/* * QEMU ALSA audio driver * * Copyright (c) 2005 Vassili Karpov (malc) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "Builtins.h" #include "../../vl_vbox.h" #include "audio.h" #include #define AUDIO_CAP "alsa" #include "audio_int.h" typedef struct ALSAVoiceOut { HWVoiceOut hw; void *pcm_buf; snd_pcm_t *handle; } ALSAVoiceOut; typedef struct ALSAVoiceIn { HWVoiceIn hw; snd_pcm_t *handle; void *pcm_buf; } ALSAVoiceIn; /* latency = period_size * periods / (rate * bytes_per_frame) */ static struct { int size_in_usec_in; int size_in_usec_out; const char *pcm_name_in; const char *pcm_name_out; unsigned int buffer_size_in; unsigned int period_size_in; unsigned int buffer_size_out; unsigned int period_size_out; unsigned int threshold; int buffer_size_in_overriden; int period_size_in_overriden; int buffer_size_out_overriden; int period_size_out_overriden; int verbose; } conf = { #ifdef HIGH_LATENCY INIT_FIELD (.size_in_usec_in =) 1, INIT_FIELD (.size_in_usec_out =) 1, #else INIT_FIELD (.size_in_usec_in =) 0, INIT_FIELD (.size_in_usec_out =) 0, #endif INIT_FIELD (.pcm_name_out =) "default", INIT_FIELD (.pcm_name_in =) "default", #ifdef HIGH_LATENCY INIT_FIELD (.buffer_size_in =) 400000, INIT_FIELD (.period_size_in =) 400000 / 4, INIT_FIELD (.buffer_size_out =) 400000, INIT_FIELD (.period_size_out =) 400000 / 4, #else #define DEFAULT_BUFFER_SIZE 1024 #define DEFAULT_PERIOD_SIZE 256 INIT_FIELD (.buffer_size_in =) DEFAULT_BUFFER_SIZE * 4, INIT_FIELD (.period_size_in =) DEFAULT_PERIOD_SIZE * 4, INIT_FIELD (.buffer_size_out =) DEFAULT_BUFFER_SIZE, INIT_FIELD (.period_size_out =) DEFAULT_PERIOD_SIZE, #endif INIT_FIELD (.threshold =) 0, INIT_FIELD (.buffer_size_in_overriden =) 0, INIT_FIELD (.period_size_in_overriden =) 0, INIT_FIELD (.buffer_size_out_overriden =) 0, INIT_FIELD (.period_size_out_overriden =) 0, INIT_FIELD (.verbose =) 0 }; struct alsa_params_req { int freq; audfmt_e fmt; int nchannels; unsigned int buffer_size; unsigned int period_size; }; struct alsa_params_obt { int freq; audfmt_e fmt; int nchannels; snd_pcm_uframes_t samples; }; static void GCC_FMT_ATTR (2, 3) alsa_logerr (int err, const char *fmt, ...) { va_list ap; va_start (ap, fmt); AUD_vlog (AUDIO_CAP, fmt, ap); va_end (ap); AUD_log (AUDIO_CAP, "Reason: %s\n", snd_strerror (err)); } static void GCC_FMT_ATTR (3, 4) alsa_logerr2 ( int err, const char *typ, const char *fmt, ... ) { va_list ap; AUD_log (AUDIO_CAP, "Could not initialize %s\n", typ); va_start (ap, fmt); AUD_vlog (AUDIO_CAP, fmt, ap); va_end (ap); AUD_log (AUDIO_CAP, "Reason: %s\n", snd_strerror (err)); } static void alsa_anal_close (snd_pcm_t **handlep) { int err = snd_pcm_close (*handlep); if (err) { alsa_logerr (err, "Failed to close PCM handle %p\n", (void *) *handlep); } *handlep = NULL; } static int alsa_write (SWVoiceOut *sw, void *buf, int len) { return audio_pcm_sw_write (sw, buf, len); } static int aud_to_alsafmt (audfmt_e fmt) { switch (fmt) { case AUD_FMT_S8: return SND_PCM_FORMAT_S8; case AUD_FMT_U8: return SND_PCM_FORMAT_U8; case AUD_FMT_S16: return SND_PCM_FORMAT_S16_LE; case AUD_FMT_U16: return SND_PCM_FORMAT_U16_LE; default: dolog ("Internal logic error: Bad audio format %d\n", fmt); #ifdef DEBUG_AUDIO abort (); #endif return SND_PCM_FORMAT_U8; } } static int alsa_to_audfmt (int alsafmt, audfmt_e *fmt, int *endianness) { switch (alsafmt) { case SND_PCM_FORMAT_S8: *endianness = 0; *fmt = AUD_FMT_S8; break; case SND_PCM_FORMAT_U8: *endianness = 0; *fmt = AUD_FMT_U8; break; case SND_PCM_FORMAT_S16_LE: *endianness = 0; *fmt = AUD_FMT_S16; break; case SND_PCM_FORMAT_U16_LE: *endianness = 0; *fmt = AUD_FMT_U16; break; case SND_PCM_FORMAT_S16_BE: *endianness = 1; *fmt = AUD_FMT_S16; break; case SND_PCM_FORMAT_U16_BE: *endianness = 1; *fmt = AUD_FMT_U16; break; default: dolog ("Unrecognized audio format %d\n", alsafmt); return -1; } return 0; } #if defined DEBUG_MISMATCHES || defined DEBUG static void alsa_dump_info (struct alsa_params_req *req, struct alsa_params_obt *obt) { dolog ("parameter | requested value | obtained value\n"); dolog ("format | %10d | %10d\n", req->fmt, obt->fmt); dolog ("channels | %10d | %10d\n", req->nchannels, obt->nchannels); dolog ("frequency | %10d | %10d\n", req->freq, obt->freq); dolog ("============================================\n"); dolog ("requested: buffer size %d period size %d\n", req->buffer_size, req->period_size); dolog ("obtained: samples %ld\n", obt->samples); } #endif static void alsa_set_threshold (snd_pcm_t *handle, snd_pcm_uframes_t threshold) { int err; snd_pcm_sw_params_t *sw_params; snd_pcm_sw_params_alloca (&sw_params); err = snd_pcm_sw_params_current (handle, sw_params); if (err < 0) { dolog ("Could not fully initialize DAC\n"); alsa_logerr (err, "Failed to get current software parameters\n"); return; } err = snd_pcm_sw_params_set_start_threshold (handle, sw_params, threshold); if (err < 0) { dolog ("Could not fully initialize DAC\n"); alsa_logerr (err, "Failed to set software threshold to %ld\n", threshold); return; } err = snd_pcm_sw_params (handle, sw_params); if (err < 0) { dolog ("Could not fully initialize DAC\n"); alsa_logerr (err, "Failed to set software parameters\n"); return; } } static int alsa_open (int in, struct alsa_params_req *req, struct alsa_params_obt *obt, snd_pcm_t **handlep) { snd_pcm_t *handle; snd_pcm_hw_params_t *hw_params; int err; unsigned int freq, nchannels; const char *pcm_name = in ? conf.pcm_name_in : conf.pcm_name_out; unsigned int period_size, buffer_size; snd_pcm_uframes_t obt_buffer_size; const char *typ = in ? "ADC" : "DAC"; freq = req->freq; period_size = req->period_size; buffer_size = req->buffer_size; nchannels = req->nchannels; snd_pcm_hw_params_alloca (&hw_params); err = snd_pcm_open ( &handle, pcm_name, in ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK ); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to open `%s':\n", pcm_name); #else LogRel(("ALSA: Failed to open '%s' as %s\n", pcm_name, typ)); #endif return -1; } err = snd_pcm_hw_params_any (handle, hw_params); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to initialize hardware parameters\n"); #else LogRel(("ALSA: Failed to initialize hardware parameters\n")); #endif goto err; } err = snd_pcm_hw_params_set_access ( handle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED ); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to set access type\n"); #else LogRel(("ALSA: Failed to set access type\n")); #endif goto err; } err = snd_pcm_hw_params_set_format (handle, hw_params, req->fmt); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to set format %d\n", req->fmt); #else LogRel(("ALSA: Failed to set format %d\n", req->fmt)); #endif goto err; } err = snd_pcm_hw_params_set_rate_near (handle, hw_params, &freq, 0); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to set frequency %d\n", req->freq); #else LogRel(("ALSA: Failed to set frequency %dHz\n", req->freq)); #endif goto err; } err = snd_pcm_hw_params_set_channels_near ( handle, hw_params, &nchannels ); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to set number of channels %d\n", req->nchannels); #else LogRel(("ALSA: Failed to set number of channels to %d\n", req->nchannels)); #endif goto err; } if (nchannels != 1 && nchannels != 2) { #ifndef VBOX alsa_logerr2 (err, typ, "Can not handle obtained number of channels %d\n", nchannels); #else LogRel(("ALSA: Cannot handle obtained number of channels (%d)\n", nchannels)); #endif goto err; } if (!