PERM_EXE RT_BIT(2) /** DMA request permission: Supervisor privilege (PR). */ #define DMAR_PERM_PRIV RT_BIT(3) /** DMA request permissions: All. */ #define DMAR_PERM_ALL (DMAR_PERM_READ | DMAR_PERM_WRITE | DMAR_PERM_EXE | DMAR_PERM_PRIV) /** @} */ /** Release log prefix string. */ #define DMAR_LOG_PFX "Intel-IOMMU" /** The current saved state version. */ #define DMAR_SAVED_STATE_VERSION 1 /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * DMAR error diagnostics. * Sorted alphabetically so it's easier to add and locate items, no other reason. * * @note Members of this enum are used as array indices, so no gaps in enum * values are not allowed. Update g_apszDmarDiagDesc when you modify * fields in this enum. */ typedef enum { /* No error, this must be zero! */ kDmarDiag_None = 0, /* Address Translation Faults. */ kDmarDiag_At_Lm_CtxEntry_Not_Present, kDmarDiag_At_Lm_CtxEntry_Read_Failed, kDmarDiag_At_Lm_CtxEntry_Rsvd, kDmarDiag_At_Lm_Pt_At_Block, kDmarDiag_At_Lm_Pt_Aw_Invalid, kDmarDiag_At_Lm_RootEntry_Not_Present, kDmarDiag_At_Lm_RootEntry_Read_Failed, kDmarDiag_At_Lm_RootEntry_Rsvd, kDmarDiag_At_Lm_Tt_Invalid, kDmarDiag_At_Lm_Ut_At_Block, kDmarDiag_At_Lm_Ut_Aw_Invalid, kDmarDiag_At_Rta_Adms_Not_Supported, kDmarDiag_At_Rta_Rsvd, kDmarDiag_At_Rta_Smts_Not_Supported, kDmarDiag_At_Xm_AddrIn_Invalid, kDmarDiag_At_Xm_AddrOut_Invalid, kDmarDiag_At_Xm_Perm_Read_Denied, kDmarDiag_At_Xm_Perm_Write_Denied, kDmarDiag_At_Xm_Pte_Not_Present, kDmarDiag_At_Xm_Pte_Rsvd, kDmarDiag_At_Xm_Pte_Sllps_Invalid, kDmarDiag_At_Xm_Read_Pte_Failed, kDmarDiag_At_Xm_Slpptr_Read_Failed, /* CCMD_REG faults. */ kDmarDiag_CcmdReg_Not_Supported, kDmarDiag_CcmdReg_Qi_Enabled, kDmarDiag_CcmdReg_Ttm_Invalid, /* IQA_REG faults. */ kDmarDiag_IqaReg_Dsc_Fetch_Error, kDmarDiag_IqaReg_Dw_128_Invalid, kDmarDiag_IqaReg_Dw_256_Invalid, /* Invalidation Queue Error Info. */ kDmarDiag_Iqei_Dsc_Type_Invalid, kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd, kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd, kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid, kDmarDiag_Iqei_Ttm_Rsvd, /* IQT_REG faults. */ kDmarDiag_IqtReg_Qt_Invalid, kDmarDiag_IqtReg_Qt_Not_Aligned, /* Interrupt Remapping Faults. */ kDmarDiag_Ir_Cfi_Blocked, kDmarDiag_Ir_Rfi_Intr_Index_Invalid, kDmarDiag_Ir_Rfi_Irte_Mode_Invalid, kDmarDiag_Ir_Rfi_Irte_Not_Present, kDmarDiag_Ir_Rfi_Irte_Read_Failed, kDmarDiag_Ir_Rfi_Irte_Rsvd, kDmarDiag_Ir_Rfi_Irte_Svt_Bus, kDmarDiag_Ir_Rfi_Irte_Svt_Masked, kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd, kDmarDiag_Ir_Rfi_Rsvd, /* Member for determining array index limit. */ kDmarDiag_End, /* Usual 32-bit type size hack. */ kDmarDiag_32Bit_Hack = 0x7fffffff } DMARDIAG; AssertCompileSize(DMARDIAG, 4); #ifdef IN_RING3 /** DMAR diagnostic enum description expansion. * The below construct ensures typos in the input to this macro are caught * during compile time. */ # define DMARDIAG_DESC(a_Name) RT_CONCAT(kDmarDiag_, a_Name) < kDmarDiag_End ? RT_STR(a_Name) : "Ignored" /** DMAR diagnostics description for members in DMARDIAG. */ static const char *const g_apszDmarDiagDesc[] = { DMARDIAG_DESC(None ), /* Address Translation Faults. */ DMARDIAG_DESC(At_Lm_CtxEntry_Not_Present ), DMARDIAG_DESC(At_Lm_CtxEntry_Read_Failed ), DMARDIAG_DESC(At_Lm_CtxEntry_Rsvd ), DMARDIAG_DESC(At_Lm_Pt_At_Block ), DMARDIAG_DESC(At_Lm_Pt_Aw_Invalid ), DMARDIAG_DESC(At_Lm_RootEntry_Not_Present), DMARDIAG_DESC(At_Lm_RootEntry_Read_Failed), DMARDIAG_DESC(At_Lm_RootEntry_Rsvd ), DMARDIAG_DESC(At_Lm_Tt_Invalid ), DMARDIAG_DESC(At_Lm_Ut_At_Block ), DMARDIAG_DESC(At_Lm_Ut_Aw_Invalid ), DMARDIAG_DESC(At_Rta_Adms_Not_Supported ), DMARDIAG_DESC(At_Rta_Rsvd ), DMARDIAG_DESC(At_Rta_Smts_Not_Supported ), DMARDIAG_DESC(At_Xm_AddrIn_Invalid ), DMARDIAG_DESC(At_Xm_AddrOut_Invalid ), DMARDIAG_DESC(At_Xm_Perm_Read_Denied ), DMARDIAG_DESC(At_Xm_Perm_Write_Denied ), DMARDIAG_DESC(At_Xm_Pte_Not_Present ), DMARDIAG_DESC(At_Xm_Pte_Rsvd ), DMARDIAG_DESC(At_Xm_Pte_Sllps_Invalid ), DMARDIAG_DESC(At_Xm_Read_Pte_Failed ), DMARDIAG_DESC(At_Xm_Slpptr_Read_Failed ), /* CCMD_REG faults. */ DMARDIAG_DESC(CcmdReg_Not_Supported ), DMARDIAG_DESC(CcmdReg_Qi_Enabled ), DMARDIAG_DESC(CcmdReg_Ttm_Invalid ), /* IQA_REG faults. */ DMARDIAG_DESC(IqaReg_Dsc_Fetch_Error ), DMARDIAG_DESC(IqaReg_Dw_128_Invalid ), DMARDIAG_DESC(IqaReg_Dw_256_Invalid ), /* Invalidation Queue Error Info. */ DMARDIAG_DESC(Iqei_Dsc_Type_Invalid ), DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_0_1_Rsvd ), DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_2_3_Rsvd ), DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_Invalid ), DMARDIAG_DESC(Iqei_Ttm_Rsvd ), /* IQT_REG faults. */ DMARDIAG_DESC(IqtReg_Qt_Invalid ), DMARDIAG_DESC(IqtReg_Qt_Not_Aligned ), /* Interrupt remapping faults. */ DMARDIAG_DESC(Ir_Cfi_Blocked ), DMARDIAG_DESC(Ir_Rfi_Intr_Index_Invalid ), DMARDIAG_DESC(Ir_Rfi_Irte_Mode_Invalid ), DMARDIAG_DESC(Ir_Rfi_Irte_Not_Present ), DMARDIAG_DESC(Ir_Rfi_Irte_Read_Failed ), DMARDIAG_DESC(Ir_Rfi_Irte_Rsvd ), DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Bus ), DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Masked ), DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Rsvd ), DMARDIAG_DESC(Ir_Rfi_Rsvd ), /* kDmarDiag_End */ }; AssertCompile(RT_ELEMENTS(g_apszDmarDiagDesc) == kDmarDiag_End); # undef DMARDIAG_DESC #endif /* IN_RING3 */ /** * The shared DMAR device state. */ typedef struct DMAR { /** IOMMU device index. */ uint32_t idxIommu; /** Padding. */ uint32_t u32Padding0; /** Registers (group 0). */ uint8_t abRegs0[DMAR_MMIO_GROUP_0_SIZE]; /** Registers (group 1). */ uint8_t abRegs1[DMAR_MMIO_GROUP_1_SIZE]; /** @name Lazily activated registers. * These are the active values for lazily activated registers. Software is free to * modify the actual register values while remapping/translation is enabled but they * take effect only when explicitly signaled by software, hence we need to hold the * active values separately. * @{ */ /** Currently active IRTA_REG. */ uint64_t uIrtaReg; /** Currently active RTADDR_REG. */ uint64_t uRtaddrReg; /** @} */ /** @name Register copies for a tiny bit faster and more convenient access. * @{ */ /** Copy of VER_REG. */ uint8_t uVerReg; /** Alignment. */ uint8_t abPadding0[7]; /** Copy of CAP_REG. */ uint64_t fCapReg; /** Copy of ECAP_REG. */ uint64_t fExtCapReg; /** @} */ /** Host-address width (HAW) base address mask. */ uint64_t fHawBaseMask; /** Maximum guest-address width (MGAW) invalid address mask. */ uint64_t fMgawInvMask; /** Context-entry qword-1 valid mask. */ uint64_t fCtxEntryQw1ValidMask; /** Maximum supported paging level (3, 4 or 5). */ uint8_t cMaxPagingLevel; /** DMA request valid permissions mask. */ uint8_t fPermValidMask; /** Alignment. */ uint8_t abPadding1[6]; /** The event semaphore the invalidation-queue thread waits on. */ SUPSEMEVENT hEvtInvQueue; /** Error diagnostic. */ DMARDIAG enmDiag; /** Padding. */ uint32_t uPadding0; /** The MMIO handle. */ IOMMMIOHANDLE hMmio; #ifdef VBOX_WITH_STATISTICS STAMCOUNTER StatMmioReadR3; /**< Number of MMIO reads in R3. */ STAMCOUNTER StatMmioReadRZ; /**< Number of MMIO reads in RZ. */ STAMCOUNTER StatMmioWriteR3; /**< Number of MMIO writes in R3. */ STAMCOUNTER StatMmioWriteRZ; /**< Number of MMIO writes in RZ. */ STAMCOUNTER StatMsiRemapCfiR3; /**< Number of compatibility-format interrupts remap requests in R3. */ STAMCOUNTER StatMsiRemapCfiRZ; /**< Number of compatibility-format interrupts remap requests in RZ. */ STAMCOUNTER StatMsiRemapRfiR3; /**< Number of remappable-format interrupts remap requests in R3. */ STAMCOUNTER StatMsiRemapRfiRZ; /**< Number of remappable-format interrupts remap requests in RZ. */ STAMCOUNTER StatMemReadR3; /**< Number of memory read translation requests in R3. */ STAMCOUNTER StatMemReadRZ; /**< Number of memory read translation requests in RZ. */ STAMCOUNTER StatMemWriteR3; /**< Number of memory write translation requests in R3. */ STAMCOUNTER StatMemWriteRZ; /**< Number of memory write translation requests in RZ. */ STAMCOUNTER StatMemBulkReadR3; /**< Number of memory read bulk translation requests in R3. */ STAMCOUNTER StatMemBulkReadRZ; /**< Number of memory read bulk translation requests in RZ. */ STAMCOUNTER StatMemBulkWriteR3; /**< Number of memory write bulk translation requests in R3. */ STAMCOUNTER StatMemBulkWriteRZ; /**< Number of memory write bulk translation requests in RZ. */ STAMCOUNTER StatCcInvDsc; /**< Number of Context-cache descriptors processed. */ STAMCOUNTER StatIotlbInvDsc; /**< Number of IOTLB descriptors processed. */ STAMCOUNTER StatDevtlbInvDsc; /**< Number of Device-TLB descriptors processed. */ STAMCOUNTER StatIecInvDsc; /**< Number of Interrupt-Entry cache descriptors processed. */ STAMCOUNTER StatInvWaitDsc; /**< Number of Invalidation wait descriptors processed. */ STAMCOUNTER StatPasidIotlbInvDsc; /**< Number of PASID-based IOTLB descriptors processed. */ STAMCOUNTER StatPasidCacheInvDsc; /**< Number of PASID-cache descriptors processed. */ STAMCOUNTER StatPasidDevtlbInvDsc; /**< Number of PASID-based device-TLB descriptors processed. */ #endif } DMAR; /** Pointer to the DMAR device state. */ typedef DMAR *PDMAR; /** Pointer to the const DMAR device state. */ typedef DMAR const *PCDMAR; AssertCompileMemberAlignment(DMAR, abRegs0, 8); AssertCompileMemberAlignment(DMAR, abRegs1, 8); /** * The ring-3 DMAR device state. */ typedef struct DMARR3 { /** Device instance. */ PPDMDEVINSR3 pDevInsR3; /** The IOMMU helper. */ R3PTRTYPE(PCPDMIOMMUHLPR3) pIommuHlpR3; /** The invalidation-queue thread. */ R3PTRTYPE(PPDMTHREAD) pInvQueueThread; } DMARR3; /** Pointer to the ring-3 DMAR device state. */ typedef DMARR3 *PDMARR3; /** Pointer to the const ring-3 DMAR device state. */ typedef DMARR3 const *PCDMARR3; /** * The ring-0 DMAR device state. */ typedef struct DMARR0 { /** Device instance. */ PPDMDEVINSR0 pDevInsR0; /** The IOMMU helper. */ R0PTRTYPE(PCPDMIOMMUHLPR0) pIommuHlpR0; } DMARR0; /** Pointer to the ring-0 IOMMU device state. */ typedef DMARR0 *PDMARR0; /** Pointer to the const ring-0 IOMMU device state. */ typedef DMARR0 const *PCDMARR0; /** * The raw-mode DMAR device state. */ typedef struct DMARRC { /** Device instance. */ PPDMDEVINSRC pDevInsRC; /** The IOMMU helper. */ RCPTRTYPE(PCPDMIOMMUHLPRC) pIommuHlpRC; } DMARRC; /** Pointer to the raw-mode DMAR device state. */ typedef DMARRC *PDMARRC; /** Pointer to the const raw-mode DMAR device state. */ typedef DMARRC const *PCIDMARRC; /** The DMAR device state for the current context. */ typedef CTX_SUFF(DMAR) DMARCC; /** Pointer to the DMAR device state for the current context. */ typedef CTX_SUFF(PDMAR) PDMARCC; /** Pointer to the const DMAR device state for the current context. */ typedef CTX_SUFF(PDMAR) const PCDMARCC; /** * DMAR originated events that generate interrupts. */ typedef enum DMAREVENTTYPE { /** Invalidation completion event. */ DMAREVENTTYPE_INV_COMPLETE = 0, /** Fault event. */ DMAREVENTTYPE_FAULT } DMAREVENTTYPE; /** * I/O Page. */ typedef struct DMARIOPAGE { /** The base DMA address of a page. */ RTGCPHYS GCPhysBase; /** The page shift. */ uint8_t cShift; /** The permissions of this page (DMAR_PERM_XXX). */ uint8_t fPerm; } DMARIOPAGE; /** Pointer to an I/O page. */ typedef DMARIOPAGE *PDMARIOPAGE; /** Pointer to a const I/O address range. */ typedef DMARIOPAGE const *PCDMARIOPAGE; /** * I/O Address Range. */ typedef struct DMARIOADDRRANGE { /** The starting DMA address of this range. */ uint64_t uAddr; /** The size of the range (in bytes). */ size_t cb; /** The permissions of this range (DMAR_PERM_XXX). */ uint8_t fPerm; } DMARIOADDRRANGE; /** Pointer to an I/O address range. */ typedef DMARIOADDRRANGE *PDMARIOADDRRANGE; /** Pointer to a const I/O address range. */ typedef DMARIOADDRRANGE const *PCDMARIOADDRRANGE; /** * DMA Memory Request (Input). */ typedef struct DMARMEMREQIN { /** The address range being accessed. */ DMARIOADDRRANGE AddrRange; /** The source device ID (bus, device, function). */ uint16_t idDevice; /** The PASID if present (can be NIL_PCIPASID). */ PCIPASID Pasid; /* The address translation type. */ PCIADDRTYPE enmAddrType; /** The request type. */ VTDREQTYPE enmReqType; } DMARMEMREQIN; /** Pointer to a DMA memory request input. */ typedef DMARMEMREQIN *PDMARMEMREQIN; /** Pointer to a const DMA memory input. */ typedef DMARMEMREQIN const *PCDMARMEMREQIN; /** * DMA Memory Request (Output). */ typedef struct DMARMEMREQOUT { /** The address range of the translated region. */ DMARIOADDRRANGE AddrRange; /** The domain ID of the translated region. */ uint16_t idDomain; } DMARMEMREQOUT; /** Pointer to a DMA memory request output. */ typedef DMARMEMREQOUT *PDMARMEMREQOUT; /** Pointer to a const DMA memory request output. */ typedef DMARMEMREQOUT const *PCDMARMEMREQOUT; /** * DMA Memory Request (Auxiliary Info). * These get updated and used as part of the translation process. */ typedef struct DMARMEMREQAUX { /** The table translation mode (VTD_TTM_XXX). */ uint8_t fTtm; /** The fault processing disabled (FPD) bit. */ uint8_t fFpd; /** The paging level of the translation. */ uint8_t cPagingLevel; uint8_t abPadding[5]; /** The address of the first-level page-table. */ uint64_t GCPhysFlPt; /** The address of second-level page-table. */ uint64_t GCPhysSlPt; } DMARMEMREQAUX; /** Pointer to a DMA memory request output. */ typedef DMARMEMREQAUX *PDMARMEMREQAUX; /** Pointer to a const DMA memory request output. */ typedef DMARMEMREQAUX const *PCDMARMEMREQAUX; /** * DMA Memory Request Remapping Information. */ typedef struct DMARMEMREQREMAP { /** The DMA memory request input. */ DMARMEMREQIN In; /** DMA memory request auxiliary information. */ DMARMEMREQAUX Aux; /** The DMA memory request output. */ DMARMEMREQOUT Out; } DMARMEMREQREMAP; /** Pointer to a DMA remap info. */ typedef DMARMEMREQREMAP *PDMARMEMREQREMAP; /** Pointer to a const DMA remap info. */ typedef DMARMEMREQREMAP const *PCDMARMEMREQREMAP; /** * Callback function to lookup a DMA address. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param pMemReqIn The DMA memory request input. * @param pMemReqAux The DMA memory request auxiliary info. * @param pIoPageOut Where to store the output of the lookup. */ typedef DECLCALLBACKTYPE(int, FNDMADDRLOOKUP,(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux, PDMARIOPAGE pIoPageOut)); /** Pointer to a DMA address-lookup function. */ typedef FNDMADDRLOOKUP *PFNDMADDRLOOKUP; /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** * Read-write masks for DMAR registers (group 0). */ static uint32_t const g_au32RwMasks0[] = { /* Offset Register Low High */ /* 0x000 VER_REG */ VTD_VER_REG_RW_MASK, /* 0x004 Reserved */ 0, /* 0x008 CAP_REG */ DMAR_LO_U32(VTD_CAP_REG_RW_MASK), DMAR_HI_U32(VTD_CAP_REG_RW_MASK), /* 0x010 ECAP_REG */ DMAR_LO_U32(VTD_ECAP_REG_RW_MASK), DMAR_HI_U32(VTD_ECAP_REG_RW_MASK), /* 0x018 GCMD_REG */ VTD_GCMD_REG_RW_MASK, /* 0x01c GSTS_REG */ VTD_GSTS_REG_RW_MASK, /* 0x020 RTADDR_REG */ DMAR_LO_U32(VTD_RTADDR_REG_RW_MASK), DMAR_HI_U32(VTD_RTADDR_REG_RW_MASK), /* 0x028 CCMD_REG */ DMAR_LO_U32(VTD_CCMD_REG_RW_MASK), DMAR_HI_U32(VTD_CCMD_REG_RW_MASK), /* 0x030 Reserved */ 0, /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW_MASK, /* 0x038 FECTL_REG */ VTD_FECTL_REG_RW_MASK, /* 0x03c FEDATA_REG */ VTD_FEDATA_REG_RW_MASK, /* 0x040 FEADDR_REG */ VTD_FEADDR_REG_RW_MASK, /* 0x044 FEUADDR_REG */ VTD_FEUADDR_REG_RW_MASK, /* 0x048 Reserved */ 0, 0, /* 0x050 Reserved */ 0, 0, /* 0x058 AFLOG_REG */ DMAR_LO_U32(VTD_AFLOG_REG_RW_MASK), DMAR_HI_U32(VTD_AFLOG_REG_RW_MASK), /* 0x060 Reserved */ 0, /* 0x064 PMEN_REG */ 0, /* RO as we don't support PLMR and PHMR. */ /* 0x068 PLMBASE_REG */ 0, /* RO as we don't support PLMR. */ /* 0x06c PLMLIMIT_REG */ 0, /* RO as we don't support PLMR. */ /* 0x070 PHMBASE_REG */ 0, 0, /* RO as we don't support PHMR. */ /* 0x078 PHMLIMIT_REG */ 0, 0, /* RO as we don't support PHMR. */ /* 0x080 IQH_REG */ DMAR_LO_U32(VTD_IQH_REG_RW_MASK), DMAR_HI_U32(VTD_IQH_REG_RW_MASK), /* 0x088 IQT_REG */ DMAR_LO_U32(VTD_IQT_REG_RW_MASK), DMAR_HI_U32(VTD_IQT_REG_RW_MASK), /* 0x090 IQA_REG */ DMAR_LO_U32(VTD_IQA_REG_RW_MASK), DMAR_HI_U32(VTD_IQA_REG_RW_MASK), /* 0x098 Reserved */ 0, /* 0x09c ICS_REG */ VTD_ICS_REG_RW_MASK, /* 0x0a0 IECTL_REG */ VTD_IECTL_REG_RW_MASK, /* 0x0a4 IEDATA_REG */ VTD_IEDATA_REG_RW_MASK, /* 0x0a8 IEADDR_REG */ VTD_IEADDR_REG_RW_MASK, /* 0x0ac IEUADDR_REG */ VTD_IEUADDR_REG_RW_MASK, /* 0x0b0 IQERCD_REG */ DMAR_LO_U32(VTD_IQERCD_REG_RW_MASK), DMAR_HI_U32(VTD_IQERCD_REG_RW_MASK), /* 0x0b8 IRTA_REG */ DMAR_LO_U32(VTD_IRTA_REG_RW_MASK), DMAR_HI_U32(VTD_IRTA_REG_RW_MASK), /* 0x0c0 PQH_REG */ DMAR_LO_U32(VTD_PQH_REG_RW_MASK), DMAR_HI_U32(VTD_PQH_REG_RW_MASK), /* 0x0c8 PQT_REG */ DMAR_LO_U32(VTD_PQT_REG_RW_MASK), DMAR_HI_U32(VTD_PQT_REG_RW_MASK), /* 0x0d0 PQA_REG */ DMAR_LO_U32(VTD_PQA_REG_RW_MASK), DMAR_HI_U32(VTD_PQA_REG_RW_MASK), /* 0x0d8 Reserved */ 0, /* 0x0dc PRS_REG */ VTD_PRS_REG_RW_MASK, /* 0x0e0 PECTL_REG */ VTD_PECTL_REG_RW_MASK, /* 0x0e4 PEDATA_REG */ VTD_PEDATA_REG_RW_MASK, /* 0x0e8 PEADDR_REG */ VTD_PEADDR_REG_RW_MASK, /* 0x0ec PEUADDR_REG */ VTD_PEUADDR_REG_RW_MASK, /* 0x0f0 Reserved */ 0, 0, /* 0x0f8 Reserved */ 0, 0, /* 0x100 MTRRCAP_REG */ DMAR_LO_U32(VTD_MTRRCAP_REG_RW_MASK), DMAR_HI_U32(VTD_MTRRCAP_REG_RW_MASK), /* 0x108 MTRRDEF_REG */ 0, 0, /* RO as we don't support MTS. */ /* 0x110 Reserved */ 0, 0, /* 0x118 Reserved */ 0, 0, /* 0x120 MTRR_FIX64_00000_REG */ 0, 0, /* RO as we don't support MTS. */ /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0, /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0, /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0, /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0, /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0, /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0, /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0, /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0, /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0, /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0, /* 0x178 Reserved */ 0, 0, /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0, /* RO as we don't support MTS. */ /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0, /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0, /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0, /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0, /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0, /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0, /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0, /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0, /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0, /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0, /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0, /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0, /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0, /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0, /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0, /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0, /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0, /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0, /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0, }; AssertCompile(sizeof(g_au32RwMasks0) == DMAR_MMIO_GROUP_0_SIZE); /** * Read-only Status, Write-1-to-clear masks for DMAR registers (group 0). */ static uint32_t const g_au32Rw1cMasks0[] = { /* Offset Register Low High */ /* 0x000 VER_REG */ 0, /* 0x004 Reserved */ 0, /* 0x008 CAP_REG */ 0, 0, /* 0x010 ECAP_REG */ 0, 0, /* 0x018 GCMD_REG */ 0, /* 0x01c GSTS_REG */ 0, /* 0x020 RTADDR_REG */ 0, 0, /* 0x028 CCMD_REG */ 0, 0, /* 0x030 Reserved */ 0, /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW1C_MASK, /* 0x038 FECTL_REG */ 0, /* 0x03c FEDATA_REG */ 0, /* 0x040 FEADDR_REG */ 0, /* 0x044 FEUADDR_REG */ 0, /* 0x048 Reserved */ 0, 0, /* 0x050 Reserved */ 0, 0, /* 0x058 AFLOG_REG */ 0, 0, /* 0x060 Reserved */ 0, /* 0x064 PMEN_REG */ 0, /* 0x068 PLMBASE_REG */ 0, /* 0x06c PLMLIMIT_REG */ 0, /* 0x070 PHMBASE_REG */ 0, 0, /* 0x078 PHMLIMIT_REG */ 0, 0, /* 0x080 IQH_REG */ 0, 0, /* 0x088 IQT_REG */ 0, 0, /* 0x090 IQA_REG */ 0, 0, /* 0x098 Reserved */ 0, /* 0x09c ICS_REG */ VTD_ICS_REG_RW1C_MASK, /* 0x0a0 IECTL_REG */ 0, /* 0x0a4 IEDATA_REG */ 0, /* 0x0a8 IEADDR_REG */ 0, /* 0x0ac IEUADDR_REG */ 0, /* 0x0b0 IQERCD_REG */ 0, 0, /* 0x0b8 IRTA_REG */ 0, 0, /* 0x0c0 PQH_REG */ 0, 0, /* 0x0c8 PQT_REG */ 0, 0, /* 0x0d0 PQA_REG */ 0, 0, /* 0x0d8 Reserved */ 0, /* 0x0dc PRS_REG */ 0, /* 0x0e0 PECTL_REG */ 0, /* 0x0e4 PEDATA_REG */ 0, /* 0x0e8 PEADDR_REG */ 0, /* 0x0ec PEUADDR_REG */ 0, /* 0x0f0 Reserved */ 0, 0, /* 0x0f8 Reserved */ 0, 0, /* 0x100 MTRRCAP_REG */ 0, 0, /* 0x108 MTRRDEF_REG */ 0, 0, /* 0x110 Reserved */ 0, 0, /* 0x118 Reserved */ 0, 0, /* 0x120 MTRR_FIX64_00000_REG */ 0, 0, /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0, /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0, /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0, /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0, /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0, /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0, /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0, /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0, /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0, /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0, /* 0x178 Reserved */ 0, 0, /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0, /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0, /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0, /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0, /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0, /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0, /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0, /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0, /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0, /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0, /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0, /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0, /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0, /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0, /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0, /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0, /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0, /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0, /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0, /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0, }; AssertCompile(sizeof(g_au32Rw1cMasks0) == DMAR_MMIO_GROUP_0_SIZE); /** * Read-write masks for DMAR registers (group 1). */ static uint32_t const g_au32RwMasks1[] = { /* Offset Register Low High */ /* 0xe00 VCCAP_REG */ DMAR_LO_U32(VTD_VCCAP_REG_RW_MASK), DMAR_HI_U32(VTD_VCCAP_REG_RW_MASK), /* 0xe08 VCMD_EO_REG */ DMAR_LO_U32(VTD_VCMD_EO_REG_RW_MASK), DMAR_HI_U32(VTD_VCMD_EO_REG_RW_MASK), /* 0xe10 VCMD_REG */ 0, 0, /* RO: VCS not supported. */ /* 0xe18 VCMDRSVD_REG */ 0, 0, /* 0xe20 VCRSP_REG */ 0, 0, /* RO: VCS not supported. */ /* 0xe28 VCRSPRSVD_REG */ 0, 0, /* 0xe30 Reserved */ 0, 0, /* 0xe38 Reserved */ 0, 0, /* 0xe40 Reserved */ 0, 0, /* 0xe48 Reserved */ 0, 0, /* 0xe50 IVA_REG */ DMAR_LO_U32(VTD_IVA_REG_RW_MASK), DMAR_HI_U32(VTD_IVA_REG_RW_MASK), /* 0xe58 IOTLB_REG */ DMAR_LO_U32(VTD_IOTLB_REG_RW_MASK), DMAR_HI_U32(VTD_IOTLB_REG_RW_MASK), /* 0xe60 Reserved */ 0, 0, /* 0xe68 Reserved */ 0, 0, /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW_MASK), /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW_MASK), }; AssertCompile(sizeof(g_au32RwMasks1) == DMAR_MMIO_GROUP_1_SIZE); AssertCompile((DMAR_MMIO_OFF_FRCD_LO_REG - DMAR_MMIO_GROUP_1_OFF_FIRST) + DMAR_FRCD_REG_COUNT * 2 * sizeof(uint64_t) ); /** * Read-only Status, Write-1-to-clear masks for DMAR registers (group 1). */ static uint32_t const g_au32Rw1cMasks1[] = { /* Offset Register Low High */ /* 0xe00 VCCAP_REG */ 0, 0, /* 0xe08 VCMD_EO_REG */ 0, 0, /* 0xe10 VCMD_REG */ 0, 0, /* 0xe18 VCMDRSVD_REG */ 0, 0, /* 0xe20 VCRSP_REG */ 0, 0, /* 0xe28 VCRSPRSVD_REG */ 0, 0, /* 0xe30 Reserved */ 0, 0, /* 0xe38 Reserved */ 0, 0, /* 0xe40 Reserved */ 0, 0, /* 0xe48 Reserved */ 0, 0, /* 0xe50 IVA_REG */ 0, 0, /* 0xe58 IOTLB_REG */ 0, 0, /* 0xe60 Reserved */ 0, 0, /* 0xe68 Reserved */ 0, 0, /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW1C_MASK), /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW1C_MASK), }; AssertCompile(sizeof(g_au32Rw1cMasks1) == DMAR_MMIO_GROUP_1_SIZE); /** Array of RW masks for each register group. */ static uint8_t const *g_apbRwMasks[] = { (uint8_t *)&g_au32RwMasks0[0], (uint8_t *)&g_au32RwMasks1[0] }; /** Array of RW1C masks for each register group. */ static uint8_t const *g_apbRw1cMasks[] = { (uint8_t *)&g_au32Rw1cMasks0[0], (uint8_t *)&g_au32Rw1cMasks1[0] }; /* Masks arrays must be identical in size (even bounds checking code assumes this). */ AssertCompile(sizeof(g_apbRw1cMasks) == sizeof(g_apbRwMasks)); #ifdef IN_RING3 /** Array of valid domain-ID bits. */ static uint16_t const g_auNdMask[] = { 0xf, 0x3f, 0xff, 0x3ff, 0xfff, 0x3fff, 0xffff, 0 }; AssertCompile(RT_ELEMENTS(g_auNdMask) >= DMAR_ND); #endif #ifndef VBOX_DEVICE_STRUCT_TESTCASE #ifdef IN_RING3 /** * Returns the supported adjusted guest-address width (SAGAW) given the maximum * guest address width (MGAW). * * @returns The CAP_REG.SAGAW value. * @param uMgaw The CAP_REG.MGAW value. */ static uint8_t vtdCapRegGetSagaw(uint8_t uMgaw) { /* * It doesn't make sense to me that a CPU (or IOMMU hardware) will ever support * 5-level paging but not 4 or 3-level paging. So smaller page-table levels * are always OR'ed in below. * * The bit values below (57, 48, 39 bits) represents the levels of page-table walks * for 4KB base page size (5-level, 4-level and 3-level paging respectively). * * See Intel VT-d spec. 10.4.2 "Capability Register". */ ++uMgaw; uint8_t const fSagaw = uMgaw >= 57 ? RT_BIT(3) | RT_BIT(2) | RT_BIT(1) : uMgaw >= 48 ? RT_BIT(2) | RT_BIT(1) : uMgaw >= 39 ? RT_BIT(1) : 0; return fSagaw; } /** * Returns the maximum supported paging level given the supported adjusted * guest-address width (SAGAW) field. * * @returns The highest paging level supported, 0 if invalid. * @param fSagaw The CAP_REG.SAGAW value. */ static uint8_t vtdCapRegGetMaxPagingLevel(uint8_t fSagaw) { uint8_t const cMaxPagingLevel = fSagaw & RT_BIT(3) ? 5 : fSagaw & RT_BIT(2) ? 4 : fSagaw & RT_BIT(1) ? 3 : 0; return cMaxPagingLevel; } /** * Returns table translation mode's descriptive name. * * @returns The descriptive name. * @param uTtm The RTADDR_REG.TTM value. */ static const char* vtdRtaddrRegGetTtmDesc(uint8_t uTtm) { Assert(!(uTtm & 3)); static const char* s_apszTtmNames[] = { "Legacy Mode", "Scalable Mode", "Reserved", "Abort-DMA Mode" }; return s_apszTtmNames[uTtm & (RT_ELEMENTS(s_apszTtmNames) - 1)]; } #endif /* IN_RING3 */ /** * Returns whether the interrupt remapping (IR) fault is qualified or not. * * @returns @c true if qualified, @c false otherwise. * @param enmIrFault The interrupt remapping fault condition. */ static bool vtdIrFaultIsQualified(VTDIRFAULT enmIrFault) { switch (enmIrFault) { case VTDIRFAULT_IRTE_NOT_PRESENT: case VTDIRFAULT_IRTE_PRESENT_RSVD: case VTDIRFAULT_IRTE_PRESENT_INVALID: case VTDIRFAULT_PID_READ_FAILED: case VTDIRFAULT_PID_RSVD: return true; default: return false; } } /** * Gets the index of the group the register belongs to given its MMIO offset. * * @returns The group index. * @param offReg The MMIO offset of the register. * @param cbReg The size of the access being made (for bounds checking on * debug builds). */ DECLINLINE(uint8_t) dmarRegGetGroupIndex(uint16_t offReg, uint8_t cbReg) { uint16_t const offLast = offReg + cbReg - 1; AssertCompile(DMAR_MMIO_GROUP_0_OFF_FIRST == 0); AssertMsg(DMAR_IS_MMIO_OFF_VALID(offLast), ("off=%#x cb=%u\n", offReg, cbReg)); return !(offLast < DMAR_MMIO_GROUP_0_OFF_END); } /** * Gets the group the register belongs to given its MMIO offset. * * @returns Pointer to the first element of the register group. * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. * @param cbReg The size of the access being made (for bounds checking on * debug builds). * @param pIdxGroup Where to store the index of the register group the register * belongs to. */ DECLINLINE(uint8_t *) dmarRegGetGroup(PDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup) { *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg); uint8_t *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] }; return apbRegs[*pIdxGroup]; } /** * Const/read-only version of dmarRegGetGroup. * * @copydoc dmarRegGetGroup */ DECLINLINE(uint8_t const*) dmarRegGetGroupRo(PCDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup) { *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg); uint8_t const *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] }; return apbRegs[*pIdxGroup]; } /** * Writes a 32-bit register with the exactly the supplied value. * * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. * @param uReg The 32-bit value to write. */ static void dmarRegWriteRaw32(PDMAR pThis, uint16_t offReg, uint32_t uReg) { uint8_t idxGroup; uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint32_t), &idxGroup); NOREF(idxGroup); *(uint32_t *)(pabRegs + offReg) = uReg; } /** * Writes a 64-bit register with the exactly the supplied value. * * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. * @param uReg The 64-bit value to write. */ static void dmarRegWriteRaw64(PDMAR pThis, uint16_t offReg, uint64_t uReg) { uint8_t idxGroup; uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint64_t), &idxGroup); NOREF(idxGroup); *(uint64_t *)(pabRegs + offReg) = uReg; } /** * Reads a 32-bit register with exactly the value it contains. * * @returns The raw register value. * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. */ static uint32_t dmarRegReadRaw32(PCDMAR pThis, uint16_t offReg) { uint8_t idxGroup; uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup); NOREF(idxGroup); return *(uint32_t *)(pabRegs + offReg); } /** * Reads a 64-bit register with exactly the value it contains. * * @returns The raw register value. * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. */ static uint64_t dmarRegReadRaw64(PCDMAR pThis, uint16_t offReg) { uint8_t idxGroup; uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup); NOREF(idxGroup); return *(uint64_t *)(pabRegs + offReg); } /** * Reads a 32-bit register with exactly the value it contains along with their * corresponding masks * * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. * @param puReg Where to store the raw 32-bit register value. * @param pfRwMask Where to store the RW mask corresponding to this register. * @param pfRw1cMask Where to store the RW1C mask corresponding to this register. */ static void dmarRegReadRaw32Ex(PCDMAR pThis, uint16_t offReg, uint32_t *puReg, uint32_t *pfRwMask, uint32_t *pfRw1cMask) { uint8_t idxGroup; uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup); Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks)); uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup]; uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup]; *puReg = *(uint32_t *)(pabRegs + offReg); *pfRwMask = *(uint32_t *)(pabRwMasks + offReg); *pfRw1cMask = *(uint32_t *)(pabRw1cMasks + offReg); } /** * Reads a 64-bit register with exactly the value it contains along with their * corresponding masks. * * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. * @param puReg Where to store the raw 64-bit register value. * @param pfRwMask Where to store the RW mask corresponding to this register. * @param pfRw1cMask Where to store the RW1C mask corresponding to this register. */ static void dmarRegReadRaw64Ex(PCDMAR pThis, uint16_t offReg, uint64_t *puReg, uint64_t *pfRwMask, uint64_t *pfRw1cMask) { uint8_t idxGroup; uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup); Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks)); uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup]; uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup]; *puReg = *(uint64_t *)(pabRegs + offReg); *pfRwMask = *(uint64_t *)(pabRwMasks + offReg); *pfRw1cMask = *(uint64_t *)(pabRw1cMasks + offReg); } /** * Writes a 32-bit register as it would be when written by software. * This will preserve read-only bits, mask off reserved bits and clear RW1C bits. * * @returns The value that's actually written to the register. * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. * @param uReg The 32-bit value to write. * @param puPrev Where to store the register value prior to writing. */ static uint32_t dmarRegWrite32(PDMAR pThis, uint16_t offReg, uint32_t uReg, uint32_t *puPrev) { /* Read current value from the 32-bit register. */ uint32_t uCurReg; uint32_t fRwMask; uint32_t fRw1cMask; dmarRegReadRaw32Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask); *puPrev = uCurReg; uint32_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */ uint32_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */ uint32_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */ uint32_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits; /* Write new value to the 32-bit register. */ dmarRegWriteRaw32(pThis, offReg, uNewReg); return uNewReg; } /** * Writes a 64-bit register as it would be when written by software. * This will preserve read-only bits, mask off reserved bits and clear RW1C bits. * * @returns The value that's actually written to the register. * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. * @param uReg The 64-bit value to write. * @param puPrev Where to store the register value prior to writing. */ static uint64_t dmarRegWrite64(PDMAR pThis, uint16_t offReg, uint64_t uReg, uint64_t *puPrev) { /* Read current value from the 64-bit register. */ uint64_t uCurReg; uint64_t fRwMask; uint64_t fRw1cMask; dmarRegReadRaw64Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask); *puPrev = uCurReg; uint64_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */ uint64_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */ uint64_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */ uint64_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits; /* Write new value to the 64-bit register. */ dmarRegWriteRaw64(pThis, offReg, uNewReg); return uNewReg; } /** * Reads a 32-bit register as it would be when read by software. * * @returns The register value. * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. */ static uint32_t dmarRegRead32(PCDMAR pThis, uint16_t offReg) { return dmarRegReadRaw32(pThis, offReg); } /** * Reads a 64-bit register as it would be when read by software. * * @returns The register value. * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. */ static uint64_t dmarRegRead64(PCDMAR pThis, uint16_t offReg) { return dmarRegReadRaw64(pThis, offReg); } /** * Modifies a 32-bit register. * * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. * @param fAndMask The AND mask (applied first). * @param fOrMask The OR mask. * @remarks This does NOT apply RO or RW1C masks while modifying the * register. */ static void dmarRegChangeRaw32(PDMAR pThis, uint16_t offReg, uint32_t fAndMask, uint32_t fOrMask) { uint32_t uReg = dmarRegReadRaw32(pThis, offReg); uReg = (uReg & fAndMask) | fOrMask; dmarRegWriteRaw32(pThis, offReg, uReg); } /** * Modifies a 64-bit register. * * @param pThis The shared DMAR device state. * @param offReg The MMIO offset of the register. * @param fAndMask The AND mask (applied first). * @param fOrMask The OR mask. * @remarks This does NOT apply RO or RW1C masks while modifying the * register. */ static void dmarRegChangeRaw64(PDMAR pThis, uint16_t offReg, uint64_t fAndMask, uint64_t fOrMask) { uint64_t uReg = dmarRegReadRaw64(pThis, offReg); uReg = (uReg & fAndMask) | fOrMask; dmarRegWriteRaw64(pThis, offReg, uReg); } /** * Checks if the invalidation-queue is empty. * * Extended version which optionally returns the current queue head and tail * offsets. * * @returns @c true if empty, @c false otherwise. * @param pThis The shared DMAR device state. * @param poffQh Where to store the queue head offset. Optional, can be NULL. * @param poffQt Where to store the queue tail offset. Optional, can be NULL. */ static bool dmarInvQueueIsEmptyEx(PCDMAR pThis, uint32_t *poffQh, uint32_t *poffQt) { /* Read only the low-32 bits of the queue head and queue tail as high bits are all RsvdZ.*/ uint32_t const uIqtReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQT_REG); uint32_t const uIqhReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQH_REG); /* Don't bother masking QT, QH since other bits are RsvdZ. */ Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK)); Assert(!(uIqhReg & ~VTD_BF_IQH_REG_QH_MASK)); if (poffQh) *poffQh = uIqhReg; if (poffQt) *poffQt = uIqtReg; return uIqtReg == uIqhReg; } /** * Checks if the invalidation-queue is empty. * * @returns @c true if empty, @c false otherwise. * @param pThis The shared DMAR device state. */ static bool dmarInvQueueIsEmpty(PCDMAR pThis) { return dmarInvQueueIsEmptyEx(pThis, NULL /* poffQh */, NULL /* poffQt */); } /** * Checks if the invalidation-queue is capable of processing requests. * * @returns @c true if the invalidation-queue can process requests, @c false * otherwise. * @param pThis The shared DMAR device state. */ static bool dmarInvQueueCanProcessRequests(PCDMAR pThis) { /* Check if queued-invalidation is enabled. */ uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG); if (uGstsReg & VTD_BF_GSTS_REG_QIES_MASK) { /* Check if there are no invalidation-queue or timeout errors. */ uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG); if (!