((in && conf.size_in_usec_in) || (!in && conf.size_in_usec_out))) { if (!buffer_size) { buffer_size = DEFAULT_BUFFER_SIZE; period_size= DEFAULT_PERIOD_SIZE; } } if (buffer_size) { if ((in && conf.size_in_usec_in) || (!in && conf.size_in_usec_out)) { if (period_size) { err = snd_pcm_hw_params_set_period_time_near ( handle, hw_params, &period_size, 0 ); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to set period time %d\n", req->period_size); #else LogRel(("ALSA: Failed to set period time %d\n", req->period_size)); #endif goto err; } } err = snd_pcm_hw_params_set_buffer_time_near ( handle, hw_params, &buffer_size, 0 ); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to set buffer time %d\n", req->buffer_size); #else LogRel(("ALSA: Failed to set buffer time %d\n", req->buffer_size)); #endif goto err; } } else { int dir; snd_pcm_uframes_t minval; if (period_size) { minval = period_size; dir = 0; err = snd_pcm_hw_params_get_period_size_min ( hw_params, &minval, &dir ); if (err < 0) { #ifndef VBOX alsa_logerr ( err, "Could not get minmal period size for %s\n", typ ); #else LogRel(("ALSA: Could not get minimal period size for %s\n", typ)); #endif } else { dolog("minimal period size %ld\n", minval); if (period_size < minval) { if ((in && conf.period_size_in_overriden) || (!in && conf.period_size_out_overriden)) { dolog ("%s period size(%d) is less " "than minmal period size(%ld)\n", typ, period_size, minval); } period_size = minval; } } #ifndef VBOX err = snd_pcm_hw_params_set_period_size ( handle, hw_params, period_size, 0 ); #else err = snd_pcm_hw_params_set_period_size_near ( handle, hw_params, (snd_pcm_uframes_t*)&period_size, 0 ); #endif dolog("PERIOD_SIZE %d\n", period_size); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to set period size %d\n", period_size); #else LogRel(("ALSA: Failed to set period size %d (%s)\n", period_size, snd_strerror(err))); #endif goto err; } } #ifdef VBOX /* Calculate default buffer size here since it might have been changed * in the _near functions */ buffer_size = 4 * period_size; #endif minval = buffer_size; err = snd_pcm_hw_params_get_buffer_size_min ( hw_params, &minval ); if (err < 0) { #ifndef VBOX alsa_logerr (err, "Could not get minmal buffer size for %s\n", typ); #else LogRel(("ALSA: Could not get minimal buffer size for %s\n", typ)); #endif } else { if (buffer_size < minval) { if ((in && conf.buffer_size_in_overriden) || (!in && conf.buffer_size_out_overriden)) { dolog ( "%s buffer size(%d) is less " "than minimal buffer size(%ld)\n", typ, buffer_size, minval ); } buffer_size = minval; } } err = snd_pcm_hw_params_set_buffer_size_near ( handle, hw_params, (snd_pcm_uframes_t*)&buffer_size ); dolog("BUFFER_SIZE %d\n", buffer_size); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to set buffer size %d\n", buffer_size); #else LogRel(("ALSA: Failed to set buffer size %d (%s)\n", buffer_size, snd_strerror(err))); #endif goto err; } } } else { dolog ("warning: Buffer size is not set\n"); } err = snd_pcm_hw_params (handle, hw_params); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to