(uFstsReg & (VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_ITE_MASK))) return true; } return false; } /** * Wakes up the invalidation-queue thread if there are requests to be processed. * * @param pDevIns The IOMMU device instance. */ static void dmarInvQueueThreadWakeUpIfNeeded(PPDMDEVINS pDevIns) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); LogFlowFunc(("\n")); DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC); if ( dmarInvQueueCanProcessRequests(pThis) && !dmarInvQueueIsEmpty(pThis)) { Log4Func(("Signaling the invalidation-queue thread\n")); PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue); } } /** * Raises an event on behalf of the DMAR. * * These are events that are generated by the DMAR itself (like faults and * invalidation completion notifications). * * @param pDevIns The IOMMU device instance. * @param enmEventType The DMAR event type. * * @remarks The DMAR lock must be held while calling this function. */ static void dmarEventRaiseInterrupt(PPDMDEVINS pDevIns, DMAREVENTTYPE enmEventType) { uint16_t offCtlReg; uint32_t fIntrMaskedMask; uint32_t fIntrPendingMask; uint16_t offMsiAddrLoReg; uint16_t offMsiAddrHiReg; uint16_t offMsiDataReg; switch (enmEventType) { case DMAREVENTTYPE_INV_COMPLETE: { offCtlReg = VTD_MMIO_OFF_IECTL_REG; fIntrMaskedMask = VTD_BF_IECTL_REG_IM_MASK; fIntrPendingMask = VTD_BF_IECTL_REG_IP_MASK; offMsiAddrLoReg = VTD_MMIO_OFF_IEADDR_REG; offMsiAddrHiReg = VTD_MMIO_OFF_IEUADDR_REG; offMsiDataReg = VTD_MMIO_OFF_IEDATA_REG; break; } case DMAREVENTTYPE_FAULT: { offCtlReg = VTD_MMIO_OFF_FECTL_REG; fIntrMaskedMask = VTD_BF_FECTL_REG_IM_MASK; fIntrPendingMask = VTD_BF_FECTL_REG_IP_MASK; offMsiAddrLoReg = VTD_MMIO_OFF_FEADDR_REG; offMsiAddrHiReg = VTD_MMIO_OFF_FEUADDR_REG; offMsiDataReg = VTD_MMIO_OFF_FEDATA_REG; break; } default: { /* Shouldn't ever happen. */ AssertMsgFailedReturnVoid(("DMAR event type %#x unknown!\n", enmEventType)); } } /* Check if software has masked the interrupt. */ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); uint32_t uCtlReg = dmarRegReadRaw32(pThis, offCtlReg); if (!(uCtlReg & fIntrMaskedMask)) { /* * Interrupt is unmasked, raise it. * Interrupts generated by the DMAR have trigger mode and level as 0. * See Intel spec. 5.1.6 "Remapping Hardware Event Interrupt Programming". */ MSIMSG Msi; Msi.Addr.au32[0] = dmarRegReadRaw32(pThis, offMsiAddrLoReg); Msi.Addr.au32[1] = (pThis->fExtCapReg & VTD_BF_ECAP_REG_EIM_MASK) ? dmarRegReadRaw32(pThis, offMsiAddrHiReg) : 0; Msi.Data.u32 = dmarRegReadRaw32(pThis, offMsiDataReg); Assert(Msi.Data.n.u1Level == 0); Assert(Msi.Data.n.u1TriggerMode == 0); PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi(pDevIns, &Msi, 0 /* uTagSrc */); /* Clear interrupt pending bit. */ uCtlReg &= ~fIntrPendingMask; dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg); } else { /* Interrupt is masked, set the interrupt pending bit. */ uCtlReg |= fIntrPendingMask; dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg); } } /** * Raises an interrupt in response to a fault event. * * @param pDevIns The IOMMU device instance. * * @remarks This assumes the caller has already set the required status bits in the * FSTS_REG (namely one or more of PPF, PFO, IQE, ICE or ITE bits). */ static void dmarFaultEventRaiseInterrupt(PPDMDEVINS pDevIns) { PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC); #ifdef VBOX_STRICT { PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR); uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG); uint32_t const fFaultMask = VTD_BF_FSTS_REG_PPF_MASK | VTD_BF_FSTS_REG_PFO_MASK /* | VTD_BF_FSTS_REG_APF_MASK | VTD_BF_FSTS_REG_AFO_MASK */ /* AFL not supported */ /* | VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK */ /* Device-TLBs not supported */ | VTD_BF_FSTS_REG_IQE_MASK; Assert(uFstsReg & fFaultMask); } #endif dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT); } #ifdef IN_RING3 /** * Raises an interrupt in response to an invalidation (complete) event. * * @param pDevIns The IOMMU device instance. */ static void dmarR3InvEventRaiseInterrupt(PPDMDEVINS pDevIns) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC); uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG); if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK)) { dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_ICS_REG, UINT32_MAX, VTD_BF_ICS_REG_IWC_MASK); dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE); } } #endif /* IN_RING3 */ /** * Checks if a primary fault can be recorded. * * @returns @c true if the fault can be recorded, @c false otherwise. * @param pDevIns The IOMMU device instance. * @param pThis The shared DMAR device state. * * @remarks Warning: This function has side-effects wrt the DMAR register state. Do * NOT call it unless there is a fault condition! */ static bool dmarPrimaryFaultCanRecord(PPDMDEVINS pDevIns, PDMAR pThis) { PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC); uint32_t uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG); if (uFstsReg & VTD_BF_FSTS_REG_PFO_MASK) return false; /* * If we add more FRCD registers, we'll have to loop through them here. * Since we support only one FRCD_REG, we don't support "compression of multiple faults", * nor do we need to increment FRI. * * See Intel VT-d spec. 7.2.1 "Primary Fault Logging". */ AssertCompile(DMAR_FRCD_REG_COUNT == 1); uint64_t const uFrcdRegHi = dmarRegReadRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG); if (uFrcdRegHi & VTD_BF_1_FRCD_REG_F_MASK) { uFstsReg |= VTD_BF_FSTS_REG_PFO_MASK; dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, uFstsReg); return false; } return true; } /** * Records a primary fault. * * @param pDevIns The IOMMU device instance. * @param uFrcdHi The FRCD_HI_REG value for this fault. * @param uFrcdLo The FRCD_LO_REG value for this fault. */ static void dmarPrimaryFaultRecord(PPDMDEVINS pDevIns, uint64_t uFrcdHi, uint64_t uFrcdLo) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); DMAR_LOCK(pDevIns, pThisCC); /* We don't support advance fault logging. */ Assert(!(dmarRegRead32(pThis, VTD_MMIO_OFF_GSTS_REG) & VTD_BF_GSTS_REG_AFLS_MASK)); if (dmarPrimaryFaultCanRecord(pDevIns, pThis)) { /* Update the fault recording registers with the fault information. */ dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG, uFrcdHi); dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_LO_REG, uFrcdLo); /* Set the Pending Primary Fault (PPF) field in the status register. */ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, VTD_BF_FSTS_REG_PPF_MASK); /* Raise interrupt if necessary. */ dmarFaultEventRaiseInterrupt(pDevIns); } DMAR_UNLOCK(pDevIns, pThisCC); } /** * Records an interrupt request fault. * * @param pDevIns The IOMMU device instance. * @param enmDiag The diagnostic reason. * @param idDevice The device ID (bus, device, function). * @param idxIntr The interrupt index. * @param pIrte The IRTE that caused this fault. Can be NULL if the fault is * not qualified. */ static void dmarIrFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, uint16_t idDevice, uint16_t idxIntr, PCVTD_IRTE_T pIrte) { /* * Update the diagnostic reason (even if software wants to supress faults). */ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); pThis->enmDiag = enmDiag; /* * Figure out the fault reason to report to software from our diagnostic code. * The case labels below are sorted alphabetically for convenience. */ VTDIRFAULT enmIrFault; switch (enmDiag) { case kDmarDiag_Ir_Cfi_Blocked: enmIrFault = VTDIRFAULT_CFI_BLOCKED; break; case kDmarDiag_Ir_Rfi_Intr_Index_Invalid: enmIrFault = VTDIRFAULT_INTR_INDEX_INVALID; break; case kDmarDiag_Ir_Rfi_Irte_Mode_Invalid: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break; case kDmarDiag_Ir_Rfi_Irte_Not_Present: enmIrFault = VTDIRFAULT_IRTE_NOT_PRESENT; break; case kDmarDiag_Ir_Rfi_Irte_Read_Failed: enmIrFault = VTDIRFAULT_IRTE_READ_FAILED; break; case kDmarDiag_Ir_Rfi_Irte_Rsvd: case kDmarDiag_Ir_Rfi_Irte_Svt_Bus: case kDmarDiag_Ir_Rfi_Irte_Svt_Masked: case kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break; case kDmarDiag_Ir_Rfi_Rsvd: enmIrFault = VTDIRFAULT_REMAPPABLE_INTR_RSVD; break; /* Shouldn't ever happen. */ default: { AssertLogRelMsgFailedReturnVoid(("%s: Invalid interrupt remapping fault diagnostic code %#x\n", DMAR_LOG_PFX, enmDiag)); } } /* * Qualified faults are those that can be suppressed by software using the FPD bit * in the interrupt-remapping table entry. */ bool fFpd; bool const fQualifiedFault = vtdIrFaultIsQualified(enmIrFault); if (fQualifiedFault) { AssertReturnVoid(pIrte); fFpd = RT_BOOL(pIrte->au64[0] & VTD_BF_0_IRTE_FPD_MASK); } else fFpd = false; if (!fFpd) { /* Construct and record the error. */ uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmIrFault) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1); uint64_t const uFrcdLo = (uint64_t)idxIntr << 48; dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo); } } /** * Records an address translation fault. * * @param pDevIns The IOMMU device instance. * @param enmDiag The diagnostic reason. * @param pMemReqIn The DMA memory request input. * @param pMemReqAux The DMA memory request auxiliary info. */ static void dmarAtFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux) { /* * Update the diagnostic reason (even if software wants to supress faults). */ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); pThis->enmDiag = enmDiag; /* * Qualified faults are those that can be suppressed by software using the FPD bit * in the context entry, scalable-mode context entry etc. */ if (!pMemReqAux->fFpd) { /* * Figure out the fault reason to report to software from our diagnostic code. * The case labels below are sorted alphabetically for convenience. */ VTDATFAULT enmAtFault; bool const fLm = pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE; switch (enmDiag) { /* LM (Legacy Mode) faults. */ case kDmarDiag_At_Lm_CtxEntry_Not_Present: enmAtFault = VTDATFAULT_LCT_2; break; case kDmarDiag_At_Lm_CtxEntry_Read_Failed: enmAtFault = VTDATFAULT_LCT_1; break; case kDmarDiag_At_Lm_CtxEntry_Rsvd: enmAtFault = VTDATFAULT_LCT_3; break; case kDmarDiag_At_Lm_Pt_At_Block: enmAtFault = VTDATFAULT_LCT_5; break; case kDmarDiag_At_Lm_Pt_Aw_Invalid: enmAtFault = VTDATFAULT_LGN_1_3; break; case kDmarDiag_At_Lm_RootEntry_Not_Present: enmAtFault = VTDATFAULT_LRT_2; break; case kDmarDiag_At_Lm_RootEntry_Read_Failed: enmAtFault = VTDATFAULT_LRT_1; break; case kDmarDiag_At_Lm_RootEntry_Rsvd: enmAtFault = VTDATFAULT_LRT_3; break; case kDmarDiag_At_Lm_Tt_Invalid: enmAtFault = VTDATFAULT_LCT_4_2; break; case kDmarDiag_At_Lm_Ut_At_Block: enmAtFault = VTDATFAULT_LCT_5; break; case kDmarDiag_At_Lm_Ut_Aw_Invalid: enmAtFault = VTDATFAULT_LCT_4_1; break; /* RTA (Root Table Address) faults. */ case kDmarDiag_At_Rta_Adms_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_1; break; case kDmarDiag_At_Rta_Rsvd: enmAtFault = VTDATFAULT_RTA_1_2; break; case kDmarDiag_At_Rta_Smts_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_3; break; /* XM (Legacy mode or Scalable Mode) faults. */ case kDmarDiag_At_Xm_AddrIn_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_1_1 : VTDATFAULT_SGN_5; break; case kDmarDiag_At_Xm_AddrOut_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_4 : VTDATFAULT_SGN_8; break; case kDmarDiag_At_Xm_Perm_Read_Denied: enmAtFault = fLm ? VTDATFAULT_LGN_3 : VTDATFAULT_SGN_7; break; case kDmarDiag_At_Xm_Perm_Write_Denied: enmAtFault = fLm ? VTDATFAULT_LGN_2 : VTDATFAULT_SGN_6; break; case kDmarDiag_At_Xm_Pte_Not_Present: case kDmarDiag_At_Xm_Pte_Rsvd: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_2; break; case kDmarDiag_At_Xm_Pte_Sllps_Invalid: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_3; break; case kDmarDiag_At_Xm_Read_Pte_Failed: enmAtFault = fLm ? VTDATFAULT_LSL_1 : VTDATFAULT_SSL_1; break; case kDmarDiag_At_Xm_Slpptr_Read_Failed: enmAtFault = fLm ? VTDATFAULT_LCT_4_3 : VTDATFAULT_SSL_4; break; /* Shouldn't ever happen. */ default: { AssertLogRelMsgFailedReturnVoid(("%s: Invalid address translation fault diagnostic code %#x\n", DMAR_LOG_PFX, enmDiag)); } } /* Construct and record the error. */ uint16_t const idDevice = pMemReqIn->idDevice; uint8_t const fType1 = pMemReqIn->enmReqType & RT_BIT(1); uint8_t const fType2 = pMemReqIn->enmReqType & RT_BIT(0); uint8_t const fExec = pMemReqIn->AddrRange.fPerm & DMAR_PERM_EXE; uint8_t const fPriv = pMemReqIn->AddrRange.fPerm & DMAR_PERM_PRIV; bool const fHasPasid = PCIPASID_IS_VALID(pMemReqIn->Pasid); uint32_t const uPasid = PCIPASID_VAL(pMemReqIn->Pasid); PCIADDRTYPE const enmAt = pMemReqIn->enmAddrType; uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T2, fType2) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PP, fHasPasid) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_EXE, fExec) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PRIV, fPriv) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmAtFault) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PV, uPasid) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_AT, enmAt) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T1, fType1) | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1); uint64_t const uFrcdLo = pMemReqIn->AddrRange.uAddr & X86_PAGE_BASE_MASK; dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo); } } /** * Records an IQE fault. * * @param pDevIns The IOMMU device instance. * @param enmIqei The IQE information. * @param enmDiag The diagnostic reason. */ static void dmarIqeFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIQEI enmIqei) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); DMAR_LOCK(pDevIns, pThisCC); /* Update the diagnostic reason. */ pThis->enmDiag = enmDiag; /* Set the error bit. */ uint32_t const fIqe = RT_BF_MAKE(VTD_BF_FSTS_REG_IQE, 1); dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, fIqe); /* Set the error information. */ uint64_t const fIqei = RT_BF_MAKE(VTD_BF_IQERCD_REG_IQEI, enmIqei); dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG, UINT64_MAX, fIqei); dmarFaultEventRaiseInterrupt(pDevIns); DMAR_UNLOCK(pDevIns, pThisCC); } /** * Handles writes to GCMD_REG. * * @returns Strict VBox status code. * @param pDevIns The IOMMU device instance. * @param uGcmdReg The value written to GCMD_REG. */ static VBOXSTRICTRC dmarGcmdRegWrite(PPDMDEVINS pDevIns, uint32_t uGcmdReg) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG); uint32_t const fChanged = uGstsReg ^ uGcmdReg; uint64_t const fExtCapReg = pThis->fExtCapReg; /* Queued-invalidation. */ if ( (fExtCapReg & VTD_BF_ECAP_REG_QI_MASK) && (fChanged & VTD_BF_GCMD_REG_QIE_MASK)) { if (uGcmdReg & VTD_BF_GCMD_REG_QIE_MASK) { dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_QIES_MASK); dmarInvQueueThreadWakeUpIfNeeded(pDevIns); } else { dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_QIES_MASK, 0 /* fOrMask */); dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IQH_REG, 0); } } if (fExtCapReg & VTD_BF_ECAP_REG_IR_MASK) { /* Set Interrupt Remapping Table Pointer (SIRTP). */ if (uGcmdReg & VTD_BF_GCMD_REG_SIRTP_MASK) { /** @todo Perform global invalidation of all interrupt-entry cache when ESIRTPS is * supported. */ pThis->uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG); dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRTPS_MASK); } /* Interrupt remapping. */ if (fChanged & VTD_BF_GCMD_REG_IRE_MASK) { if (uGcmdReg & VTD_BF_GCMD_REG_IRE_MASK) dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRES_MASK); else dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_IRES_MASK, 0 /* fOrMask */); } /* Compatibility format interrupts. */ if (fChanged & VTD_BF_GCMD_REG_CFI_MASK) { if (uGcmdReg & VTD_BF_GCMD_REG_CFI_MASK) dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_CFIS_MASK); else dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_CFIS_MASK, 0 /* fOrMask */); } } /* Set Root Table Pointer (SRTP). */ if (uGcmdReg & VTD_BF_GCMD_REG_SRTP_MASK) { /** @todo Perform global invalidation of all remapping translation caches when * ESRTPS is supported. */ pThis->uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG); dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_RTPS_MASK); } /* Translation (DMA remapping). */ if (fChanged & VTD_BF_GCMD_REG_TE_MASK) { if (uGcmdReg & VTD_BF_GCMD_REG_TE_MASK) dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_TES_MASK); else dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_TES_MASK, 0 /* fOrMask */); } return VINF_SUCCESS; } /** * Handles writes to CCMD_REG. * * @returns Strict VBox status code. * @param pDevIns The IOMMU device instance. * @param offReg The MMIO register offset. * @param cbReg The size of the MMIO access (in bytes). * @param uCcmdReg The value written to CCMD_REG. */ static VBOXSTRICTRC dmarCcmdRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uCcmdReg) { /* At present, we only care about responding to high 32-bits writes, low 32-bits are data. */ if (offReg + cbReg > VTD_MMIO_OFF_CCMD_REG + 4) { /* Check if we need to invalidate the context-context. */ bool const fIcc = RT_BF_GET(uCcmdReg, VTD_BF_CCMD_REG_ICC); if (fIcc) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); uint8_t const uMajorVersion = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX); if (uMajorVersion < 6) { /* Register-based invalidation can only be used when queued-invalidations are not enabled. */ uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG); if (!(uGstsReg & VTD_BF_GSTS_REG_QIES_MASK)) { /* Verify table translation mode is legacy. */ uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM); if (fTtm == VTD_TTM_LEGACY_MODE) { /** @todo Invalidate. */ return VINF_SUCCESS; } pThis->enmDiag = kDmarDiag_CcmdReg_Ttm_Invalid; } else pThis->enmDiag = kDmarDiag_CcmdReg_Qi_Enabled; } else pThis->enmDiag = kDmarDiag_CcmdReg_Not_Supported; dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_CCMD_REG_CAIG_MASK, 0 /* fOrMask */); } } return VINF_SUCCESS; } /** * Handles writes to FECTL_REG. * * @returns Strict VBox status code. * @param pDevIns The IOMMU device instance. * @param uFectlReg The value written to FECTL_REG. */ static VBOXSTRICTRC dmarFectlRegWrite(PPDMDEVINS pDevIns, uint32_t uFectlReg) { /* * If software unmasks the interrupt when the interrupt is pending, we must raise * the interrupt now (which will consequently clear the interrupt pending (IP) bit). */ if ( (uFectlReg & VTD_BF_FECTL_REG_IP_MASK) && ~(uFectlReg & VTD_BF_FECTL_REG_IM_MASK)) dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT); return VINF_SUCCESS; } /** * Handles writes to FSTS_REG. * * @returns Strict VBox status code. * @param pDevIns The IOMMU device instance. * @param uFstsReg The value written to FSTS_REG. * @param uPrev The value in FSTS_REG prior to writing it. */ static VBOXSTRICTRC dmarFstsRegWrite(PPDMDEVINS pDevIns, uint32_t uFstsReg, uint32_t uPrev) { /* * If software clears other status bits in FSTS_REG (pertaining to primary fault logging), * the interrupt pending (IP) bit must be cleared. * * See Intel VT-d spec. 10.4.10 "Fault Event Control Register". */ uint32_t const fChanged = uPrev ^ uFstsReg; if (fChanged & ( VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK | VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_PFO_MASK)) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */); } return VINF_SUCCESS; } /** * Handles writes to IQT_REG. * * @returns Strict VBox status code. * @param pDevIns The IOMMU device instance. * @param offReg The MMIO register offset. * @param uIqtReg The value written to IQT_REG. */ static VBOXSTRICTRC dmarIqtRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqtReg) { /* We only care about the low 32-bits, high 32-bits are reserved. */ Assert(offReg == VTD_MMIO_OFF_IQT_REG); PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); /* Paranoia. */ Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK)); uint32_t const offQt = uIqtReg; uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG); uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW); /* If the descriptor width is 256-bits, the queue tail offset must be aligned accordingly. */ if ( fDw != VTD_IQA_REG_DW_256_BIT || !(offQt & RT_BIT(4))) dmarInvQueueThreadWakeUpIfNeeded(pDevIns); else { /* Hardware treats bit 4 as RsvdZ in this situation, so clear it. */ dmarRegChangeRaw32(pThis, offReg, ~RT_BIT(4), 0 /* fOrMask */); dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Not_Aligned, VTDIQEI_QUEUE_TAIL_MISALIGNED); } return VINF_SUCCESS; } /** * Handles writes to IQA_REG. * * @returns Strict VBox status code. * @param pDevIns The IOMMU device instance. * @param offReg The MMIO register offset. * @param uIqaReg The value written to IQA_REG. */ static VBOXSTRICTRC dmarIqaRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqaReg) { /* At present, we only care about the low 32-bits, high 32-bits are data. */ Assert(offReg == VTD_MMIO_OFF_IQA_REG); NOREF(offReg); /** @todo What happens if IQA_REG is written when dmarInvQueueCanProcessRequests * returns true? The Intel VT-d spec. doesn't state anywhere that it * cannot happen or that it's ignored when it does happen. */ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW); if (fDw == VTD_IQA_REG_DW_256_BIT) { bool const fSupports256BitDw = (pThis->fExtCapReg & (VTD_BF_ECAP_REG_SMTS_MASK | VTD_BF_ECAP_REG_ADMS_MASK)); if (fSupports256BitDw) { /* likely */ } else dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dw_256_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH); } /* else: 128-bit descriptor width is validated lazily, see explanation in dmarR3InvQueueProcessRequests. */ return VINF_SUCCESS; } /** * Handles writes to ICS_REG. * * @returns Strict VBox status code. * @param pDevIns The IOMMU device instance. * @param uIcsReg The value written to ICS_REG. */ static VBOXSTRICTRC dmarIcsRegWrite(PPDMDEVINS pDevIns, uint32_t uIcsReg) { /* * If the IP field is set when software services the interrupt condition, * (by clearing the IWC field), the IP field must be cleared. */ if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK)) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, ~VTD_BF_IECTL_REG_IP_MASK, 0 /* fOrMask */); } return VINF_SUCCESS; } /** * Handles writes to IECTL_REG. * * @returns Strict VBox status code. * @param pDevIns The IOMMU device instance. * @param uIectlReg The value written to IECTL_REG. */ static VBOXSTRICTRC dmarIectlRegWrite(PPDMDEVINS pDevIns, uint32_t uIectlReg) { /* * If software unmasks the interrupt when the interrupt is pending, we must raise * the interrupt now (which will consequently clear the interrupt pending (IP) bit). */ if ( (uIectlReg & VTD_BF_IECTL_REG_IP_MASK) && ~(uIectlReg & VTD_BF_IECTL_REG_IM_MASK)) dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE); return VINF_SUCCESS; } /** * Handles writes to FRCD_REG (High 64-bits). * * @returns Strict VBox status code. * @param pDevIns The IOMMU device instance. * @param offReg The MMIO register offset. * @param cbReg The size of the MMIO access (in bytes). * @param uFrcdHiReg The value written to FRCD_REG. * @param uPrev The value in FRCD_REG prior to writing it. */ static VBOXSTRICTRC dmarFrcdHiRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uFrcdHiReg, uint64_t uPrev) { /* We only care about responding to high 32-bits, low 32-bits are read-only. */ if (offReg + cbReg > DMAR_MMIO_OFF_FRCD_HI_REG + 4) { /* * If software cleared the RW1C F (fault) bit in all FRCD_REGs, hardware clears the * Primary Pending Fault (PPF) and the interrupt pending (IP) bits. Our implementation * has only 1 FRCD register. * * See Intel VT-d spec. 10.4.10 "Fault Event Control Register". */ AssertCompile(DMAR_FRCD_REG_COUNT == 1); uint64_t const fChanged = uPrev ^ uFrcdHiReg; if (fChanged & VTD_BF_1_FRCD_REG_F_MASK) { Assert(!(uFrcdHiReg & VTD_BF_1_FRCD_REG_F_MASK)); /* Software should only ever be able to clear this bit. */ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, ~VTD_BF_FSTS_REG_PPF_MASK, 0 /* fOrMask */); dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */); } } return VINF_SUCCESS; } /** * Performs a PCI target abort for a DMA remapping (DR) operation. * * @param pDevIns The IOMMU device instance. */ static void dmarDrTargetAbort(PPDMDEVINS pDevIns) { /** @todo r=ramshankar: I don't know for sure if a PCI target abort is caused or not * as the Intel VT-d spec. is vague. Wording seems to suggest it does, but * who knows. */ PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0]; uint16_t const u16Status = PDMPciDevGetStatus(pPciDev) | VBOX_PCI_STATUS_SIG_TARGET_ABORT; PDMPciDevSetStatus(pPciDev, u16Status); } /** * Checks whether the address width (AW) is supported by our hardware * implementation for legacy mode address translation. * * @returns @c true if it's supported, @c false otherwise. * @param pThis The shared DMAR device state. * @param pCtxEntry The context entry. * @param pcPagingLevel Where to store the paging level. Optional, can be NULL. */ static bool dmarDrLegacyModeIsAwValid(PCDMAR pThis, PCVTD_CONTEXT_ENTRY_T pCtxEntry, uint8_t *pcPagingLevel) { uint8_t const fTt = RT_BF_GET(pCtxEntry->au64[0], VTD_BF_0_CONTEXT_ENTRY_TT); uint8_t const fAw = RT_BF_GET(pCtxEntry->au64[1], VTD_BF_1_CONTEXT_ENTRY_AW); uint8_t const fAwMask = RT_BIT(fAw); uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW); Assert(!(fSagaw & ~(RT_BIT(1) | RT_BIT(2) | RT_BIT(3)))); uint8_t const cPagingLevel = fAw + 2; if (pcPagingLevel) *pcPagingLevel = cPagingLevel; /* With pass-through, the address width must be the largest AGAW supported by hardware. */ if (fTt == VTD_TT_UNTRANSLATED_PT) { Assert(pThis->cMaxPagingLevel >= 3 && pThis->cMaxPagingLevel <= 5); /* Paranoia. */ return cPagingLevel == pThis->cMaxPagingLevel; } /* The address width must be any of the ones supported by hardware. */ if (fAw < 4) return (fSagaw & fAwMask) != 0; return false; } /** * Reads a root entry from guest memory. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param uRtaddrReg The current RTADDR_REG value. * @param idxRootEntry The index of the root entry to read. * @param pRootEntry Where to store the read root entry. */ static int dmarDrReadRootEntry(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, uint8_t idxRootEntry, PVTD_ROOT_ENTRY_T pRootEntry) { size_t const cbRootEntry = sizeof(*pRootEntry); RTGCPHYS const GCPhysRootEntry = (uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK) + (idxRootEntry * cbRootEntry); return PDMDevHlpPhysReadMeta(pDevIns, GCPhysRootEntry, pRootEntry, cbRootEntry); } /** * Reads a context entry from guest memory. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param GCPhysCtxTable The physical address of the context table. * @param idxCtxEntry The index of the context entry to read. * @param pCtxEntry Where to store the read context entry. */ static int dmarDrReadCtxEntry(PPDMDEVINS pDevIns, RTGCPHYS GCPhysCtxTable, uint8_t idxCtxEntry, PVTD_CONTEXT_ENTRY_T pCtxEntry) { /* We don't verify bits 63:HAW of GCPhysCtxTable is 0 since reading from such an address should fail anyway. */ size_t const cbCtxEntry = sizeof(*pCtxEntry); RTGCPHYS const GCPhysCtxEntry = GCPhysCtxTable + (idxCtxEntry * cbCtxEntry); return PDMDevHlpPhysReadMeta(pDevIns, GCPhysCtxEntry, pCtxEntry, cbCtxEntry); } /** * Validates and updates the output I/O page of a translation. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param GCPhysBase The output address of the translation. * @param cShift The page shift of the translated address. * @param fPerm The permissions granted for the translated region. * @param pMemReqIn The DMA memory request input. * @param pMemReqAux The DMA memory request auxiliary info. * @param pIoPageOut Where to store the output of the translation. */ static int dmarDrUpdateIoPageOut(PPDMDEVINS pDevIns, RTGCPHYS GCPhysBase, uint8_t cShift, uint8_t fPerm, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux, PDMARIOPAGE pIoPageOut) { Assert(!(GCPhysBase & X86_PAGE_4K_OFFSET_MASK)); /* Ensure the output address is not in the interrupt address range. */ if (GCPhysBase - VBOX_MSI_ADDR_BASE >= VBOX_MSI_ADDR_SIZE) { pIoPageOut->GCPhysBase = GCPhysBase; pIoPageOut->cShift = cShift; pIoPageOut->fPerm = fPerm; return VINF_SUCCESS; } dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrOut_Invalid, pMemReqIn, pMemReqAux); return VERR_IOMMU_ADDR_TRANSLATION_FAILED; } /** * Performs second level translation by walking the I/O page tables. * * This is a DMA address-lookup callback function which performs the translation * (and access control) as part of the lookup. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param pMemReqIn The DMA memory request input. * @param pMemReqAux The DMA memory request auxiliary info. * @param pIoPageOut Where to store the output of the translation. */ static DECLCALLBACK(int) dmarDrSecondLevelTranslate(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux, PDMARIOPAGE pIoPageOut) { PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR); /* Sanity. */ Assert(pIoPageOut); Assert(pMemReqIn->AddrRange.fPerm & (DMAR_PERM_READ | DMAR_PERM_WRITE)); Assert( pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE || pMemReqAux->fTtm == VTD_TTM_SCALABLE_MODE); Assert(!(pMemReqAux->GCPhysSlPt & X86_PAGE_4K_OFFSET_MASK)); /* Mask of reserved paging entry bits. */ static uint64_t const s_auPtEntityInvMasks[] = { ~VTD_SL_PTE_VALID_MASK, ~VTD_SL_PDE_VALID_MASK, ~VTD_SL_PDPE_VALID_MASK, ~VTD_SL_PML4E_VALID_MASK, ~VTD_SL_PML5E_VALID_MASK }; /* Paranoia. */ Assert(pMemReqAux->cPagingLevel >= 3 && pMemReqAux->cPagingLevel <= 5); AssertCompile(RT_ELEMENTS(s_auPtEntityInvMasks) == 5); /* Second-level translations restricts input address to an implementation-specific MGAW. */ uint64_t const uAddrIn = pMemReqIn->AddrRange.uAddr; if (!(uAddrIn & pThis->fMgawInvMask)) { /* likely */ } else { dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrIn_Invalid, pMemReqIn, pMemReqAux); return VERR_IOMMU_ADDR_TRANSLATION_FAILED; } /* * Traverse the I/O page table starting with the SLPTPTR (second-level page table pointer). * Unlike AMD IOMMU paging, here there is no feature for "skipping" levels. */ if (pMemReqAux->cPagingLevel > 0) { uint64_t uPtEntity = pMemReqAux->GCPhysSlPt; for (uint8_t idxLevel = pMemReqAux->cPagingLevel - 1; /* not needed: idxLevel >= 0 */; idxLevel--) { /* * Read the paging entry for the current level. */ uint8_t const cLevelShift = X86_PAGE_4K_SHIFT + (idxLevel * 9); { uint16_t const idxPte = (uAddrIn >> cLevelShift) & UINT64_C(0x1ff); uint16_t const offPte = idxPte << 3; RTGCPHYS const GCPhysPtEntity = (uPtEntity & X86_PAGE_4K_BASE_MASK) | offPte; int const rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysPtEntity, &uPtEntity, sizeof(uPtEntity)); if (RT_SUCCESS(rc)) { /* likely */ } else { if ((GCPhysPtEntity & X86_PAGE_BASE_MASK) == pMemReqAux->GCPhysSlPt) dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Slpptr_Read_Failed, pMemReqIn, pMemReqAux); else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Read_Pte_Failed, pMemReqIn, pMemReqAux); break; } } /* * Check I/O permissions. * This must be done prior to check reserved bits for properly reporting errors SSL.2 and SSL.3. * See Intel spec. 7.1.3 "Fault conditions and Remapping hardware behavior for various request". */ uint8_t const fReqPerm = pMemReqIn->AddrRange.fPerm & pThis->fPermValidMask; uint8_t const fPtPerm = uPtEntity & pThis->fPermValidMask; Assert(!(fReqPerm & DMAR_PERM_EXE)); /* No Execute-requests support yet. */ Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_SLADS_MASK)); /* No Second-level access/dirty support. */ if ((fPtPerm & fReqPerm) == fReqPerm) { /* likely */ } else { if ((fPtPerm & (VTD_BF_SL_PTE_R_MASK | VTD_BF_SL_PTE_W_MASK)) == 0) dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Not_Present, pMemReqIn, pMemReqAux); else if ((pMemReqIn->AddrRange.fPerm & DMAR_PERM_READ) != (fPtPerm & VTD_BF_SL_PTE_R_MASK)) dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Perm_Read_Denied, pMemReqIn, pMemReqAux); else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Perm_Write_Denied, pMemReqIn, pMemReqAux); break; } /* * Validate reserved bits of the current paging entry. */ if (!(uPtEntity & s_auPtEntityInvMasks[(uintptr_t)idxLevel])) { /* likely */ } else { dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Rsvd, pMemReqIn, pMemReqAux); break; } /* * Check if this is a 1GB page or a 2MB page. */ AssertCompile(VTD_BF_SL_PDE_PS_MASK == VTD_BF_SL_PDPE_PS_MASK); uint8_t const fLargePage = RT_BF_GET(uPtEntity, VTD_BF_SL_PDE_PS); if (fLargePage && idxLevel > 0) { Assert(idxLevel == 1 || idxLevel == 2); /* Is guaranteed by the reserved bits check above. */ uint8_t const fSllpsMask = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SLLPS); if (fSllpsMask & RT_BIT(idxLevel - 1)) { /* * We don't support MTS (asserted below), hence IPAT and EMT fields of the paging entity are ignored. * All other reserved bits are identical to the regular page-size paging entity which we've already * checked above. */ Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_MTS_MASK)); RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift); return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut); } dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Sllps_Invalid, pMemReqIn, pMemReqAux); break; } /* * If this is the final PTE, compute the translation address and we're done. */ if (idxLevel == 0) { RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift); return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut); } } } return VERR_IOMMU_ADDR_TRANSLATION_FAILED; } /** * Looks up the range of addresses for a DMA memory request remapping. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param pfnLookup The DMA address lookup function. * @param pMemReqRemap The DMA memory request remapping info. */ static int dmarDrMemRangeLookup(PPDMDEVINS pDevIns, PFNDMADDRLOOKUP pfnLookup, PDMARMEMREQREMAP pMemReqRemap) { AssertPtr(pfnLookup); RTGCPHYS GCPhysAddrOut = NIL_RTGCPHYS; DMARMEMREQIN MemReqIn = pMemReqRemap->In; uint64_t const uAddrIn = MemReqIn.AddrRange.uAddr; size_t const cbAddrIn = MemReqIn.AddrRange.cb; uint64_t uAddrInBase = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_BASE_MASK; uint64_t offAddrIn = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_OFFSET_MASK; size_t cbRemaining = cbAddrIn; size_t const cbPage = X86_PAGE_4K_SIZE; int rc; DMARIOPAGE IoPagePrev; RT_ZERO(IoPagePrev); for (;;) { /* Update the input memory request with the next address in our range that needs translation. */ MemReqIn.AddrRange.uAddr = uAddrInBase; MemReqIn.AddrRange.cb = cbRemaining; /* Not currently accessed by pfnLookup, but keep things consistent. */ /* Lookup the physical page corresponding to the DMA virtual address. */ DMARIOPAGE IoPage; rc = pfnLookup(pDevIns, &MemReqIn, &pMemReqRemap->Aux, &IoPage); if (RT_SUCCESS(rc)) { /* Validate results of the translation. */ Assert(IoPage.cShift >= X86_PAGE_4K_SHIFT && IoPage.cShift <= X86_PAGE_1G_SHIFT); Assert(!(IoPage.GCPhysBase & X86_GET_PAGE_OFFSET_MASK(IoPage.cShift))); Assert((IoPage.fPerm & MemReqIn.AddrRange.fPerm) == MemReqIn.AddrRange.fPerm); /* Store the translated address and permissions before continuing to access more pages. */ if (cbRemaining == cbAddrIn) { uint64_t const offAddrOut = uAddrIn & X86_GET_PAGE_OFFSET_MASK(IoPage.cShift); GCPhysAddrOut = IoPage.GCPhysBase | offAddrOut; } /* Check if addresses translated so far result in a physically contiguous region. */ /** @todo Ensure permissions are identical as well if we implementing IOTLB caching * that relies on it being so. */ else if (IoPagePrev.GCPhysBase + cbPage == IoPage.GCPhysBase) { /* likely */ } else { rc = VERR_OUT_OF_RANGE; break; } /* Store the I/O page lookup from the first/previous access. */ IoPagePrev = IoPage; /* Check if we need to access more pages. */ if (cbRemaining > cbPage - offAddrIn) { cbRemaining -= (cbPage - offAddrIn); /* Calculate how much more we need to access. */ uAddrInBase += cbPage; /* Update address of the next access. */ offAddrIn = 0; /* After the first page, remaining pages are accessed from offset 0. */ } else { /* Caller (PDM) doesn't expect more data accessed than what was requested. */ cbRemaining = 0; break; } } else break; } pMemReqRemap->Out.AddrRange.uAddr = GCPhysAddrOut; pMemReqRemap->Out.AddrRange.cb = cbAddrIn - cbRemaining; pMemReqRemap->Out.AddrRange.fPerm = IoPagePrev.fPerm; return rc; } /** * Handles legacy mode DMA address remapping. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param uRtaddrReg The current RTADDR_REG value. * @param pMemReqRemap The DMA memory request remapping info. */ static int dmarDrLegacyModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap) { PCDMARMEMREQIN pMemReqIn = &pMemReqRemap->In; PDMARMEMREQAUX pMemReqAux = &pMemReqRemap->Aux; PDMARMEMREQOUT pMemReqOut = &pMemReqRemap->Out; Assert(pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE); /* Paranoia. */ /* Read the root-entry from guest memory. */ uint8_t const idxRootEntry = RT_HI_U8(pMemReqIn->idDevice); VTD_ROOT_ENTRY_T RootEntry; int rc = dmarDrReadRootEntry(pDevIns, uRtaddrReg, idxRootEntry, &RootEntry); if (RT_SUCCESS(rc)) { /* Check if the root entry is present (must be done before validating reserved bits). */ uint64_t const uRootEntryQword0 = RootEntry.au64[0]; uint64_t const uRootEntryQword1 = RootEntry.au64[1]; bool const fRootEntryPresent = RT_BF_GET(uRootEntryQword0, VTD_BF_0_ROOT_ENTRY_P); if (fRootEntryPresent) { /* Validate reserved bits in the root entry. */ if ( !(uRootEntryQword0 & ~VTD_ROOT_ENTRY_0_VALID_MASK) && !