apply audio parameters\n"); #else LogRel(("ALSA: Failed to apply audio parameters\n")); #endif goto err; } err = snd_pcm_hw_params_get_buffer_size (hw_params, &obt_buffer_size); if (err < 0) { #ifndef VBOX alsa_logerr2 (err, typ, "Failed to get buffer size\n"); #else LogRel(("ALSA: Failed to get buffer size\n")); #endif goto err; } #ifdef VBOX LogRel(("ALSA: %s frequency %dHz, period size %d, buffer size %d\n", typ, req->freq, period_size, obt_buffer_size)); #endif err = snd_pcm_prepare (handle); if (err < 0) { alsa_logerr2 (err, typ, "Could not prepare handle %p\n", (void *) handle); goto err; } if (!in && conf.threshold) { snd_pcm_uframes_t threshold; int bytes_per_sec; bytes_per_sec = freq << (nchannels == 2) << (req->fmt == AUD_FMT_S16 || req->fmt == AUD_FMT_U16); threshold = (conf.threshold * bytes_per_sec) / 1000; alsa_set_threshold (handle, threshold); } obt->fmt = req->fmt; obt->nchannels = nchannels; obt->freq = freq; obt->samples = obt_buffer_size; *handlep = handle; #if defined DEBUG_MISMATCHES || defined DEBUG if (obt->fmt != req->fmt || obt->nchannels != req->nchannels || obt->freq != req->freq) { dolog ("Audio paramters mismatch for %s\n", typ); alsa_dump_info (req, obt); } #endif #ifdef DEBUG alsa_dump_info (req, obt); #endif return 0; err: alsa_anal_close (&handle); return -1; } static int alsa_recover (snd_pcm_t *handle) { int err = snd_pcm_prepare (handle); if (err < 0) { alsa_logerr (err, "Failed to prepare handle %p\n", (void *) handle); return -1; } return 0; } static snd_pcm_sframes_t alsa_get_avail (snd_pcm_t *handle) { snd_pcm_sframes_t avail; avail = snd_pcm_avail_update (handle); if (avail < 0) { if (avail == -EPIPE) { if (!alsa_recover (handle)) { avail = snd_pcm_avail_update (handle); } } if (avail < 0) { alsa_logerr (avail, "Could not obtain number of available frames\n"); return -1; } } return avail; } static int alsa_run_out (HWVoiceOut *hw) { ALSAVoiceOut *alsa = (ALSAVoiceOut *) hw; int rpos, live, decr; int samples; uint8_t *dst; st_sample_t *src; snd_pcm_sframes_t avail; live = audio_pcm_hw_get_live_out (hw); if (!live) { return 0; } avail = alsa_get_avail (alsa->handle); if (avail < 0) { dolog ("Could not get number of available playback frames\n"); return 0; } decr = audio_MIN (live, avail); samples = decr; rpos = hw->rpos; while (samples) { int left_till_end_samples = hw->samples - rpos; int len = audio_MIN (samples, left_till_end_samples); snd_pcm_sframes_t written; src = hw->mix_buf + rpos; dst = advance (alsa->pcm_buf, rpos << hw->info.shift); hw->clip (dst, src, len); while (len) { written = snd_pcm_writei (alsa->handle, dst, len); if (written <= 0) { switch (written) { case 0: if (conf.verbose) { dolog ("Failed to write %d frames (wrote zero)\n", len); } goto exit; case -EPIPE: if (alsa_recover (alsa->handle)) { alsa_logerr (written, "Failed to write %d frames\n", len); goto exit; } if (conf.verbose) { dolog ("Recovering from playback xrun\n"); } continue; case -EAGAIN: goto exit; default: alsa_logerr (written, "Failed to write %d frames to %p\n", len, dst); goto exit; } } rpos = (rpos + written) % hw->samples; samples -= written; len -= written; dst = advance (dst, written << hw->info.shift); src += written; } } exit: hw->rpos = rpos; return decr; } static void alsa_fini_out (HWVoiceOut *hw) { ALSAVoiceOut *alsa = (ALSAVoiceOut *) hw; ldebug ("alsa_fini\n"); alsa_anal_close (&alsa->handle); if (alsa->pcm_buf) { qemu_free (alsa->pcm_buf); alsa->pcm_buf = NULL; } } static int alsa_init_out (HWVoiceOut *hw, audsettings_t *as) { ALSAVoiceOut *alsa = (ALSAVoiceOut *) hw; struct alsa_params_req req; struct alsa_params_obt obt; audfmt_e effective_fmt; int endianness; int err; snd_pcm_t *handle; audsettings_t obt_as; req.fmt = aud_to_alsafmt (as->fmt); req.freq = as->freq; req.nchannels = as->nchannels; req.period_size = conf.period_size_out; req.buffer_size = conf.buffer_size_out; if (alsa_open (0, &req, &obt, &handle)) { return -1; } err = alsa_to_audfmt (obt.fmt, &effective_fmt, &endianness); if (err) { alsa_anal_close (&handle); return -1; } obt_as.freq = obt.freq; obt_as.nchannels = obt.nchannels; obt_as.fmt = effective_fmt; obt_as.endianness = endianness; audio_pcm_init_info (&hw->info, &obt_as); hw->samples = obt.samples; alsa->pcm_buf = audio_calloc (AUDIO_FUNC, obt.samples, 1 << hw->info.shift); if (!alsa->pcm_buf) { dolog ("Could not allocate DAC buffer (%d samples, each %d bytes)\n", hw->samples, 1 << hw->info.shift); alsa_anal_close (&handle); return -1; } alsa->handle = handle; return 0; } static int alsa_voice_ctl (snd_pcm_t *handle, const char *typ, int pause) { int err; if (pause) { err = snd_pcm_drop (handle); if (err < 0) { alsa_logerr (err, "Could not stop %s\n", typ); return -1; } } else { err = snd_pcm_prepare (handle); if (err < 0) { alsa_logerr (err, "Could not prepare handle for %s\n", typ); return -1; } } return 0; } static int alsa_ctl_out (HWVoiceOut *hw, int cmd, ...) { ALSAVoiceOut *alsa = (ALSAVoiceOut *) hw; switch (cmd) { case VOICE_ENABLE: ldebug ("enabling voice\n"); return alsa_voice_ctl (alsa->handle, "playback", 0); case VOICE_DISABLE: ldebug ("disabling voice\n"); return alsa_voice_ctl (alsa->handle, "playback", 1); } return -1; } static int alsa_init_in (HWVoiceIn *hw, audsettings_t *as) { ALSAVoiceIn *alsa = (ALSAVoiceIn *) hw; struct alsa_params_req req; struct alsa_params_obt obt; int endianness; int err; audfmt_e effective_fmt; snd_pcm_t *handle; audsettings_t obt_as; req.fmt = aud_to_alsafmt (as->fmt); req.freq = as->freq; req.nchannels = as->nchannels; req.period_size = conf.period_size_in; req.buffer_size = conf.buffer_size_in; if (alsa_open (1, &req, &obt, &handle)) { return -1; } err = alsa_to_audfmt (obt.fmt, &effective_fmt, &endianness); if (err) { alsa_anal_close (&handle); return -1; } obt_as.freq = obt.freq; obt_as.nchannels = obt.nchannels; obt_as.fmt = effective_fmt; obt_as.endianness = endianness; audio_pcm_init_info (&hw->info, &obt_as); hw->samples = obt.samples; alsa->pcm_buf = audio_calloc (AUDIO_FUNC, hw->samples, 1 << hw->info.shift); if (!alsa->pcm_buf) { dolog ("Could not allocate ADC buffer (%d samples, each %d bytes)\n", hw->samples, 1 << hw->info.shift); alsa_anal_close (&handle); return -1; } alsa->handle = handle; return 0; } static void alsa_fini_in (HWVoiceIn *hw) { ALSAVoiceIn *alsa = (ALSAVoiceIn *) hw; alsa_anal_close (&alsa->handle); if (alsa->pcm_buf) { qemu_free (alsa->pcm_buf); alsa->pcm_buf = NULL; } } static int alsa_run_in (HWVoiceIn *hw) { ALSAVoiceIn *alsa = (ALSAVoiceIn *) hw; int hwshift = hw->info.shift; int i; int live = audio_pcm_hw_get_live_in (hw); int dead = hw->samples - live; int decr; struct { int add; int len; } bufs[2]; snd_pcm_sframes_t avail; snd_pcm_uframes_t read_samples = 0; bufs[0].add = hw->wpos; bufs[0].len = 0; bufs[1].add = 0; bufs[1].len = 0; if (!dead) { return 0; } avail = alsa_get_avail (alsa->handle); if (avail < 0) { dolog ("Could not get number of captured frames\n"); return 0; } if (!avail && (snd_pcm_state (alsa->handle) == SND_PCM_STATE_PREPARED)) { avail = hw->samples; } decr = audio_MIN (dead, avail); if (!decr) { return 0; } if (hw->wpos + decr > hw->samples) { bufs[0].len = (hw->samples - hw->wpos); bufs[1].len = (decr - (hw->samples - hw->wpos)); } else { bufs[0].len = decr; } for (i = 0; i < 2; ++i) { void *src; st_sample_t *dst; snd_pcm_sframes_t nread; snd_pcm_uframes_t len; len = bufs[i].len; src = advance (alsa->pcm_buf, bufs[i].add << hwshift); dst = hw->conv_buf + bufs[i].add; while (len) { nread = snd_pcm_readi (alsa->handle, src, len); if (nread <= 0) { switch (nread) { case 0: if (conf.verbose) { dolog ("Failed to read %ld frames (read zero)\n", len); } goto exit; case -EPIPE: if (alsa_recover (alsa->handle)) { alsa_logerr (nread, "Failed to read %ld frames\n", len); goto exit; } if (conf.verbose) { dolog ("Recovering from capture xrun\n"); } continue; case -EAGAIN: goto exit; default: alsa_logerr ( nread, "Failed to read %ld frames from %p\n", len, src ); goto exit; } } hw->conv (dst, src, nread, &nominal_volume); src = advance (src, nread << hwshift); dst += nread; read_samples += nread; len -= nread; } } exit: hw->wpos = (hw->wpos + read_samples) % hw->samples; return read_samples; } static int alsa_read (SWVoiceIn *sw, void *buf, int size) { return audio_pcm_sw_read (sw, buf, size); } static int alsa_ctl_in (HWVoiceIn *hw, int cmd, ...) { ALSAVoiceIn *alsa = (ALSAVoiceIn *) hw; switch (cmd) { case VOICE_ENABLE: ldebug ("enabling voice\n"); return alsa_voice_ctl (alsa->handle, "capture", 0); case VOICE_DISABLE: ldebug ("disabling voice\n"); return alsa_voice_ctl (alsa->handle, "capture", 1); } return -1; } static void *alsa_audio_init (void) { return &conf; } static void alsa_audio_fini (void *opaque) { (void) opaque; } static struct audio_option alsa_options[] = { {"DAC_SIZE_IN_USEC", AUD_OPT_BOOL, &conf.size_in_usec_out, "DAC period/buffer size in microseconds (otherwise in frames)", NULL, 0}, {"DAC_PERIOD_SIZE", AUD_OPT_INT, &conf.period_size_out, "DAC period size", &conf.period_size_out_overriden, 0}, {"DAC_BUFFER_SIZE", AUD_OPT_INT, &conf.buffer_size_out, "DAC buffer size", &conf.buffer_size_out_overriden, 0}, {"ADC_SIZE_IN_USEC", AUD_OPT_BOOL, &conf.size_in_usec_in, "ADC period/buffer size in microseconds (otherwise in frames)", NULL, 0}, {"ADC_PERIOD_SIZE", AUD_OPT_INT, &conf.period_size_in, "ADC period size", &conf.period_size_in_overriden, 0}, {"ADC_BUFFER_SIZE", AUD_OPT_INT, &conf.buffer_size_in, "ADC buffer size", &conf.buffer_size_in_overriden, 0}, {"THRESHOLD", AUD_OPT_INT, &conf.threshold, "(undocumented)", NULL, 0}, {"DAC_DEV", AUD_OPT_STR, &conf.pcm_name_out, "DAC device name (for instance dmix)", NULL, 0}, {"ADC_DEV", AUD_OPT_STR, &conf.pcm_name_in, "ADC device name", NULL, 0}, {"VERBOSE", AUD_OPT_BOOL, &conf.verbose, "Behave in a more verbose way", NULL, 0}, {NULL, 0, NULL, NULL, NULL, 0} }; static struct audio_pcm_ops alsa_pcm_ops = { alsa_init_out, alsa_fini_out, alsa_run_out, alsa_write, alsa_ctl_out, alsa_init_in, alsa_fini_in, alsa_run_in, alsa_read, alsa_ctl_in }; struct audio_driver alsa_audio_driver = { INIT_FIELD (name = ) "alsa", INIT_FIELD (descr = ) "ALSA http://www.alsa-project.org", INIT_FIELD (options = ) alsa_options, INIT_FIELD (init = ) alsa_audio_init, INIT_FIELD (fini = ) alsa_audio_fini, INIT_FIELD (pcm_ops = ) &alsa_pcm_ops, INIT_FIELD (can_be_default = ) 1, INIT_FIELD (max_voices_out = ) INT_MAX, INIT_FIELD (max_voices_in = ) INT_MAX, INIT_FIELD (voice_size_out = ) sizeof (ALSAVoiceOut), INIT_FIELD (voice_size_in = ) sizeof (ALSAVoiceIn) };