(uRootEntryQword1 & ~VTD_ROOT_ENTRY_1_VALID_MASK)) { /* Read the context-entry from guest memory. */ RTGCPHYS const GCPhysCtxTable = uRootEntryQword0 & VTD_BF_0_ROOT_ENTRY_CTP_MASK; uint8_t const idxCtxEntry = RT_LO_U8(pMemReqIn->idDevice); VTD_CONTEXT_ENTRY_T CtxEntry; rc = dmarDrReadCtxEntry(pDevIns, GCPhysCtxTable, idxCtxEntry, &CtxEntry); if (RT_SUCCESS(rc)) { uint64_t const uCtxEntryQword0 = CtxEntry.au64[0]; uint64_t const uCtxEntryQword1 = CtxEntry.au64[1]; /* Note the FPD bit which software can use to supress translation faults from here on in. */ pMemReqAux->fFpd = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_FPD); /* Check if the context-entry is present (must be done before validating reserved bits). */ bool const fCtxEntryPresent = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_P); if (fCtxEntryPresent) { /* Validate reserved bits in the context-entry. */ PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR); if ( !(uCtxEntryQword0 & ~VTD_CONTEXT_ENTRY_0_VALID_MASK) && !(uCtxEntryQword1 & ~pThis->fCtxEntryQw1ValidMask)) { /* Get the domain ID for this mapping. */ pMemReqOut->idDomain = RT_BF_GET(uCtxEntryQword1, VTD_BF_1_CONTEXT_ENTRY_DID); /* Validate the translation type (TT). */ uint8_t const fTt = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_TT); switch (fTt) { case VTD_TT_UNTRANSLATED_SLP: { /* * Untranslated requests are translated using second-level paging structures referenced * through SLPTPTR. Translated requests and Translation Requests are blocked. */ if (pMemReqIn->enmAddrType == PCIADDRTYPE_UNTRANSLATED) { /* Validate the address width and get the paging level. */ uint8_t cPagingLevel; if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, &cPagingLevel)) { /* * The second-level page table is located at the physical address specified * in the context entry with which we can finally perform second-level translation. */ pMemReqAux->cPagingLevel = cPagingLevel; pMemReqAux->GCPhysSlPt = uCtxEntryQword0 & VTD_BF_0_CONTEXT_ENTRY_SLPTPTR_MASK; rc = dmarDrMemRangeLookup(pDevIns, dmarDrSecondLevelTranslate, pMemReqRemap); if (rc == VERR_OUT_OF_RANGE) rc = VINF_SUCCESS; return rc; } dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_Aw_Invalid, pMemReqIn, pMemReqAux); } else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_At_Block, pMemReqIn, pMemReqAux); break; } case VTD_TT_UNTRANSLATED_PT: { /* * Untranslated requests are processed as pass-through (PT) if PT is supported. * Translated and translation requests are blocked. If PT isn't supported this TT value * is reserved which I assume raises a fault (hence fallthru below). */ if (pThis->fExtCapReg & VTD_BF_ECAP_REG_PT_MASK) { if (pMemReqRemap->In.enmAddrType == PCIADDRTYPE_UNTRANSLATED) { if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, NULL /* pcPagingLevel */)) { PDMARMEMREQOUT pOut = &pMemReqRemap->Out; PCDMARMEMREQIN pIn = &pMemReqRemap->In; pOut->AddrRange.uAddr = pIn->AddrRange.uAddr; pOut->AddrRange.cb = pIn->AddrRange.cb; pOut->AddrRange.fPerm = DMAR_PERM_ALL; return VINF_SUCCESS; } dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_Aw_Invalid, pMemReqIn, pMemReqAux); } else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_At_Block, pMemReqIn, pMemReqAux); break; } RT_FALL_THRU(); } case VTD_TT_UNTRANSLATED_DEV_TLB: { /* * Untranslated, translated and translation requests are supported but requires * device-TLB support. We don't support device-TLBs, so it's treated as reserved. */ Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_DT_MASK)); RT_FALL_THRU(); } default: { /* Any other TT value is reserved. */ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Tt_Invalid, pMemReqIn, pMemReqAux); break; } } } else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Rsvd, pMemReqIn, pMemReqAux); } else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Not_Present, pMemReqIn, pMemReqAux); } else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Read_Failed, pMemReqIn, pMemReqAux); } else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Rsvd, pMemReqIn, pMemReqAux); } else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Not_Present, pMemReqIn, pMemReqAux); } else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Read_Failed, pMemReqIn, pMemReqAux); return VERR_IOMMU_ADDR_TRANSLATION_FAILED; } /** * Handles remapping of DMA address requests in scalable mode. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param uRtaddrReg The current RTADDR_REG value. * @param pMemReqRemap The DMA memory request remapping info. */ static int dmarDrScalableModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap) { RT_NOREF3(pDevIns, uRtaddrReg, pMemReqRemap); return VERR_NOT_IMPLEMENTED; } /** * Gets the DMA access permissions and the address-translation request * type given the PDM IOMMU memory access flags. * * @param pDevIns The IOMMU device instance. * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX. * @param fBulk Whether this is a bulk memory access (used for * statistics). * @param penmReqType Where to store the address-translation request type. * @param pfReqPerm Where to store the DMA access permissions. */ static void dmarDrGetPermAndReqType(PPDMDEVINS pDevIns, uint32_t fFlags, bool fBulk, PVTDREQTYPE penmReqType, uint8_t *pfReqPerm) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); if (fFlags & PDMIOMMU_MEM_F_READ) { *penmReqType = VTDREQTYPE_READ; *pfReqPerm = DMAR_PERM_READ; #ifdef VBOX_WITH_STATISTICS if (!fBulk) STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemRead)); else STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkRead)); #else RT_NOREF2(pThis, fBulk); #endif } else { *penmReqType = VTDREQTYPE_WRITE; *pfReqPerm = DMAR_PERM_WRITE; #ifdef VBOX_WITH_STATISTICS if (!fBulk) STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemWrite)); else STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkWrite)); #else RT_NOREF2(pThis, fBulk); #endif } } /** * Handles DMA remapping based on the table translation mode (TTM). * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param uRtaddrReg The current RTADDR_REG value. * @param pMemReqRemap The DMA memory request remapping info. */ static int dmarDrMemReqRemap(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap) { int rc; switch (pMemReqRemap->Aux.fTtm) { case VTD_TTM_LEGACY_MODE: { rc = dmarDrLegacyModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap); break; } case VTD_TTM_SCALABLE_MODE: { PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR); if (pThis->fExtCapReg & VTD_BF_ECAP_REG_SMTS_MASK) rc = dmarDrScalableModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap); else { rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED; dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Smts_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux); } break; } case VTD_TTM_ABORT_DMA_MODE: { PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR); if (pThis->fExtCapReg & VTD_BF_ECAP_REG_ADMS_MASK) dmarDrTargetAbort(pDevIns); else dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Adms_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux); rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED; break; } default: { rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED; dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Rsvd, &pMemReqRemap->In, &pMemReqRemap->Aux); break; } } return rc; } /** * Memory access bulk (one or more 4K pages) request from a device. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param idDevice The device ID (bus, device, function). * @param cIovas The number of addresses being accessed. * @param pauIovas The I/O virtual addresses for each page being accessed. * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX. * @param paGCPhysSpa Where to store the translated physical addresses. * * @thread Any. */ static DECLCALLBACK(int) iommuIntelMemBulkAccess(PPDMDEVINS pDevIns, uint16_t idDevice, size_t cIovas, uint64_t const *pauIovas, uint32_t fFlags, PRTGCPHYS paGCPhysSpa) { /* Validate. */ AssertPtr(pDevIns); Assert(cIovas > 0); AssertPtr(pauIovas); AssertPtr(paGCPhysSpa); Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK)); PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); DMAR_LOCK(pDevIns, pThisCC); uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG); uint64_t const uRtaddrReg = pThis->uRtaddrReg; DMAR_UNLOCK(pDevIns, pThisCC); if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK) { VTDREQTYPE enmReqType; uint8_t fReqPerm; dmarDrGetPermAndReqType(pDevIns, fFlags, true /* fBulk */, &enmReqType, &fReqPerm); DMARMEMREQREMAP MemReqRemap; RT_ZERO(MemReqRemap); MemReqRemap.In.AddrRange.cb = X86_PAGE_SIZE; MemReqRemap.In.AddrRange.fPerm = fReqPerm; MemReqRemap.In.idDevice = idDevice; MemReqRemap.In.Pasid = NIL_PCIPASID; MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED; MemReqRemap.In.enmReqType = enmReqType; MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM); MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS; for (size_t i = 0; i < cIovas; i++) { MemReqRemap.In.AddrRange.uAddr = pauIovas[i] & X86_PAGE_BASE_MASK; int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap); if (RT_SUCCESS(rc)) { paGCPhysSpa[i] = MemReqRemap.Out.AddrRange.uAddr | (pauIovas[i] & X86_PAGE_OFFSET_MASK); Assert(MemReqRemap.Out.AddrRange.cb == MemReqRemap.In.AddrRange.cb); } else { LogFlowFunc(("idDevice=%#x uIova=%#RX64 fPerm=%#x rc=%Rrc\n", idDevice, pauIovas[i], fReqPerm, rc)); return rc; } } } else { /* Addresses are forwarded without translation when the translation is disabled. */ for (size_t i = 0; i < cIovas; i++) paGCPhysSpa[i] = pauIovas[i]; } return VINF_SUCCESS; } /** * Memory access transaction from a device. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param idDevice The device ID (bus, device, function). * @param uIova The I/O virtual address being accessed. * @param cbIova The size of the access. * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX. * @param pGCPhysSpa Where to store the translated system physical address. * @param pcbContiguous Where to store the number of contiguous bytes translated * and permission-checked. * * @thread Any. */ static DECLCALLBACK(int) iommuIntelMemAccess(PPDMDEVINS pDevIns, uint16_t idDevice, uint64_t uIova, size_t cbIova, uint32_t fFlags, PRTGCPHYS pGCPhysSpa, size_t *pcbContiguous) { /* Validate. */ AssertPtr(pDevIns); AssertPtr(pGCPhysSpa); AssertPtr(pcbContiguous); Assert(cbIova > 0); /** @todo Are we going to support ZLR (zero-length reads to write-only pages)? */ Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK)); PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); DMAR_LOCK(pDevIns, pThisCC); uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG); uint64_t const uRtaddrReg = pThis->uRtaddrReg; DMAR_UNLOCK(pDevIns, pThisCC); if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK) { VTDREQTYPE enmReqType; uint8_t fReqPerm; dmarDrGetPermAndReqType(pDevIns, fFlags, false /* fBulk */, &enmReqType, &fReqPerm); DMARMEMREQREMAP MemReqRemap; RT_ZERO(MemReqRemap); MemReqRemap.In.AddrRange.uAddr = uIova; MemReqRemap.In.AddrRange.cb = cbIova; MemReqRemap.In.AddrRange.fPerm = fReqPerm; MemReqRemap.In.idDevice = idDevice; MemReqRemap.In.Pasid = NIL_PCIPASID; MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED; MemReqRemap.In.enmReqType = enmReqType; MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM); MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS; int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap); *pGCPhysSpa = MemReqRemap.Out.AddrRange.uAddr; *pcbContiguous = MemReqRemap.Out.AddrRange.cb; return rc; } *pGCPhysSpa = uIova; *pcbContiguous = cbIova; return VINF_SUCCESS; } /** * Reads an IRTE from guest memory. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param uIrtaReg The IRTA_REG. * @param idxIntr The interrupt index. * @param pIrte Where to store the read IRTE. */ static int dmarIrReadIrte(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idxIntr, PVTD_IRTE_T pIrte) { Assert(idxIntr < VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg)); size_t const cbIrte = sizeof(*pIrte); RTGCPHYS const GCPhysIrte = (uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK) + (idxIntr * cbIrte); return PDMDevHlpPhysReadMeta(pDevIns, GCPhysIrte, pIrte, cbIrte); } /** * Remaps the source MSI to the destination MSI given the IRTE. * * @param fExtIntrMode Whether extended interrupt mode is enabled (i.e * IRTA_REG.EIME). * @param pIrte The IRTE used for the remapping. * @param pMsiIn The source MSI (currently unused). * @param pMsiOut Where to store the remapped MSI. */ static void dmarIrRemapFromIrte(bool fExtIntrMode, PCVTD_IRTE_T pIrte, PCMSIMSG pMsiIn, PMSIMSG pMsiOut) { NOREF(pMsiIn); uint64_t const uIrteQword0 = pIrte->au64[0]; /* * Let's start with a clean slate and preserve unspecified bits if the need arises. * For instance, address bits 1:0 is supposed to be "ignored" by remapping hardware, * but it's not clear if hardware zeroes out these bits in the remapped MSI or if * it copies it from the source MSI. */ RT_ZERO(*pMsiOut); pMsiOut->Addr.n.u1DestMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DM); pMsiOut->Addr.n.u1RedirHint = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_RH); pMsiOut->Addr.n.u12Addr = VBOX_MSI_ADDR_BASE >> VBOX_MSI_ADDR_SHIFT; if (fExtIntrMode) { /* * Apparently the DMAR stuffs the high 24-bits of the destination ID into the * high 24-bits of the upper 32-bits of the message address, see @bugref{9967#c22}. */ uint32_t const idDest = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST); pMsiOut->Addr.n.u8DestId = idDest; pMsiOut->Addr.n.u32Rsvd0 = idDest & UINT32_C(0xffffff00); } else pMsiOut->Addr.n.u8DestId = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST_XAPIC); pMsiOut->Data.n.u8Vector = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_V); pMsiOut->Data.n.u3DeliveryMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DLM); pMsiOut->Data.n.u1Level = 1; pMsiOut->Data.n.u1TriggerMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_TM); } /** * Handles remapping of interrupts in remappable interrupt format. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param uIrtaReg The IRTA_REG. * @param idDevice The device ID (bus, device, function). * @param pMsiIn The source MSI. * @param pMsiOut Where to store the remapped MSI. */ static int dmarIrRemapIntr(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut) { Assert(pMsiIn->Addr.dmar_remap.fIntrFormat == VTD_INTR_FORMAT_REMAPPABLE); /* Validate reserved bits in the interrupt request. */ AssertCompile(VTD_REMAPPABLE_MSI_ADDR_VALID_MASK == UINT32_MAX); if (!(pMsiIn->Data.u32 & ~VTD_REMAPPABLE_MSI_DATA_VALID_MASK)) { /* Compute the index into the interrupt remap table. */ uint16_t const uHandleHi = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_HI); uint16_t const uHandleLo = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_LO); uint16_t const uHandle = uHandleLo | (uHandleHi << 15); bool const fSubHandleValid = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_SHV); uint16_t const idxIntr = fSubHandleValid ? uHandle + RT_BF_GET(pMsiIn->Data.u32, VTD_BF_REMAPPABLE_MSI_DATA_SUBHANDLE) : uHandle; /* Validate the index. */ uint32_t const cEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg); if (idxIntr < cEntries) { /** @todo Implement and read IRTE from interrupt-entry cache here. */ /* Read the interrupt remap table entry (IRTE) at the index. */ VTD_IRTE_T Irte; int rc = dmarIrReadIrte(pDevIns, uIrtaReg, idxIntr, &Irte); if (RT_SUCCESS(rc)) { /* Check if the IRTE is present (this must be done -before- checking reserved bits). */ uint64_t const uIrteQword0 = Irte.au64[0]; uint64_t const uIrteQword1 = Irte.au64[1]; bool const fPresent = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_P); if (fPresent) { /* Validate reserved bits in the IRTE. */ bool const fExtIntrMode = RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME); uint64_t const fQw0ValidMask = fExtIntrMode ? VTD_IRTE_0_X2APIC_VALID_MASK : VTD_IRTE_0_XAPIC_VALID_MASK; if ( !(uIrteQword0 & ~fQw0ValidMask) && !(uIrteQword1 & ~VTD_IRTE_1_VALID_MASK)) { /* Validate requester id (the device ID) as configured in the IRTE. */ bool fSrcValid; DMARDIAG enmIrDiag; uint8_t const fSvt = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SVT); switch (fSvt) { case VTD_IRTE_SVT_NONE: { fSrcValid = true; enmIrDiag = kDmarDiag_None; break; } case VTD_IRTE_SVT_VALIDATE_MASK: { static uint16_t const s_afValidMasks[] = { 0xffff, 0xfffb, 0xfff9, 0xfff8 }; uint8_t const idxMask = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SQ) & 3; uint16_t const fValidMask = s_afValidMasks[idxMask]; uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID); fSrcValid = (idDevice & fValidMask) == (idSource & fValidMask); enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Masked; break; } case VTD_IRTE_SVT_VALIDATE_BUS_RANGE: { uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID); uint8_t const uBusFirst = RT_HI_U8(idSource); uint8_t const uBusLast = RT_LO_U8(idSource); uint8_t const idDeviceBus = idDevice >> VBOX_PCI_BUS_SHIFT; fSrcValid = (idDeviceBus >= uBusFirst && idDeviceBus <= uBusLast); enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Bus; break; } default: { fSrcValid = false; enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd; break; } } if (fSrcValid) { uint8_t const fPostedMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_IM); if (!fPostedMode) { dmarIrRemapFromIrte(fExtIntrMode, &Irte, pMsiIn, pMsiOut); return VINF_SUCCESS; } dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Mode_Invalid, idDevice, idxIntr, &Irte); } else dmarIrFaultRecord(pDevIns, enmIrDiag, idDevice, idxIntr, &Irte); } else dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Rsvd, idDevice, idxIntr, &Irte); } else dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Not_Present, idDevice, idxIntr, &Irte); } else dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Read_Failed, idDevice, idxIntr, NULL /* pIrte */); } else dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Intr_Index_Invalid, idDevice, idxIntr, NULL /* pIrte */); } else dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Rsvd, idDevice, 0 /* idxIntr */, NULL /* pIrte */); return VERR_IOMMU_INTR_REMAP_DENIED; } /** * Interrupt remap request from a device. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param idDevice The device ID (bus, device, function). * @param pMsiIn The source MSI. * @param pMsiOut Where to store the remapped MSI. */ static DECLCALLBACK(int) iommuIntelMsiRemap(PPDMDEVINS pDevIns, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut) { /* Validate. */ Assert(pDevIns); Assert(pMsiIn); Assert(pMsiOut); RT_NOREF1(idDevice); PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); /* Lock and read all registers required for interrupt remapping up-front. */ DMAR_LOCK(pDevIns, pThisCC); uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG); uint64_t const uIrtaReg = pThis->uIrtaReg; DMAR_UNLOCK(pDevIns, pThisCC); /* Check if interrupt remapping is enabled. */ if (uGstsReg & VTD_BF_GSTS_REG_IRES_MASK) { bool const fIsRemappable = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_INTR_FMT); if (!fIsRemappable) { /* Handle compatibility format interrupts. */ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapCfi)); /* If EIME is enabled or CFIs are disabled, block the interrupt. */ if ( (uIrtaReg & VTD_BF_IRTA_REG_EIME_MASK) || !(uGstsReg & VTD_BF_GSTS_REG_CFIS_MASK)) { dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Cfi_Blocked, VTDIRFAULT_CFI_BLOCKED, idDevice, 0 /* idxIntr */); return VERR_IOMMU_INTR_REMAP_DENIED; } /* Interrupt isn't subject to remapping, pass-through the interrupt. */ *pMsiOut = *pMsiIn; return VINF_SUCCESS; } /* Handle remappable format interrupts. */ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapRfi)); return dmarIrRemapIntr(pDevIns, uIrtaReg, idDevice, pMsiIn, pMsiOut); } /* Interrupt-remapping isn't enabled, all interrupts are pass-through. */ *pMsiOut = *pMsiIn; return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMMMIONEWWRITE} */ static DECLCALLBACK(VBOXSTRICTRC) dmarMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb) { RT_NOREF1(pvUser); DMAR_ASSERT_MMIO_ACCESS_RET(off, cb); PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioWrite)); uint16_t const offReg = off; uint16_t const offLast = offReg + cb - 1; if (DMAR_IS_MMIO_OFF_VALID(offLast)) { PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_WRITE); uint64_t uPrev = 0; uint64_t const uRegWritten = cb == 8 ? dmarRegWrite64(pThis, offReg, *(uint64_t *)pv, &uPrev) : dmarRegWrite32(pThis, offReg, *(uint32_t *)pv, (uint32_t *)&uPrev); VBOXSTRICTRC rcStrict = VINF_SUCCESS; switch (off) { case VTD_MMIO_OFF_GCMD_REG: /* 32-bit */ { rcStrict = dmarGcmdRegWrite(pDevIns, uRegWritten); break; } case VTD_MMIO_OFF_CCMD_REG: /* 64-bit */ case VTD_MMIO_OFF_CCMD_REG + 4: { rcStrict = dmarCcmdRegWrite(pDevIns, offReg, cb, uRegWritten); break; } case VTD_MMIO_OFF_FSTS_REG: /* 32-bit */ { rcStrict = dmarFstsRegWrite(pDevIns, uRegWritten, uPrev); break; } case VTD_MMIO_OFF_FECTL_REG: /* 32-bit */ { rcStrict = dmarFectlRegWrite(pDevIns, uRegWritten); break; } case VTD_MMIO_OFF_IQT_REG: /* 64-bit */ /* VTD_MMIO_OFF_IQT_REG + 4: */ /* High 32-bits reserved. */ { rcStrict = dmarIqtRegWrite(pDevIns, offReg, uRegWritten); break; } case VTD_MMIO_OFF_IQA_REG: /* 64-bit */ /* VTD_MMIO_OFF_IQA_REG + 4: */ /* High 32-bits data. */ { rcStrict = dmarIqaRegWrite(pDevIns, offReg, uRegWritten); break; } case VTD_MMIO_OFF_ICS_REG: /* 32-bit */ { rcStrict = dmarIcsRegWrite(pDevIns, uRegWritten); break; } case VTD_MMIO_OFF_IECTL_REG: /* 32-bit */ { rcStrict = dmarIectlRegWrite(pDevIns, uRegWritten); break; } case DMAR_MMIO_OFF_FRCD_HI_REG: /* 64-bit */ case DMAR_MMIO_OFF_FRCD_HI_REG + 4: { rcStrict = dmarFrcdHiRegWrite(pDevIns, offReg, cb, uRegWritten, uPrev); break; } } DMAR_UNLOCK(pDevIns, pThisCC); LogFlowFunc(("offReg=%#x uRegWritten=%#RX64 rc=%Rrc\n", offReg, uRegWritten, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } return VINF_IOM_MMIO_UNUSED_FF; } /** * @callback_method_impl{FNIOMMMIONEWREAD} */ static DECLCALLBACK(VBOXSTRICTRC) dmarMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb) { RT_NOREF1(pvUser); DMAR_ASSERT_MMIO_ACCESS_RET(off, cb); PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioRead)); uint16_t const offReg = off; uint16_t const offLast = offReg + cb - 1; if (DMAR_IS_MMIO_OFF_VALID(offLast)) { PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC); DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_READ); if (cb == 8) { *(uint64_t *)pv = dmarRegRead64(pThis, offReg); LogFlowFunc(("offReg=%#x pv=%#RX64\n", offReg, *(uint64_t *)pv)); } else { *(uint32_t *)pv = dmarRegRead32(pThis, offReg); LogFlowFunc(("offReg=%#x pv=%#RX32\n", offReg, *(uint32_t *)pv)); } DMAR_UNLOCK(pDevIns, pThisCC); return VINF_SUCCESS; } return VINF_IOM_MMIO_UNUSED_FF; } #ifdef IN_RING3 /** * Process requests in the invalidation queue. * * @param pDevIns The IOMMU device instance. * @param pvRequests The requests to process. * @param cbRequests The size of all requests (in bytes). * @param fDw The descriptor width (VTD_IQA_REG_DW_128_BIT or * VTD_IQA_REG_DW_256_BIT). * @param fTtm The table translation mode. Must not be VTD_TTM_RSVD. */ static void dmarR3InvQueueProcessRequests(PPDMDEVINS pDevIns, void const *pvRequests, uint32_t cbRequests, uint8_t fDw, uint8_t fTtm) { #define DMAR_IQE_FAULT_RECORD_RET(a_enmDiag, a_enmIqei) \ do \ { \ dmarIqeFaultRecord(pDevIns, (a_enmDiag), (a_enmIqei)); \ return; \ } while (0) PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3); DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3); Assert(fTtm != VTD_TTM_RSVD); /* Should've beeen handled by caller. */ /* * The below check is redundant since we check both TTM and DW for each * descriptor type we process. However, the order of errors reported by hardware * may differ hence this is kept commented out but not removed if we need to * change this in the future. * * In our implementation, we would report the descriptor type as invalid, * while on real hardware it may report descriptor width as invalid. * The Intel VT-d spec. is not clear which error takes preceedence. */ #if 0 /* * Verify that 128-bit descriptors are not used when operating in scalable mode. * We don't check this while software writes IQA_REG but defer it until now because * RTADDR_REG can be updated lazily (via GCMD_REG.SRTP). The 256-bit descriptor check * -IS- performed when software writes IQA_REG since it only requires checking against * immutable hardware features. */ if ( fTtm != VTD_TTM_SCALABLE_MODE || fDw != VTD_IQA_REG_DW_128_BIT) { /* likely */ } else DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_IqaReg_Dw_128_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH); #endif /* * Process requests in FIFO order. */ uint8_t const cbDsc = fDw == VTD_IQA_REG_DW_256_BIT ? 32 : 16; for (uint32_t offDsc = 0; offDsc < cbRequests; offDsc += cbDsc) { uint64_t const *puDscQwords = (uint64_t const *)((uintptr_t)pvRequests + offDsc); uint64_t const uQword0 = puDscQwords[0]; uint64_t const uQword1 = puDscQwords[1]; uint8_t const fDscType = VTD_GENERIC_INV_DSC_GET_TYPE(uQword0); switch (fDscType) { case VTD_INV_WAIT_DSC_TYPE: { /* Validate descriptor type. */ if ( fTtm == VTD_TTM_LEGACY_MODE || fDw == VTD_IQA_REG_DW_256_BIT) { /* likely */ } else DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE); /* Validate reserved bits. */ uint64_t const fValidMask0 = !(pThis->fExtCapReg & VTD_BF_ECAP_REG_PDS_MASK) ? VTD_INV_WAIT_DSC_0_VALID_MASK & ~VTD_BF_0_INV_WAIT_DSC_PD_MASK : VTD_INV_WAIT_DSC_0_VALID_MASK; if ( !(uQword0 & ~fValidMask0) && !(uQword1 & ~VTD_INV_WAIT_DSC_1_VALID_MASK)) { /* likely */ } else DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION); if (fDw == VTD_IQA_REG_DW_256_BIT) { if ( !puDscQwords[2] && !puDscQwords[3]) { /* likely */ } else DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION); } /* Perform status write (this must be done prior to generating the completion interrupt). */ bool const fSw = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_SW); if (fSw) { uint32_t const uStatus = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_STDATA); RTGCPHYS const GCPhysStatus = uQword1 & VTD_BF_1_INV_WAIT_DSC_STADDR_MASK; int const rc = PDMDevHlpPhysWrite(pDevIns, GCPhysStatus, (void const*)&uStatus, sizeof(uStatus)); AssertRC(rc); } /* Generate invalidation event interrupt. */ bool const fIf = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_IF); if (fIf) { DMAR_LOCK(pDevIns, pThisR3); dmarR3InvEventRaiseInterrupt(pDevIns); DMAR_UNLOCK(pDevIns, pThisR3); } STAM_COUNTER_INC(&pThis->StatInvWaitDsc); break; } case VTD_CC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatCcInvDsc); break; case VTD_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIotlbInvDsc); break; case VTD_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatDevtlbInvDsc); break; case VTD_IEC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIecInvDsc); break; case VTD_P_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidIotlbInvDsc); break; case VTD_PC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidCacheInvDsc); break; case VTD_P_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidDevtlbInvDsc); break; default: { /* Stop processing further requests. */ LogFunc(("Invalid descriptor type: %#x\n", fDscType)); DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Dsc_Type_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE); } } } #undef DMAR_IQE_FAULT_RECORD_RET } /** * The invalidation-queue thread. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param pThread The command thread. */ static DECLCALLBACK(int) dmarR3InvQueueThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread) { NOREF(pThread); LogFlowFunc(("\n")); if (pThread->enmState == PDMTHREADSTATE_INITIALIZING) return VINF_SUCCESS; /* * Pre-allocate the maximum size of the invalidation queue allowed by the spec. * This prevents trashing the heap as well as deal with out-of-memory situations * up-front while starting the VM. It also simplifies the code from having to * dynamically grow/shrink the allocation based on how software sizes the queue. * Guests normally don't alter the queue size all the time, but that's not an * assumption we can make. */ uint8_t const cMaxPages = 1 << VTD_BF_IQA_REG_QS_MASK; size_t const cbMaxQs = cMaxPages << X86_PAGE_SHIFT; void *pvRequests = RTMemAllocZ(cbMaxQs); AssertPtrReturn(pvRequests, VERR_NO_MEMORY); PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3); while (pThread->enmState == PDMTHREADSTATE_RUNNING) { /* * Sleep until we are woken up. */ { int const rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtInvQueue, RT_INDEFINITE_WAIT); AssertLogRelMsgReturnStmt(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), RTMemFree(pvRequests), rc); if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING)) break; } DMAR_LOCK(pDevIns, pThisR3); if (dmarInvQueueCanProcessRequests(pThis)) { uint32_t offQueueHead; uint32_t offQueueTail; bool const fIsEmpty = dmarInvQueueIsEmptyEx(pThis, &offQueueHead, &offQueueTail); if (!fIsEmpty) { /* * Get the current queue size, descriptor width, queue base address and the * table translation mode while the lock is still held. */ uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG); uint8_t const cQueuePages = 1 << (uIqaReg & VTD_BF_IQA_REG_QS_MASK); uint32_t const cbQueue = cQueuePages << X86_PAGE_SHIFT; uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW); uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM); RTGCPHYS const GCPhysRequests = (uIqaReg & VTD_BF_IQA_REG_IQA_MASK) + offQueueHead; /* Paranoia. */ Assert(cbQueue <= cbMaxQs); Assert(!(offQueueTail & ~VTD_BF_IQT_REG_QT_MASK)); Assert(!(offQueueHead & ~VTD_BF_IQH_REG_QH_MASK)); Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueTail & RT_BIT(4))); Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueHead & RT_BIT(4))); Assert(offQueueHead < cbQueue); /* * A table translation mode of "reserved" isn't valid for any descriptor type. * However, RTADDR_REG can be modified in parallel to invalidation-queue processing, * but if ESRTPS is support, we will perform a global invalidation when software * changes RTADDR_REG, or it's the responsibility of software to do it explicitly. * So caching TTM while reading all descriptors should not be a problem. * * Also, validate the queue tail offset as it's mutable by software. */ if ( fTtm != VTD_TTM_RSVD && offQueueTail < cbQueue) { /* Don't hold the lock while reading (a potentially large amount of) requests */ DMAR_UNLOCK(pDevIns, pThisR3); int rc; uint32_t cbRequests; if (offQueueTail > offQueueHead) { /* The requests have not wrapped around, read them in one go. */ cbRequests = offQueueTail - offQueueHead; rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbRequests); } else { /* The requests have wrapped around, read forward and wrapped-around. */ uint32_t const cbForward = cbQueue - offQueueHead; rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbForward); uint32_t const cbWrapped = offQueueTail; if ( RT_SUCCESS(rc) && cbWrapped > 0) { rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests + cbForward, (void *)((uintptr_t)pvRequests + cbForward), cbWrapped); } cbRequests = cbForward + cbWrapped; } /* Re-acquire the lock since we need to update device state. */ DMAR_LOCK(pDevIns, pThisR3); if (RT_SUCCESS(rc)) { /* Indicate to software we've fetched all requests. */ dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_IQH_REG, offQueueTail); /* Don't hold the lock while processing requests. */ DMAR_UNLOCK(pDevIns, pThisR3); /* Process all requests. */ Assert(cbRequests <= cbQueue); dmarR3InvQueueProcessRequests(pDevIns, pvRequests, cbRequests, fDw, fTtm); /* * We've processed all requests and the lock shouldn't be held at this point. * Using 'continue' here allows us to skip re-acquiring the lock just to release * it again before going back to the thread loop. It's a bit ugly but it certainly * helps with performance. */ DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3); continue; } dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dsc_Fetch_Error, VTDIQEI_FETCH_DESCRIPTOR_ERR); } else { if (fTtm == VTD_TTM_RSVD) dmarIqeFaultRecord(pDevIns, kDmarDiag_Iqei_Ttm_Rsvd, VTDIQEI_INVALID_TTM); else { Assert(offQueueTail >= cbQueue); dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Invalid, VTDIQEI_INVALID_TAIL_PTR); } } } } DMAR_UNLOCK(pDevIns, pThisR3); } RTMemFree(pvRequests); pvRequests = NULL; LogFlowFunc(("Invalidation-queue thread terminating\n")); return VINF_SUCCESS; } /** * Wakes up the invalidation-queue thread so it can respond to a state * change. * * @returns VBox status code. * @param pDevIns The IOMMU device instance. * @param pThread The invalidation-queue thread. * * @thread EMT. */ static DECLCALLBACK(int) dmarR3InvQueueThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread) { RT_NOREF(pThread); LogFlowFunc(("\n")); PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) dmarR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3); bool const fVerbose = RTStrCmp(pszArgs, "verbose") == 0; /* * We lock the device to get a consistent register state as it is * ASSUMED pHlp->pfnPrintf is expensive, so we copy the registers (the * ones we care about here) into temporaries and release the lock ASAP. * * Order of register being read and outputted is in accordance with the * spec. for no particular reason. * See Intel VT-d spec. 10.4 "Register Descriptions". */ DMAR_LOCK(pDevIns, pThisR3); DMARDIAG const enmDiag = pThis->enmDiag; uint32_t const uVerReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_VER_REG); uint64_t const uCapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CAP_REG); uint64_t const uEcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_ECAP_REG); uint32_t const uGcmdReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GCMD_REG); uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG); uint64_t const uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG); uint64_t const uCcmdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CCMD_REG); uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG); uint32_t const uFectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FECTL_REG); uint32_t const uFedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEDATA_REG); uint32_t const uFeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEADDR_REG); uint32_t const uFeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEUADDR_REG); uint64_t const uAflogReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_AFLOG_REG); uint32_t const uPmenReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PMEN_REG); uint32_t const uPlmbaseReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMBASE_REG); uint32_t const uPlmlimitReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMLIMIT_REG); uint64_t const uPhmbaseReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMBASE_REG); uint64_t const uPhmlimitReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMLIMIT_REG); uint64_t const uIqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQH_REG); uint64_t const uIqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQT_REG); uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG); uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG); uint32_t const uIectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IECTL_REG); uint32_t const uIedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEDATA_REG); uint32_t const uIeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEADDR_REG); uint32_t const uIeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEUADDR_REG); uint64_t const uIqercdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG); uint64_t const uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG); uint64_t const uPqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQH_REG); uint64_t const uPqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQT_REG); uint64_t const uPqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQA_REG); uint32_t const uPrsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PRS_REG); uint32_t const uPectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PECTL_REG); uint32_t const uPedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEDATA_REG); uint32_t const uPeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEADDR_REG); uint32_t const uPeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEUADDR_REG); uint64_t const uMtrrcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRCAP_REG); uint64_t const uMtrrdefReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRDEF_REG); DMAR_UNLOCK(pDevIns, pThisR3); const char *const pszDiag = enmDiag < RT_ELEMENTS(g_apszDmarDiagDesc) ? g_apszDmarDiagDesc[enmDiag] : "(Unknown)"; pHlp->pfnPrintf(pHlp, "Intel-IOMMU:\n"); pHlp->pfnPrintf(pHlp, " Diag = %s\n", pszDiag); /* * Non-verbose output. */ if (!fVerbose) { pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg); pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg); pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg); pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg); pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg); pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg); pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg); pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg); pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg); pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg); pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg); pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg); pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg); pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg); pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg); pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg); pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg); pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg); pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg); pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg); pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg); pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg); pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg); pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg); pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg); pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg); pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg); pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg); pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg); pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg); pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg); pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg); pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg); pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg); pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg); pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg); pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg); pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg); pHlp->pfnPrintf(pHlp, "\n"); return; } /* * Verbose output. */ pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg); { pHlp->pfnPrintf(pHlp, " MAJ = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX)); pHlp->pfnPrintf(pHlp, " MIN = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN)); } pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg); { uint8_t const uMgaw = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MGAW); uint8_t const uNfr = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_NFR); pHlp->pfnPrintf(pHlp, " ND = %u\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ND)); pHlp->pfnPrintf(pHlp, " AFL = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_AFL)); pHlp->pfnPrintf(pHlp, " RWBF = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_RWBF)); pHlp->pfnPrintf(pHlp, " PLMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PLMR)); pHlp->pfnPrintf(pHlp, " PHMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PHMR)); pHlp->pfnPrintf(pHlp, " CM = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_CM)); pHlp->pfnPrintf(pHlp, " SAGAW = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SAGAW)); pHlp->pfnPrintf(pHlp, " MGAW = %#x (%u bits)\n", uMgaw, uMgaw + 1); pHlp->pfnPrintf(pHlp, " ZLR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ZLR)); pHlp->pfnPrintf(pHlp, " FRO = %#x bytes\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FRO)); pHlp->pfnPrintf(pHlp, " SLLPS = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SLLPS)); pHlp->pfnPrintf(pHlp, " PSI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PSI)); pHlp->pfnPrintf(pHlp, " NFR = %u (%u FRCD register%s)\n", uNfr, uNfr + 1, uNfr > 0 ? "s" : ""); pHlp->pfnPrintf(pHlp, " MAMV = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MAMV)); pHlp->pfnPrintf(pHlp, " DWD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DWD)); pHlp->pfnPrintf(pHlp, " DRD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DRD)); pHlp->pfnPrintf(pHlp, " FL1GP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL1GP)); pHlp->pfnPrintf(pHlp, " PI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PI)); pHlp->pfnPrintf(pHlp, " FL5LP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL5LP)); pHlp->pfnPrintf(pHlp, " ESIRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESIRTPS)); pHlp->pfnPrintf(pHlp, " ESRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESRTPS)); } pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg); { uint8_t const uPss = RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PSS); pHlp->pfnPrintf(pHlp, " C = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_C)); pHlp->pfnPrintf(pHlp, " QI = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_QI)); pHlp->pfnPrintf(pHlp, " DT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DT)); pHlp->pfnPrintf(pHlp, " IR = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IR)); pHlp->pfnPrintf(pHlp, " EIM = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EIM)); pHlp->pfnPrintf(pHlp, " PT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PT)); pHlp->pfnPrintf(pHlp, " SC = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SC)); pHlp->pfnPrintf(pHlp, " IRO = %#x bytes\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IRO)); pHlp->pfnPrintf(pHlp, " MHMV = %#x\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MHMV)); pHlp->pfnPrintf(pHlp, " MTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MTS)); pHlp->pfnPrintf(pHlp, " NEST = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NEST)); pHlp->pfnPrintf(pHlp, " PRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PRS)); pHlp->pfnPrintf(pHlp, " ERS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ERS)); pHlp->pfnPrintf(pHlp, " SRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SRS)); pHlp->pfnPrintf(pHlp, " NWFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NWFS)); pHlp->pfnPrintf(pHlp, " EAFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EAFS)); pHlp->pfnPrintf(pHlp, " PSS = %u (%u bits)\n", uPss, uPss > 0 ? uPss + 1 : 0); pHlp->pfnPrintf(pHlp, " PASID = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PASID)); pHlp->pfnPrintf(pHlp, " DIT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DIT)); pHlp->pfnPrintf(pHlp, " PDS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PDS)); pHlp->pfnPrintf(pHlp, " SMTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMTS)); pHlp->pfnPrintf(pHlp, " VCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_VCS)); pHlp->pfnPrintf(pHlp, " SLADS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLADS)); pHlp->pfnPrintf(pHlp, " SLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLTS)); pHlp->pfnPrintf(pHlp, " FLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_FLTS)); pHlp->pfnPrintf(pHlp, " SMPWCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMPWCS)); pHlp->pfnPrintf(pHlp, " RPS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPS)); pHlp->pfnPrintf(pHlp, " ADMS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ADMS)); pHlp->pfnPrintf(pHlp, " RPRIVS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPRIVS)); } pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg); { uint8_t const fCfi = RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_CFI); pHlp->pfnPrintf(pHlp, " CFI = %u (%s)\n", fCfi, fCfi ? "Passthrough" : "Blocked"); pHlp->pfnPrintf(pHlp, " SIRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SIRTP)); pHlp->pfnPrintf(pHlp, " IRE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_IRE)); pHlp->pfnPrintf(pHlp, " QIE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_QIE)); pHlp->pfnPrintf(pHlp, " WBF = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_WBF)); pHlp->pfnPrintf(pHlp, " EAFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL)); pHlp->pfnPrintf(pHlp, " SFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL)); pHlp->pfnPrintf(pHlp, " SRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SRTP)); pHlp->pfnPrintf(pHlp, " TE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_TE)); } pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg); { uint8_t const fCfis = RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_CFIS); pHlp->pfnPrintf(pHlp, " CFIS = %u (%s)\n", fCfis, fCfis ? "Passthrough" : "Blocked"); pHlp->pfnPrintf(pHlp, " IRTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRTPS)); pHlp->pfnPrintf(pHlp, " IRES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRES)); pHlp->pfnPrintf(pHlp, " QIES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_QIES)); pHlp->pfnPrintf(pHlp, " WBFS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_WBFS)); pHlp->pfnPrintf(pHlp, " AFLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_AFLS)); pHlp->pfnPrintf(pHlp, " FLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_FLS)); pHlp->pfnPrintf(pHlp, " RTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_RTPS)); pHlp->pfnPrintf(pHlp, " TES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_TES)); } pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg); { uint8_t const uTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM); pHlp->pfnPrintf(pHlp, " RTA = %#RX64\n", uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK); pHlp->pfnPrintf(pHlp, " TTM = %u (%s)\n", uTtm, vtdRtaddrRegGetTtmDesc(uTtm)); } pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg); pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg); { pHlp->pfnPrintf(pHlp, " PFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PFO)); pHlp->pfnPrintf(pHlp, " PPF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PPF)); pHlp->pfnPrintf(pHlp, " AFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_AFO)); pHlp->pfnPrintf(pHlp, " APF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_APF)); pHlp->pfnPrintf(pHlp, " IQE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_IQE)); pHlp->pfnPrintf(pHlp, " ICS = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ICE)); pHlp->pfnPrintf(pHlp, " ITE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ITE)); pHlp->pfnPrintf(pHlp, " FRI = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_FRI)); } pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg); { pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IM)); pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IP)); } pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg); pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg); pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg); pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg); pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg); pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg); pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg); pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg); pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg); pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg); pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg); pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg); { uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW); uint8_t const fQs = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_QS); uint8_t const cQueuePages = 1 << fQs; pHlp->pfnPrintf(pHlp, " DW = %u (%s)\n", fDw, fDw == VTD_IQA_REG_DW_128_BIT ? "128-bit" : "256-bit"); pHlp->pfnPrintf(pHlp, " QS = %u (%u page%s)\n", fQs, cQueuePages, cQueuePages > 1 ? "s" : ""); } pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg); { pHlp->pfnPrintf(pHlp, " IWC = %u\n", RT_BF_GET(uIcsReg, VTD_BF_ICS_REG_IWC)); } pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg); { pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IM)); pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IP)); } pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg); pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg); pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg); pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg); { pHlp->pfnPrintf(pHlp, " ICESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ICESID)); pHlp->pfnPrintf(pHlp, " ITESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ITESID)); pHlp->pfnPrintf(pHlp, " IQEI = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_IQEI)); } pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg); { uint32_t const cIrtEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg); uint32_t const cbIrt = sizeof(VTD_IRTE_T) * cIrtEntries; pHlp->pfnPrintf(pHlp, " IRTA = %#RX64\n", uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK); pHlp->pfnPrintf(pHlp, " EIME = %RTbool\n", RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME)); pHlp->pfnPrintf(pHlp, " S = %u entries (%u bytes)\n", cIrtEntries, cbIrt); } pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg); pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg); pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg); pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg); pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg); pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg); pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg); pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg); pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg); pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg); pHlp->pfnPrintf(pHlp, "\n"); } /** * Initializes all registers in the DMAR unit. * * @param pDevIns The IOMMU device instance. */ static void dmarR3RegsInit(PPDMDEVINS pDevIns) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); LogFlowFunc(("\n")); /* * Wipe all registers (required on reset). */ RT_ZERO(pThis->abRegs0); RT_ZERO(pThis->abRegs1); /* * Initialize registers not mutable by software prior to initializing other registers. */ /* VER_REG */ { pThis->uVerReg = RT_BF_MAKE(VTD_BF_VER_REG_MIN, DMAR_VER_MINOR) | RT_BF_MAKE(VTD_BF_VER_REG_MAX, DMAR_VER_MAJOR); dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_VER_REG, pThis->uVerReg); } uint8_t const fFlts = 0; /* First-level translation support. */ uint8_t const fSlts = 1; /* Second-level translation support. */ uint8_t const fPt = 1; /* Pass-Through support. */ uint8_t const fSmts = fFlts & fSlts & fPt; /* Scalable mode translation support.*/ uint8_t const fNest = 0; /* Nested translation support. */ /* CAP_REG */ { uint8_t cGstPhysAddrBits; uint8_t cGstLinearAddrBits; PDMDevHlpCpuGetGuestAddrWidths(pDevIns, &cGstPhysAddrBits, &cGstLinearAddrBits); uint8_t const fFl1gp = 1; /* First-level 1GB pages support. */ uint8_t const fFl5lp = 1; /* First-level 5-level paging support (PML5E). */ uint8_t const fSl2mp = 1; /* Second-level 2MB pages support. */ uint8_t const fSl2gp = fSl2mp & 1; /* Second-level 1GB pages support. */ uint8_t const fSllps = fSl2mp | (fSl2gp << 1); /* Second-level large page support. */ uint8_t const fMamv = (fSl2gp ? X86_PAGE_1G_SHIFT /* Maximum address mask value (for 2nd-level invalidations). */ : X86_PAGE_2M_SHIFT) - X86_PAGE_4K_SHIFT; uint8_t const fNd = DMAR_ND; /* Number of domains supported. */ uint8_t const fPsi = 1; /* Page selective invalidation. */ uint8_t const uMgaw = cGstPhysAddrBits - 1; /* Maximum guest address width. */ uint8_t const fSagaw = vtdCapRegGetSagaw(uMgaw); /* Supported adjust guest address width. */ uint16_t const offFro = DMAR_MMIO_OFF_FRCD_LO_REG >> 4; /* MMIO offset of FRCD registers. */ uint8_t const fEsrtps = 1; /* Enhanced SRTPS (auto invalidate cache on SRTP). */ uint8_t const fEsirtps = 1; /* Enhanced SIRTPS (auto invalidate cache on SIRTP). */ pThis->fCapReg = RT_BF_MAKE(VTD_BF_CAP_REG_ND, fNd) | RT_BF_MAKE(VTD_BF_CAP_REG_AFL, 0) /* Advanced fault logging not supported. */ | RT_BF_MAKE(VTD_BF_CAP_REG_RWBF, 0) /* Software need not flush write-buffers. */ | RT_BF_MAKE(VTD_BF_CAP_REG_PLMR, 0) /* Protected Low-Memory Region not supported. */ | RT_BF_MAKE(VTD_BF_CAP_REG_PHMR, 0) /* Protected High-Memory Region not supported. */ | RT_BF_MAKE(VTD_BF_CAP_REG_CM, 1) /* Software should invalidate on mapping structure changes. */ | RT_BF_MAKE(VTD_BF_CAP_REG_SAGAW, fSlts ? fSagaw : 0) | RT_BF_MAKE(VTD_BF_CAP_REG_MGAW, uMgaw) | RT_BF_MAKE(VTD_BF_CAP_REG_ZLR, 1) /** @todo Figure out if/how to support zero-length reads. */ | RT_BF_MAKE(VTD_BF_CAP_REG_FRO, offFro) | RT_BF_MAKE(VTD_BF_CAP_REG_SLLPS, fSlts & fSllps) | RT_BF_MAKE(VTD_BF_CAP_REG_PSI, fPsi) | RT_BF_MAKE(VTD_BF_CAP_REG_NFR, DMAR_FRCD_REG_COUNT - 1) | RT_BF_MAKE(VTD_BF_CAP_REG_MAMV, fPsi & fMamv) | RT_BF_MAKE(VTD_BF_CAP_REG_DWD, 1) | RT_BF_MAKE(VTD_BF_CAP_REG_DRD, 1) | RT_BF_MAKE(VTD_BF_CAP_REG_FL1GP, fFlts & fFl1gp) | RT_BF_MAKE(VTD_BF_CAP_REG_PI, 0) /* Posted Interrupts not supported. */ | RT_BF_MAKE(VTD_BF_CAP_REG_FL5LP, fFlts & fFl5lp) | RT_BF_MAKE(VTD_BF_CAP_REG_ESIRTPS, fEsirtps) | RT_BF_MAKE(VTD_BF_CAP_REG_ESRTPS, fEsrtps); dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_CAP_REG, pThis->fCapReg); AssertCompile(fNd <= RT_ELEMENTS(g_auNdMask)); pThis->fHawBaseMask = ~(UINT64_MAX << cGstPhysAddrBits) & X86_PAGE_4K_BASE_MASK; pThis->fMgawInvMask = UINT64_MAX << cGstPhysAddrBits; pThis->cMaxPagingLevel = vtdCapRegGetMaxPagingLevel(fSagaw); pThis->fCtxEntryQw1ValidMask = VTD_BF_1_CONTEXT_ENTRY_AW_MASK | VTD_BF_1_CONTEXT_ENTRY_IGN_6_3_MASK | RT_BF_MAKE(VTD_BF_1_CONTEXT_ENTRY_DID, g_auNdMask[fNd]); } /* ECAP_REG */ { uint8_t const fQi = 1; /* Queued-invalidations. */ uint8_t const fIr = !!(DMAR_ACPI_DMAR_FLAGS & ACPI_DMAR_F_INTR_REMAP); /* Interrupt remapping support. */ uint8_t const fMhmv = 0xf; /* Maximum handle mask value. */ uint16_t const offIro = DMAR_MMIO_OFF_IVA_REG >> 4; /* MMIO offset of IOTLB registers. */ uint8_t const fEim = 1; /* Extended interrupt mode.*/ uint8_t const fAdms = 1; /* Abort DMA mode support. */ uint8_t const fErs = 0; /* Execute Request (not supported). */ pThis->fExtCapReg = RT_BF_MAKE(VTD_BF_ECAP_REG_C, 0) /* Accesses don't snoop CPU cache. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_QI, fQi) | RT_BF_MAKE(VTD_BF_ECAP_REG_DT, 0) /* Device-TLBs not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_IR, fQi & fIr) | RT_BF_MAKE(VTD_BF_ECAP_REG_EIM, fIr & fEim) | RT_BF_MAKE(VTD_BF_ECAP_REG_PT, fPt) | RT_BF_MAKE(VTD_BF_ECAP_REG_SC, 0) /* Snoop control not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_IRO, offIro) | RT_BF_MAKE(VTD_BF_ECAP_REG_MHMV, fIr & fMhmv) | RT_BF_MAKE(VTD_BF_ECAP_REG_MTS, 0) /* Memory type not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_NEST, fNest) | RT_BF_MAKE(VTD_BF_ECAP_REG_PRS, 0) /* 0 as DT not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_ERS, fErs) | RT_BF_MAKE(VTD_BF_ECAP_REG_SRS, 0) /* Supervisor request not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_NWFS, 0) /* 0 as DT not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_EAFS, 0) /* 0 as SMPWCS not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_PSS, 0) /* 0 as PASID not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_PASID, 0) /* PASID not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_DIT, 0) /* 0 as DT not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_PDS, 0) /* 0 as DT not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_SMTS, fSmts) | RT_BF_MAKE(VTD_BF_ECAP_REG_VCS, 0) /* 0 as PASID not supported (commands seem PASID specific). */ | RT_BF_MAKE(VTD_BF_ECAP_REG_SLADS, 0) /* Second-level accessed/dirty not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_SLTS, fSlts) | RT_BF_MAKE(VTD_BF_ECAP_REG_FLTS, fFlts) | RT_BF_MAKE(VTD_BF_ECAP_REG_SMPWCS, 0) /* 0 as PASID not supported. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_RPS, 0) /* We don't support RID_PASID field in SM context entry. */ | RT_BF_MAKE(VTD_BF_ECAP_REG_ADMS, fAdms) | RT_BF_MAKE(VTD_BF_ECAP_REG_RPRIVS, 0); /* 0 as SRS not supported. */ dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_ECAP_REG, pThis->fExtCapReg); pThis->fPermValidMask = DMAR_PERM_READ | DMAR_PERM_WRITE; if (fErs) pThis->fPermValidMask = DMAR_PERM_EXE; } /* * Initialize registers mutable by software. */ /* FECTL_REG */ { uint32_t const uCtl = RT_BF_MAKE(VTD_BF_FECTL_REG_IM, 1); dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uCtl); } /* ICETL_REG */ { uint32_t const uCtl = RT_BF_MAKE(VTD_BF_IECTL_REG_IM, 1); dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, uCtl); } #ifdef VBOX_STRICT Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_PRS)); /* PECTL_REG - Reserved if don't support PRS. */ Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_MTS)); /* MTRRCAP_REG - Reserved if we don't support MTS. */ #endif } /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) dmarR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; LogFlowFunc(("\n")); /* First, save software-immutable registers that we validate on state load. */ pHlp->pfnSSMPutU32(pSSM, pThis->uVerReg); pHlp->pfnSSMPutU64(pSSM, pThis->fCapReg); pHlp->pfnSSMPutU64(pSSM, pThis->fExtCapReg); /* Save MMIO registers. */ pHlp->pfnSSMPutU32(pSSM, DMAR_MMIO_GROUP_COUNT); pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs0)); pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs0[0], sizeof(pThis->abRegs0)); pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs1)); pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs1[0], sizeof(pThis->abRegs1)); /* * Save our implemention-defined MMIO registers offsets. * The register themselves are currently all part of group 1 (saved above). * We save these to ensure they're located where the code expects them while loading state. */ pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_IMPL_COUNT); AssertCompile(DMAR_MMIO_OFF_IMPL_COUNT == 2); pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_IVA_REG); pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_FRCD_LO_REG); /* Save lazily activated registers. */ pHlp->pfnSSMPutU64(pSSM, pThis->uIrtaReg); pHlp->pfnSSMPutU64(pSSM, pThis->uRtaddrReg); /* Save terminator marker and return status. */ return pHlp->pfnSSMPutU32(pSSM, UINT32_MAX); } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) dmarR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; int const rcDataErr = VERR_SSM_UNEXPECTED_DATA; int const rcFmtErr = VERR_SSM_DATA_UNIT_FORMAT_CHANGED; LogFlowFunc(("\n")); /* * Validate saved-state version. */ AssertReturn(uPass == SSM_PASS_FINAL, VERR_WRONG_ORDER); if (uVersion != DMAR_SAVED_STATE_VERSION) { LogRel(("%s: Invalid saved-state version %#x\n", DMAR_LOG_PFX, uVersion)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } /* * Load and validate software-immutable registers. * The features we had exposed to the guest (in the saved state) must be identical * to what is currently emulated. */ { /* VER_REG */ uint32_t uVerReg = 0; int rc = pHlp->pfnSSMGetU32(pSSM, &uVerReg); AssertRCReturn(rc, rc); AssertLogRelMsgReturn(uVerReg == pThis->uVerReg, ("%s: VER_REG mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, pThis->uVerReg, uVerReg), rcDataErr); /* CAP_REG */ uint64_t fCapReg = 0; pHlp->pfnSSMGetU64(pSSM, &fCapReg); AssertLogRelMsgReturn(fCapReg == pThis->fCapReg, ("%s: CAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fCapReg, fCapReg), rcDataErr); /* ECAP_REG */ uint64_t fExtCapReg = 0; pHlp->pfnSSMGetU64(pSSM, &fExtCapReg); AssertLogRelMsgReturn(fExtCapReg == pThis->fExtCapReg, ("%s: ECAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fExtCapReg, fExtCapReg), rcDataErr); } /* * Load MMIO registers. */ { /* Group count. */ uint32_t cRegGroups = 0; pHlp->pfnSSMGetU32(pSSM, &cRegGroups); AssertLogRelMsgReturn(cRegGroups == DMAR_MMIO_GROUP_COUNT, ("%s: MMIO group count mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_GROUP_COUNT, cRegGroups), rcFmtErr); /* Group 0. */ uint32_t cbRegs0 = 0; pHlp->pfnSSMGetU32(pSSM, &cbRegs0); AssertLogRelMsgReturn(cbRegs0 == sizeof(pThis->abRegs0), ("%s: MMIO group 0 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs0), cbRegs0), rcFmtErr); pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs0[0], cbRegs0); /* Group 1. */ uint32_t cbRegs1 = 0; pHlp->pfnSSMGetU32(pSSM, &cbRegs1); AssertLogRelMsgReturn(cbRegs1 == sizeof(pThis->abRegs1), ("%s: MMIO group 1 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs1), cbRegs1), rcFmtErr); pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs1[0], cbRegs1); } /* * Validate implementation-defined MMIO register offsets. */ { /* Offset count. */ uint16_t cOffsets = 0; pHlp->pfnSSMGetU16(pSSM, &cOffsets); AssertLogRelMsgReturn(cOffsets == DMAR_MMIO_OFF_IMPL_COUNT, ("%s: MMIO offset count mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IMPL_COUNT, cOffsets), rcFmtErr); /* IVA_REG. */ uint16_t offReg = 0; pHlp->pfnSSMGetU16(pSSM, &offReg); AssertLogRelMsgReturn(offReg == DMAR_MMIO_OFF_IVA_REG, ("%s: IVA_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IVA_REG, offReg), rcFmtErr); /* IOTLB_REG. */ AssertLogRelMsgReturn(offReg + 8 == DMAR_MMIO_OFF_IOTLB_REG, ("%s: IOTLB_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IOTLB_REG, offReg), rcFmtErr); /* FRCD_LO_REG. */ pHlp->pfnSSMGetU16(pSSM, &offReg); AssertLogRelMsgReturn(offReg == DMAR_MMIO_OFF_FRCD_LO_REG, ("%s: FRCD_LO_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_FRCD_LO_REG, offReg), rcFmtErr); /* FRCD_HI_REG. */ AssertLogRelMsgReturn(offReg + 8 == DMAR_MMIO_OFF_FRCD_HI_REG, ("%s: FRCD_HI_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_FRCD_HI_REG, offReg), rcFmtErr); } /* * Load lazily activated registers. */ { /* Active IRTA_REG. */ pHlp->pfnSSMGetU64(pSSM, &pThis->uIrtaReg); AssertLogRelMsgReturn(!(pThis->uIrtaReg & ~VTD_IRTA_REG_RW_MASK), ("%s: IRTA_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uIrtaReg), rcDataErr); /* Active RTADDR_REG. */ pHlp->pfnSSMGetU64(pSSM, &pThis->uRtaddrReg); AssertLogRelMsgReturn(!(pThis->uRtaddrReg & ~VTD_RTADDR_REG_RW_MASK), ("%s: RTADDR_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uRtaddrReg), rcDataErr); } /* * Verify terminator marker. */ { uint32_t uEndMarker = 0; int const rc = pHlp->pfnSSMGetU32(pSSM, &uEndMarker); AssertRCReturn(rc, rc); AssertLogRelMsgReturn(uEndMarker == UINT32_MAX, ("%s: End marker mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, UINT32_MAX, uEndMarker), rcFmtErr); } return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVLOADDONE} */ static DECLCALLBACK(int) dmarR3LoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3); LogFlowFunc(("\n")); RT_NOREF(pSSM); AssertPtrReturn(pThisR3, VERR_INVALID_POINTER); DMAR_LOCK(pDevIns, pThisR3); dmarInvQueueThreadWakeUpIfNeeded(pDevIns); DMAR_UNLOCK(pDevIns, pThisR3); return VINF_SUCCESS; } /** * @interface_method_impl{PDMDEVREG,pfnReset} */ static DECLCALLBACK(void) iommuIntelR3Reset(PPDMDEVINS pDevIns) { PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3); LogFlowFunc(("\n")); DMAR_LOCK(pDevIns, pThisR3); dmarR3RegsInit(pDevIns); DMAR_UNLOCK(pDevIns, pThisR3); } /** * @interface_method_impl{PDMDEVREG,pfnDestruct} */ static DECLCALLBACK(int) iommuIntelR3Destruct(PPDMDEVINS pDevIns) { PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3); LogFlowFunc(("\n")); DMAR_LOCK(pDevIns, pThisR3); if (pThis->hEvtInvQueue != NIL_SUPSEMEVENT) { PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtInvQueue); pThis->hEvtInvQueue = NIL_SUPSEMEVENT; } DMAR_UNLOCK(pDevIns, pThisR3); return VINF_SUCCESS; } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) iommuIntelR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { RT_NOREF(pCfg); PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3); pThisR3->pDevInsR3 = pDevIns; LogFlowFunc(("iInstance=%d\n", iInstance)); NOREF(iInstance); /* * Register the IOMMU with PDM. */ PDMIOMMUREGR3 IommuReg; RT_ZERO(IommuReg); IommuReg.u32Version = PDM_IOMMUREGCC_VERSION; IommuReg.pfnMemAccess = iommuIntelMemAccess; IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess; IommuReg.pfnMsiRemap = iommuIntelMsiRemap; IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION; int rc = PDMDevHlpIommuRegister(pDevIns, &IommuReg, &pThisR3->CTX_SUFF(pIommuHlp), &pThis->idxIommu); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to register ourselves as an IOMMU device")); if (pThisR3->CTX_SUFF(pIommuHlp)->u32Version != PDM_IOMMUHLPR3_VERSION) return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS, N_("IOMMU helper version mismatch; got %#x expected %#x"), pThisR3->CTX_SUFF(pIommuHlp)->u32Version, PDM_IOMMUHLPR3_VERSION); if (pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd != PDM_IOMMUHLPR3_VERSION) return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS, N_("IOMMU helper end-version mismatch; got %#x expected %#x"), pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd, PDM_IOMMUHLPR3_VERSION); AssertPtr(pThisR3->pIommuHlpR3->pfnLock); AssertPtr(pThisR3->pIommuHlpR3->pfnUnlock); AssertPtr(pThisR3->pIommuHlpR3->pfnLockIsOwner); AssertPtr(pThisR3->pIommuHlpR3->pfnSendMsi); /* * Use PDM's critical section (via helpers) for the IOMMU device. */ rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); AssertRCReturn(rc, rc); /* * Initialize PCI configuration registers. */ PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0]; PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev); /* Header. */ PDMPciDevSetVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */ PDMPciDevSetDeviceId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */ PDMPciDevSetRevisionId(pPciDev, DMAR_PCI_REVISION_ID); /* VirtualBox specific device implementation revision */ PDMPciDevSetClassBase(pPciDev, VBOX_PCI_CLASS_SYSTEM); /* System Base Peripheral */ PDMPciDevSetClassSub(pPciDev, VBOX_PCI_SUB_SYSTEM_OTHER); /* Other */ PDMPciDevSetHeaderType(pPciDev, 0); /* Single function, type 0 */ PDMPciDevSetSubSystemId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */ PDMPciDevSetSubSystemVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */ /** @todo Chipset spec says PCI Express Capability Id. Relevant for us? */ PDMPciDevSetStatus(pPciDev, 0); PDMPciDevSetCapabilityList(pPciDev, 0); /** @todo VTBAR at 0x180? */ /* * Register the PCI function with PDM. */ rc = PDMDevHlpPCIRegister(pDevIns, pPciDev); AssertLogRelRCReturn(rc, rc); /* * Register MMIO region. */ AssertCompile(!(DMAR_MMIO_BASE_PHYSADDR & X86_PAGE_4K_OFFSET_MASK)); rc = PDMDevHlpMmioCreateAndMap(pDevIns, DMAR_MMIO_BASE_PHYSADDR, DMAR_MMIO_SIZE, dmarMmioWrite, dmarMmioRead, IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_DWORD_QWORD_ZEROED, "Intel-IOMMU", &pThis->hMmio); AssertLogRelRCReturn(rc, rc); /* * Register saved state handlers. */ rc = PDMDevHlpSSMRegisterEx(pDevIns, DMAR_SAVED_STATE_VERSION, sizeof(DMAR), NULL /* pszBefore */, NULL /* pfnLivePrep */, NULL /* pfnLiveExec */, NULL /* pfnLiveVote */, NULL /* pfnSavePrep */, dmarR3SaveExec, NULL /* pfnSaveDone */, NULL /* pfnLoadPrep */, dmarR3LoadExec, dmarR3LoadDone); AssertLogRelRCReturn(rc, rc); /* * Register debugger info items. */ rc = PDMDevHlpDBGFInfoRegister(pDevIns, "iommu", "Display IOMMU state.", dmarR3DbgInfo); AssertLogRelRCReturn(rc, rc); #ifdef VBOX_WITH_STATISTICS /* * Statistics. */ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadR3, STAMTYPE_COUNTER, "R3/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in R3"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadRZ, STAMTYPE_COUNTER, "RZ/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in RZ."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteR3, STAMTYPE_COUNTER, "R3/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in R3."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteRZ, STAMTYPE_COUNTER, "RZ/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in RZ."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiR3, STAMTYPE_COUNTER, "R3/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in R3."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in RZ."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiR3, STAMTYPE_COUNTER, "R3/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in R3."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in RZ."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadR3, STAMTYPE_COUNTER, "R3/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in R3."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadRZ, STAMTYPE_COUNTER, "RZ/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in RZ."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteR3, STAMTYPE_COUNTER, "R3/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in R3."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteRZ, STAMTYPE_COUNTER, "RZ/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in RZ."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadR3, STAMTYPE_COUNTER, "R3/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in R3."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadRZ, STAMTYPE_COUNTER, "RZ/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in RZ."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteR3, STAMTYPE_COUNTER, "R3/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in R3."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteRZ, STAMTYPE_COUNTER, "RZ/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in RZ."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCcInvDsc, STAMTYPE_COUNTER, "R3/QI/CcInv", STAMUNIT_OCCURENCES, "Number of cc_inv_dsc processed."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/IotlbInv", STAMUNIT_OCCURENCES, "Number of iotlb_inv_dsc processed."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/DevtlbInv", STAMUNIT_OCCURENCES, "Number of dev_tlb_inv_dsc processed."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIecInvDsc, STAMTYPE_COUNTER, "R3/QI/IecInv", STAMUNIT_OCCURENCES, "Number of iec_inv processed."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatInvWaitDsc, STAMTYPE_COUNTER, "R3/QI/InvWait", STAMUNIT_OCCURENCES, "Number of inv_wait_dsc processed."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidIotlbInv", STAMUNIT_OCCURENCES, "Number of p_iotlb_inv_dsc processed."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidCacheInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidCacheInv", STAMUNIT_OCCURENCES, "Number of pc_inv_dsc pprocessed."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidDevtlbInv", STAMUNIT_OCCURENCES, "Number of p_dev_tlb_inv_dsc processed."); #endif /* * Initialize registers. */ dmarR3RegsInit(pDevIns); /* * Create invalidation-queue thread and semaphore. */ char szInvQueueThread[32]; RT_ZERO(szInvQueueThread); RTStrPrintf(szInvQueueThread, sizeof(szInvQueueThread), "IOMMU-QI-%u", iInstance); rc = PDMDevHlpThreadCreate(pDevIns, &pThisR3->pInvQueueThread, pThis, dmarR3InvQueueThread, dmarR3InvQueueThreadWakeUp, 0 /* cbStack */, RTTHREADTYPE_IO, szInvQueueThread); AssertLogRelRCReturn(rc, rc); rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtInvQueue); AssertLogRelRCReturn(rc, rc); /* * Log some of the features exposed to software. */ uint8_t const uVerMax = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX); uint8_t const uVerMin = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MIN); uint8_t const cMgawBits = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_MGAW) + 1; uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW); uint16_t const offFrcd = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_FRO); uint16_t const offIva = RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_IRO); LogRel(("%s: Mapped at %#RGp (%u-level page-table supported)\n", DMAR_LOG_PFX, DMAR_MMIO_BASE_PHYSADDR, pThis->cMaxPagingLevel)); LogRel(("%s: Version=%u.%u Cap=%#RX64 ExtCap=%#RX64 Mgaw=%u bits Sagaw=%#x HawBaseMask=%#RX64 MgawInvMask=%#RX64 FRO=%#x IRO=%#x\n", DMAR_LOG_PFX, uVerMax, uVerMin, pThis->fCapReg, pThis->fExtCapReg, cMgawBits, fSagaw, pThis->fHawBaseMask, pThis->fMgawInvMask, offFrcd, offIva)); return VINF_SUCCESS; } #else /** * @callback_method_impl{PDMDEVREGR0,pfnConstruct} */ static DECLCALLBACK(int) iommuIntelRZConstruct(PPDMDEVINS pDevIns) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR); PDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDMARCC); pThisCC->CTX_SUFF(pDevIns) = pDevIns; /* We will use PDM's critical section (via helpers) for the IOMMU device. */ int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); AssertRCReturn(rc, rc); /* Set up the MMIO RZ handlers. */ rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, dmarMmioWrite, dmarMmioRead, NULL /* pvUser */); AssertRCReturn(rc, rc); /* Set up the IOMMU RZ callbacks. */ PDMIOMMUREGCC IommuReg; RT_ZERO(IommuReg); IommuReg.u32Version = PDM_IOMMUREGCC_VERSION; IommuReg.idxIommu = pThis->idxIommu; IommuReg.pfnMemAccess = iommuIntelMemAccess; IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess; IommuReg.pfnMsiRemap = iommuIntelMsiRemap; IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION; rc = PDMDevHlpIommuSetUpContext(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp)); AssertRCReturn(rc, rc); AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp), VERR_IOMMU_IPE_1); AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32Version == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH); AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH); AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLock); AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnUnlock); AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLockIsOwner); AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi); return VINF_SUCCESS; } #endif /** * The device registration structure. */ PDMDEVREG const g_DeviceIommuIntel = { /* .u32Version = */ PDM_DEVREG_VERSION, /* .uReserved0 = */ 0, /* .szName = */ "iommu-intel", /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE, /* .fClass = */ PDM_DEVREG_CLASS_PCI_BUILTIN, /* .cMaxInstances = */ 1, /* .uSharedVersion = */ 42, /* .cbInstanceShared = */ sizeof(DMAR), /* .cbInstanceCC = */ sizeof(DMARCC), /* .cbInstanceRC = */ sizeof(DMARRC), /* .cMaxPciDevices = */ 1, /* .cMaxMsixVectors = */ 0, /* .pszDescription = */ "IOMMU (Intel)", #if defined(IN_RING3) /* .pszRCMod = */ "VBoxDDRC.rc", /* .pszR0Mod = */ "VBoxDDR0.r0", /* .pfnConstruct = */ iommuIntelR3Construct, /* .pfnDestruct = */ iommuIntelR3Destruct, /* .pfnRelocate = */ NULL, /* .pfnMemSetup = */ NULL, /* .pfnPowerOn = */ NULL, /* .pfnReset = */ iommuIntelR3Reset, /* .pfnSuspend = */ NULL, /* .pfnResume = */ NULL, /* .pfnAttach = */ NULL, /* .pfnDetach = */ NULL, /* .pfnQueryInterface = */ NULL, /* .pfnInitComplete = */ NULL, /* .pfnPowerOff = */ NULL, /* .pfnSoftReset = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RING0) /* .pfnEarlyConstruct = */ NULL, /* .pfnConstruct = */ iommuIntelRZConstruct, /* .pfnDestruct = */ NULL, /* .pfnFinalDestruct = */ NULL, /* .pfnRequest = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RC) /* .pfnConstruct = */ iommuIntelRZConstruct, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #else # error "Not in IN_RING3, IN_RING0 or IN_RC!" #endif /* .u32VersionEnd = */ PDM_DEVREG_VERSION }; #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */