VirtualBox

source: vbox/trunk/src/VBox/Devices/Audio/DevHDA.cpp@ 72110

Last change on this file since 72110 was 71743, checked in by vboxsync, 7 years ago

DevSB16.cpp,DevHDA.cpp: Just put markers on the PDMDEV_CHECK_VERSIONS_RETURN macro invoations so nobody puts stuff before them again (see ac97).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 190.3 KB
Line 
1/* $Id: DevHDA.cpp 71743 2018-04-07 22:25:47Z vboxsync $ */
2/** @file
3 * DevHDA.cpp - VBox Intel HD Audio Controller.
4 *
5 * Implemented against the specifications found in "High Definition Audio
6 * Specification", Revision 1.0a June 17, 2010, and "Intel I/O Controller
7 * HUB 6 (ICH6) Family, Datasheet", document number 301473-002.
8 */
9
10/*
11 * Copyright (C) 2006-2018 Oracle Corporation
12 *
13 * This file is part of VirtualBox Open Source Edition (OSE), as
14 * available from http://www.virtualbox.org. This file is free software;
15 * you can redistribute it and/or modify it under the terms of the GNU
16 * General Public License (GPL) as published by the Free Software
17 * Foundation, in version 2 as it comes in the "COPYING" file of the
18 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
19 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
20 */
21
22
23/*********************************************************************************************************************************
24* Header Files *
25*********************************************************************************************************************************/
26#define LOG_GROUP LOG_GROUP_DEV_HDA
27#include <VBox/log.h>
28
29#include <VBox/vmm/pdmdev.h>
30#include <VBox/vmm/pdmaudioifs.h>
31#include <VBox/version.h>
32#include <VBox/AssertGuest.h>
33
34#include <iprt/assert.h>
35#include <iprt/asm.h>
36#include <iprt/asm-math.h>
37#include <iprt/file.h>
38#include <iprt/list.h>
39#ifdef IN_RING3
40# include <iprt/mem.h>
41# include <iprt/semaphore.h>
42# include <iprt/string.h>
43# include <iprt/uuid.h>
44#endif
45
46#include "VBoxDD.h"
47
48#include "AudioMixBuffer.h"
49#include "AudioMixer.h"
50
51#include "DevHDA.h"
52#include "DevHDACommon.h"
53
54#include "HDACodec.h"
55#include "HDAStream.h"
56# if defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT) || defined(VBOX_WITH_AUDIO_HDA_51_SURROUND)
57# include "HDAStreamChannel.h"
58# endif
59#include "HDAStreamMap.h"
60#include "HDAStreamPeriod.h"
61
62#include "DrvAudio.h"
63
64
65/*********************************************************************************************************************************
66* Defined Constants And Macros *
67*********************************************************************************************************************************/
68//#define HDA_AS_PCI_EXPRESS
69
70/* Installs a DMA access handler (via PGM callback) to monitor
71 * HDA's DMA operations, that is, writing / reading audio stream data.
72 *
73 * !!! Note: Certain guests are *that* timing sensitive that when enabling !!!
74 * !!! such a handler will mess up audio completely (e.g. Windows 7). !!! */
75//#define HDA_USE_DMA_ACCESS_HANDLER
76#ifdef HDA_USE_DMA_ACCESS_HANDLER
77# include <VBox/vmm/pgm.h>
78#endif
79
80/* Uses the DMA access handler to read the written DMA audio (output) data.
81 * Only valid if HDA_USE_DMA_ACCESS_HANDLER is set.
82 *
83 * Also see the note / warning for HDA_USE_DMA_ACCESS_HANDLER. */
84//# define HDA_USE_DMA_ACCESS_HANDLER_WRITING
85
86/* Useful to debug the device' timing. */
87//#define HDA_DEBUG_TIMING
88
89/* To debug silence coming from the guest in form of audio gaps.
90 * Very crude implementation for now. */
91//#define HDA_DEBUG_SILENCE
92
93#if defined(VBOX_WITH_HP_HDA)
94/* HP Pavilion dv4t-1300 */
95# define HDA_PCI_VENDOR_ID 0x103c
96# define HDA_PCI_DEVICE_ID 0x30f7
97#elif defined(VBOX_WITH_INTEL_HDA)
98/* Intel HDA controller */
99# define HDA_PCI_VENDOR_ID 0x8086
100# define HDA_PCI_DEVICE_ID 0x2668
101#elif defined(VBOX_WITH_NVIDIA_HDA)
102/* nVidia HDA controller */
103# define HDA_PCI_VENDOR_ID 0x10de
104# define HDA_PCI_DEVICE_ID 0x0ac0
105#else
106# error "Please specify your HDA device vendor/device IDs"
107#endif
108
109/* Make sure that interleaving streams support is enabled if the 5.1 surround code is being used. */
110#if defined (VBOX_WITH_AUDIO_HDA_51_SURROUND) && !defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT)
111# define VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT
112#endif
113
114/**
115 * Acquires the HDA lock.
116 */
117#define DEVHDA_LOCK(a_pThis) \
118 do { \
119 int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \
120 AssertRC(rcLock); \
121 } while (0)
122
123/**
124 * Acquires the HDA lock or returns.
125 */
126# define DEVHDA_LOCK_RETURN(a_pThis, a_rcBusy) \
127 do { \
128 int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, a_rcBusy); \
129 if (rcLock != VINF_SUCCESS) \
130 { \
131 AssertRC(rcLock); \
132 return rcLock; \
133 } \
134 } while (0)
135
136/**
137 * Acquires the HDA lock or returns.
138 */
139# define DEVHDA_LOCK_RETURN_VOID(a_pThis) \
140 do { \
141 int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \
142 if (rcLock != VINF_SUCCESS) \
143 { \
144 AssertRC(rcLock); \
145 return; \
146 } \
147 } while (0)
148
149/**
150 * Releases the HDA lock.
151 */
152#define DEVHDA_UNLOCK(a_pThis) \
153 do { PDMCritSectLeave(&(a_pThis)->CritSect); } while (0)
154
155/**
156 * Acquires the TM lock and HDA lock, returns on failure.
157 */
158#define DEVHDA_LOCK_BOTH_RETURN_VOID(a_pThis, a_SD) \
159 do { \
160 int rcLock = TMTimerLock((a_pThis)->pTimer[a_SD], VERR_IGNORED); \
161 if (rcLock != VINF_SUCCESS) \
162 { \
163 AssertRC(rcLock); \
164 return; \
165 } \
166 rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \
167 if (rcLock != VINF_SUCCESS) \
168 { \
169 AssertRC(rcLock); \
170 TMTimerUnlock((a_pThis)->pTimer[a_SD]); \
171 return; \
172 } \
173 } while (0)
174
175/**
176 * Acquires the TM lock and HDA lock, returns on failure.
177 */
178#define DEVHDA_LOCK_BOTH_RETURN(a_pThis, a_SD, a_rcBusy) \
179 do { \
180 int rcLock = TMTimerLock((a_pThis)->pTimer[a_SD], (a_rcBusy)); \
181 if (rcLock != VINF_SUCCESS) \
182 return rcLock; \
183 rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, (a_rcBusy)); \
184 if (rcLock != VINF_SUCCESS) \
185 { \
186 AssertRC(rcLock); \
187 TMTimerUnlock((a_pThis)->pTimer[a_SD]); \
188 return rcLock; \
189 } \
190 } while (0)
191
192/**
193 * Releases the HDA lock and TM lock.
194 */
195#define DEVHDA_UNLOCK_BOTH(a_pThis, a_SD) \
196 do { \
197 PDMCritSectLeave(&(a_pThis)->CritSect); \
198 TMTimerUnlock((a_pThis)->pTimer[a_SD]); \
199 } while (0)
200
201
202/*********************************************************************************************************************************
203* Structures and Typedefs *
204*********************************************************************************************************************************/
205
206/**
207 * Structure defining a (host backend) driver stream.
208 * Each driver has its own instances of audio mixer streams, which then
209 * can go into the same (or even different) audio mixer sinks.
210 */
211typedef struct HDADRIVERSTREAM
212{
213 union
214 {
215 /** Desired playback destination (for an output stream). */
216 PDMAUDIOPLAYBACKDEST Dest;
217 /** Desired recording source (for an input stream). */
218 PDMAUDIORECSOURCE Source;
219 } DestSource;
220 uint8_t Padding1[4];
221 /** Associated mixer handle. */
222 R3PTRTYPE(PAUDMIXSTREAM) pMixStrm;
223} HDADRIVERSTREAM, *PHDADRIVERSTREAM;
224
225#ifdef HDA_USE_DMA_ACCESS_HANDLER
226/**
227 * Struct for keeping an HDA DMA access handler context.
228 */
229typedef struct HDADMAACCESSHANDLER
230{
231 /** Node for storing this handler in our list in HDASTREAMSTATE. */
232 RTLISTNODER3 Node;
233 /** Pointer to stream to which this access handler is assigned to. */
234 R3PTRTYPE(PHDASTREAM) pStream;
235 /** Access handler type handle. */
236 PGMPHYSHANDLERTYPE hAccessHandlerType;
237 /** First address this handler uses. */
238 RTGCPHYS GCPhysFirst;
239 /** Last address this handler uses. */
240 RTGCPHYS GCPhysLast;
241 /** Actual BDLE address to handle. */
242 RTGCPHYS BDLEAddr;
243 /** Actual BDLE buffer size to handle. */
244 RTGCPHYS BDLESize;
245 /** Whether the access handler has been registered or not. */
246 bool fRegistered;
247 uint8_t Padding[3];
248} HDADMAACCESSHANDLER, *PHDADMAACCESSHANDLER;
249#endif
250
251/**
252 * Struct for maintaining a host backend driver.
253 * This driver must be associated to one, and only one,
254 * HDA codec. The HDA controller does the actual multiplexing
255 * of HDA codec data to various host backend drivers then.
256 *
257 * This HDA device uses a timer in order to synchronize all
258 * read/write accesses across all attached LUNs / backends.
259 */
260typedef struct HDADRIVER
261{
262 /** Node for storing this driver in our device driver list of HDASTATE. */
263 RTLISTNODER3 Node;
264 /** Pointer to HDA controller (state). */
265 R3PTRTYPE(PHDASTATE) pHDAState;
266 /** Driver flags. */
267 PDMAUDIODRVFLAGS fFlags;
268 uint8_t u32Padding0[2];
269 /** LUN to which this driver has been assigned. */
270 uint8_t uLUN;
271 /** Whether this driver is in an attached state or not. */
272 bool fAttached;
273 /** Pointer to attached driver base interface. */
274 R3PTRTYPE(PPDMIBASE) pDrvBase;
275 /** Audio connector interface to the underlying host backend. */
276 R3PTRTYPE(PPDMIAUDIOCONNECTOR) pConnector;
277 /** Mixer stream for line input. */
278 HDADRIVERSTREAM LineIn;
279#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
280 /** Mixer stream for mic input. */
281 HDADRIVERSTREAM MicIn;
282#endif
283 /** Mixer stream for front output. */
284 HDADRIVERSTREAM Front;
285#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
286 /** Mixer stream for center/LFE output. */
287 HDADRIVERSTREAM CenterLFE;
288 /** Mixer stream for rear output. */
289 HDADRIVERSTREAM Rear;
290#endif
291} HDADRIVER;
292
293
294/*********************************************************************************************************************************
295* Internal Functions *
296*********************************************************************************************************************************/
297#ifndef VBOX_DEVICE_STRUCT_TESTCASE
298#ifdef IN_RING3
299static void hdaR3GCTLReset(PHDASTATE pThis);
300#endif
301
302/** @name Register read/write stubs.
303 * @{
304 */
305static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
306static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
307/** @} */
308
309/** @name Global register set read/write functions.
310 * @{
311 */
312static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
313static int hdaRegReadLPIB(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
314static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
315static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
316static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
317static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
318static int hdaRegWriteCORBSIZE(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
319static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
320static int hdaRegWriteRINTCNT(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
321static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
322static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
323static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
324static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
325static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
326static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
327/** @} */
328
329/** @name {IOB}SDn write functions.
330 * @{
331 */
332static int hdaRegWriteSDCBL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
333static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
334static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
335static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
336static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
337static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
338static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
339static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
340static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
341/** @} */
342
343/** @name Generic register read/write functions.
344 * @{
345 */
346static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
347static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
348static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
349#ifdef IN_RING3
350static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
351#endif
352static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
353static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
354static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
355static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
356/** @} */
357
358/** @name HDA device functions.
359 * @{
360 */
361#ifdef IN_RING3
362static int hdaR3AddStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg);
363static int hdaR3RemoveStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg);
364# ifdef HDA_USE_DMA_ACCESS_HANDLER
365static DECLCALLBACK(VBOXSTRICTRC) hdaR3DMAAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys,
366 void *pvBuf, size_t cbBuf,
367 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser);
368# endif
369#endif /* IN_RING3 */
370/** @} */
371
372
373/*********************************************************************************************************************************
374* Global Variables *
375*********************************************************************************************************************************/
376
377/** No register description (RD) flags defined. */
378#define HDA_RD_FLAG_NONE 0
379/** Writes to SD are allowed while RUN bit is set. */
380#define HDA_RD_FLAG_SD_WRITE_RUN RT_BIT(0)
381
382/** Emits a single audio stream register set (e.g. OSD0) at a specified offset. */
383#define HDA_REG_MAP_STRM(offset, name) \
384 /* offset size read mask write mask flags read callback write callback index + abbrev description */ \
385 /* ------- ------- ---------- ---------- ------------------------- -------------- ----------------- ----------------------------- ----------- */ \
386 /* Offset 0x80 (SD0) */ \
387 { offset, 0x00003, 0x00FF001F, 0x00F0001F, HDA_RD_FLAG_SD_WRITE_RUN, hdaRegReadU24 , hdaRegWriteSDCTL , HDA_REG_IDX_STRM(name, CTL) , #name " Stream Descriptor Control" }, \
388 /* Offset 0x83 (SD0) */ \
389 { offset + 0x3, 0x00001, 0x0000003C, 0x0000001C, HDA_RD_FLAG_SD_WRITE_RUN, hdaRegReadU8 , hdaRegWriteSDSTS , HDA_REG_IDX_STRM(name, STS) , #name " Status" }, \
390 /* Offset 0x84 (SD0) */ \
391 { offset + 0x4, 0x00004, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadLPIB, hdaRegWriteU32 , HDA_REG_IDX_STRM(name, LPIB) , #name " Link Position In Buffer" }, \
392 /* Offset 0x88 (SD0) */ \
393 { offset + 0x8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDCBL , HDA_REG_IDX_STRM(name, CBL) , #name " Cyclic Buffer Length" }, \
394 /* Offset 0x8C (SD0) */ \
395 { offset + 0xC, 0x00002, 0x0000FFFF, 0x0000FFFF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDLVI , HDA_REG_IDX_STRM(name, LVI) , #name " Last Valid Index" }, \
396 /* Reserved: FIFO Watermark. ** @todo Document this! */ \
397 { offset + 0xE, 0x00002, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFIFOW, HDA_REG_IDX_STRM(name, FIFOW), #name " FIFO Watermark" }, \
398 /* Offset 0x90 (SD0) */ \
399 { offset + 0x10, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFIFOS, HDA_REG_IDX_STRM(name, FIFOS), #name " FIFO Size" }, \
400 /* Offset 0x92 (SD0) */ \
401 { offset + 0x12, 0x00002, 0x00007F7F, 0x00007F7F, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFMT , HDA_REG_IDX_STRM(name, FMT) , #name " Stream Format" }, \
402 /* Reserved: 0x94 - 0x98. */ \
403 /* Offset 0x98 (SD0) */ \
404 { offset + 0x18, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDBDPL , HDA_REG_IDX_STRM(name, BDPL) , #name " Buffer Descriptor List Pointer-Lower Base Address" }, \
405 /* Offset 0x9C (SD0) */ \
406 { offset + 0x1C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDBDPU , HDA_REG_IDX_STRM(name, BDPU) , #name " Buffer Descriptor List Pointer-Upper Base Address" }
407
408/** Defines a single audio stream register set (e.g. OSD0). */
409#define HDA_REG_MAP_DEF_STREAM(index, name) \
410 HDA_REG_MAP_STRM(HDA_REG_DESC_SD0_BASE + (index * 32 /* 0x20 */), name)
411
412/* See 302349 p 6.2. */
413const HDAREGDESC g_aHdaRegMap[HDA_NUM_REGS] =
414{
415 /* offset size read mask write mask flags read callback write callback index + abbrev */
416 /*------- ------- ---------- ---------- ----------------- ---------------- ------------------- ------------------------ */
417 { 0x00000, 0x00002, 0x0000FFFB, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(GCAP) }, /* Global Capabilities */
418 { 0x00002, 0x00001, 0x000000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMIN) }, /* Minor Version */
419 { 0x00003, 0x00001, 0x000000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMAJ) }, /* Major Version */
420 { 0x00004, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTPAY) }, /* Output Payload Capabilities */
421 { 0x00006, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INPAY) }, /* Input Payload Capabilities */
422 { 0x00008, 0x00004, 0x00000103, 0x00000103, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteGCTL , HDA_REG_IDX(GCTL) }, /* Global Control */
423 { 0x0000c, 0x00002, 0x00007FFF, 0x00007FFF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(WAKEEN) }, /* Wake Enable */
424 { 0x0000e, 0x00002, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteSTATESTS, HDA_REG_IDX(STATESTS) }, /* State Change Status */
425 { 0x00010, 0x00002, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadUnimpl, hdaRegWriteUnimpl , HDA_REG_IDX(GSTS) }, /* Global Status */
426 { 0x00018, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTSTRMPAY) }, /* Output Stream Payload Capability */
427 { 0x0001A, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INSTRMPAY) }, /* Input Stream Payload Capability */
428 { 0x00020, 0x00004, 0xC00000FF, 0xC00000FF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(INTCTL) }, /* Interrupt Control */
429 { 0x00024, 0x00004, 0xC00000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteUnimpl , HDA_REG_IDX(INTSTS) }, /* Interrupt Status */
430 { 0x00030, 0x00004, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadWALCLK, hdaRegWriteUnimpl , HDA_REG_IDX_NOMEM(WALCLK) }, /* Wall Clock Counter */
431 { 0x00034, 0x00004, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(SSYNC) }, /* Stream Synchronization */
432 { 0x00040, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBLBASE) }, /* CORB Lower Base Address */
433 { 0x00044, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBUBASE) }, /* CORB Upper Base Address */
434 { 0x00048, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteCORBWP , HDA_REG_IDX(CORBWP) }, /* CORB Write Pointer */
435 { 0x0004A, 0x00002, 0x000080FF, 0x00008000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteCORBRP , HDA_REG_IDX(CORBRP) }, /* CORB Read Pointer */
436 { 0x0004C, 0x00001, 0x00000003, 0x00000003, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBCTL , HDA_REG_IDX(CORBCTL) }, /* CORB Control */
437 { 0x0004D, 0x00001, 0x00000001, 0x00000001, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBSTS , HDA_REG_IDX(CORBSTS) }, /* CORB Status */
438 { 0x0004E, 0x00001, 0x000000F3, 0x00000003, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBSIZE, HDA_REG_IDX(CORBSIZE) }, /* CORB Size */
439 { 0x00050, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBLBASE) }, /* RIRB Lower Base Address */
440 { 0x00054, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBUBASE) }, /* RIRB Upper Base Address */
441 { 0x00058, 0x00002, 0x000000FF, 0x00008000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteRIRBWP , HDA_REG_IDX(RIRBWP) }, /* RIRB Write Pointer */
442 { 0x0005A, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteRINTCNT , HDA_REG_IDX(RINTCNT) }, /* Response Interrupt Count */
443 { 0x0005C, 0x00001, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteU8 , HDA_REG_IDX(RIRBCTL) }, /* RIRB Control */
444 { 0x0005D, 0x00001, 0x00000005, 0x00000005, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteRIRBSTS , HDA_REG_IDX(RIRBSTS) }, /* RIRB Status */
445 { 0x0005E, 0x00001, 0x000000F3, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(RIRBSIZE) }, /* RIRB Size */
446 { 0x00060, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(IC) }, /* Immediate Command */
447 { 0x00064, 0x00004, 0x00000000, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteUnimpl , HDA_REG_IDX(IR) }, /* Immediate Response */
448 { 0x00068, 0x00002, 0x00000002, 0x00000002, HDA_RD_FLAG_NONE, hdaRegReadIRS , hdaRegWriteIRS , HDA_REG_IDX(IRS) }, /* Immediate Command Status */
449 { 0x00070, 0x00004, 0xFFFFFFFF, 0xFFFFFF81, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPLBASE) }, /* DMA Position Lower Base */
450 { 0x00074, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPUBASE) }, /* DMA Position Upper Base */
451 /* 4 Serial Data In (SDI). */
452 HDA_REG_MAP_DEF_STREAM(0, SD0),
453 HDA_REG_MAP_DEF_STREAM(1, SD1),
454 HDA_REG_MAP_DEF_STREAM(2, SD2),
455 HDA_REG_MAP_DEF_STREAM(3, SD3),
456 /* 4 Serial Data Out (SDO). */
457 HDA_REG_MAP_DEF_STREAM(4, SD4),
458 HDA_REG_MAP_DEF_STREAM(5, SD5),
459 HDA_REG_MAP_DEF_STREAM(6, SD6),
460 HDA_REG_MAP_DEF_STREAM(7, SD7)
461};
462
463const HDAREGALIAS g_aHdaRegAliases[] =
464{
465 { 0x2084, HDA_REG_SD0LPIB },
466 { 0x20a4, HDA_REG_SD1LPIB },
467 { 0x20c4, HDA_REG_SD2LPIB },
468 { 0x20e4, HDA_REG_SD3LPIB },
469 { 0x2104, HDA_REG_SD4LPIB },
470 { 0x2124, HDA_REG_SD5LPIB },
471 { 0x2144, HDA_REG_SD6LPIB },
472 { 0x2164, HDA_REG_SD7LPIB }
473};
474
475#ifdef IN_RING3
476
477/** HDABDLEDESC field descriptors for the v7 saved state. */
478static SSMFIELD const g_aSSMBDLEDescFields7[] =
479{
480 SSMFIELD_ENTRY(HDABDLEDESC, u64BufAdr),
481 SSMFIELD_ENTRY(HDABDLEDESC, u32BufSize),
482 SSMFIELD_ENTRY(HDABDLEDESC, fFlags),
483 SSMFIELD_ENTRY_TERM()
484};
485
486/** HDABDLESTATE field descriptors for the v6+ saved state. */
487static SSMFIELD const g_aSSMBDLEStateFields6[] =
488{
489 SSMFIELD_ENTRY(HDABDLESTATE, u32BDLIndex),
490 SSMFIELD_ENTRY(HDABDLESTATE, cbBelowFIFOW),
491 SSMFIELD_ENTRY_OLD(FIFO, HDA_FIFO_MAX), /* Deprecated; now is handled in the stream's circular buffer. */
492 SSMFIELD_ENTRY(HDABDLESTATE, u32BufOff),
493 SSMFIELD_ENTRY_TERM()
494};
495
496/** HDABDLESTATE field descriptors for the v7 saved state. */
497static SSMFIELD const g_aSSMBDLEStateFields7[] =
498{
499 SSMFIELD_ENTRY(HDABDLESTATE, u32BDLIndex),
500 SSMFIELD_ENTRY(HDABDLESTATE, cbBelowFIFOW),
501 SSMFIELD_ENTRY(HDABDLESTATE, u32BufOff),
502 SSMFIELD_ENTRY_TERM()
503};
504
505/** HDASTREAMSTATE field descriptors for the v6 saved state. */
506static SSMFIELD const g_aSSMStreamStateFields6[] =
507{
508 SSMFIELD_ENTRY_OLD(cBDLE, sizeof(uint16_t)), /* Deprecated. */
509 SSMFIELD_ENTRY(HDASTREAMSTATE, uCurBDLE),
510 SSMFIELD_ENTRY_OLD(fStop, 1), /* Deprecated; see SSMR3PutBool(). */
511 SSMFIELD_ENTRY_OLD(fRunning, 1), /* Deprecated; using the HDA_SDCTL_RUN bit is sufficient. */
512 SSMFIELD_ENTRY(HDASTREAMSTATE, fInReset),
513 SSMFIELD_ENTRY_TERM()
514};
515
516/** HDASTREAMSTATE field descriptors for the v7 saved state. */
517static SSMFIELD const g_aSSMStreamStateFields7[] =
518{
519 SSMFIELD_ENTRY(HDASTREAMSTATE, uCurBDLE),
520 SSMFIELD_ENTRY(HDASTREAMSTATE, fInReset),
521 SSMFIELD_ENTRY(HDASTREAMSTATE, tsTransferNext),
522 SSMFIELD_ENTRY_TERM()
523};
524
525/** HDASTREAMPERIOD field descriptors for the v7 saved state. */
526static SSMFIELD const g_aSSMStreamPeriodFields7[] =
527{
528 SSMFIELD_ENTRY(HDASTREAMPERIOD, u64StartWalClk),
529 SSMFIELD_ENTRY(HDASTREAMPERIOD, u64ElapsedWalClk),
530 SSMFIELD_ENTRY(HDASTREAMPERIOD, framesTransferred),
531 SSMFIELD_ENTRY(HDASTREAMPERIOD, cIntPending),
532 SSMFIELD_ENTRY_TERM()
533};
534
535/**
536 * 32-bit size indexed masks, i.e. g_afMasks[2 bytes] = 0xffff.
537 */
538static uint32_t const g_afMasks[5] =
539{
540 UINT32_C(0), UINT32_C(0x000000ff), UINT32_C(0x0000ffff), UINT32_C(0x00ffffff), UINT32_C(0xffffffff)
541};
542
543#endif /* IN_RING3 */
544
545
546
547/**
548 * Retrieves the number of bytes of a FIFOW register.
549 *
550 * @return Number of bytes of a given FIFOW register.
551 */
552DECLINLINE(uint8_t) hdaSDFIFOWToBytes(uint32_t u32RegFIFOW)
553{
554 uint32_t cb;
555 switch (u32RegFIFOW)
556 {
557 case HDA_SDFIFOW_8B: cb = 8; break;
558 case HDA_SDFIFOW_16B: cb = 16; break;
559 case HDA_SDFIFOW_32B: cb = 32; break;
560 default: cb = 0; break;
561 }
562
563 Assert(RT_IS_POWER_OF_TWO(cb));
564 return cb;
565}
566
567#ifdef IN_RING3
568/**
569 * Reschedules pending interrupts for all audio streams which have complete
570 * audio periods but did not have the chance to issue their (pending) interrupts yet.
571 *
572 * @param pThis The HDA device state.
573 */
574static void hdaR3ReschedulePendingInterrupts(PHDASTATE pThis)
575{
576 bool fInterrupt = false;
577
578 for (uint8_t i = 0; i < HDA_MAX_STREAMS; ++i)
579 {
580 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, i);
581 if (!pStream)
582 continue;
583
584 if ( hdaR3StreamPeriodIsComplete (&pStream->State.Period)
585 && hdaR3StreamPeriodNeedsInterrupt(&pStream->State.Period)
586 && hdaR3WalClkSet(pThis, hdaR3StreamPeriodGetAbsElapsedWalClk(&pStream->State.Period), false /* fForce */))
587 {
588 fInterrupt = true;
589 break;
590 }
591 }
592
593 LogFunc(("fInterrupt=%RTbool\n", fInterrupt));
594
595# ifndef LOG_ENABLED
596 hdaProcessInterrupt(pThis);
597# else
598 hdaProcessInterrupt(pThis, __FUNCTION__);
599# endif
600}
601#endif /* IN_RING3 */
602
603/**
604 * Looks up a register at the exact offset given by @a offReg.
605 *
606 * @returns Register index on success, -1 if not found.
607 * @param offReg The register offset.
608 */
609static int hdaRegLookup(uint32_t offReg)
610{
611 /*
612 * Aliases.
613 */
614 if (offReg >= g_aHdaRegAliases[0].offReg)
615 {
616 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
617 if (offReg == g_aHdaRegAliases[i].offReg)
618 return g_aHdaRegAliases[i].idxAlias;
619 Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
620 return -1;
621 }
622
623 /*
624 * Binary search the
625 */
626 int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
627 int idxLow = 0;
628 for (;;)
629 {
630 int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
631 if (offReg < g_aHdaRegMap[idxMiddle].offset)
632 {
633 if (idxLow == idxMiddle)
634 break;
635 idxEnd = idxMiddle;
636 }
637 else if (offReg > g_aHdaRegMap[idxMiddle].offset)
638 {
639 idxLow = idxMiddle + 1;
640 if (idxLow >= idxEnd)
641 break;
642 }
643 else
644 return idxMiddle;
645 }
646
647#ifdef RT_STRICT
648 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
649 Assert(g_aHdaRegMap[i].offset != offReg);
650#endif
651 return -1;
652}
653
654#ifdef IN_RING3
655
656/**
657 * Looks up a register covering the offset given by @a offReg.
658 *
659 * @returns Register index on success, -1 if not found.
660 * @param offReg The register offset.
661 */
662static int hdaR3RegLookupWithin(uint32_t offReg)
663{
664 /*
665 * Aliases.
666 */
667 if (offReg >= g_aHdaRegAliases[0].offReg)
668 {
669 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
670 {
671 uint32_t off = offReg - g_aHdaRegAliases[i].offReg;
672 if (off < 4 && off < g_aHdaRegMap[g_aHdaRegAliases[i].idxAlias].size)
673 return g_aHdaRegAliases[i].idxAlias;
674 }
675 Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
676 return -1;
677 }
678
679 /*
680 * Binary search the register map.
681 */
682 int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
683 int idxLow = 0;
684 for (;;)
685 {
686 int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
687 if (offReg < g_aHdaRegMap[idxMiddle].offset)
688 {
689 if (idxLow == idxMiddle)
690 break;
691 idxEnd = idxMiddle;
692 }
693 else if (offReg >= g_aHdaRegMap[idxMiddle].offset + g_aHdaRegMap[idxMiddle].size)
694 {
695 idxLow = idxMiddle + 1;
696 if (idxLow >= idxEnd)
697 break;
698 }
699 else
700 return idxMiddle;
701 }
702
703# ifdef RT_STRICT
704 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
705 Assert(offReg - g_aHdaRegMap[i].offset >= g_aHdaRegMap[i].size);
706# endif
707 return -1;
708}
709
710
711/**
712 * Synchronizes the CORB / RIRB buffers between internal <-> device state.
713 *
714 * @returns IPRT status code.
715 * @param pThis HDA state.
716 * @param fLocal Specify true to synchronize HDA state's CORB buffer with the device state,
717 * or false to synchronize the device state's RIRB buffer with the HDA state.
718 *
719 * @todo r=andy Break this up into two functions?
720 */
721static int hdaR3CmdSync(PHDASTATE pThis, bool fLocal)
722{
723 int rc = VINF_SUCCESS;
724 if (fLocal)
725 {
726 if (pThis->u64CORBBase)
727 {
728 AssertPtr(pThis->pu32CorbBuf);
729 Assert(pThis->cbCorbBuf);
730
731/** @todo r=bird: An explanation is required why PDMDevHlpPhysRead is used with
732 * the CORB and PDMDevHlpPCIPhysWrite with RIRB below. There are
733 * similar unexplained inconsistencies in DevHDACommon.cpp. */
734 rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pThis->u64CORBBase, pThis->pu32CorbBuf, pThis->cbCorbBuf);
735 Log(("hdaR3CmdSync/CORB: read %RGp LB %#x (%Rrc)\n", pThis->u64CORBBase, pThis->cbCorbBuf, rc));
736 AssertRCReturn(rc, rc);
737 }
738 }
739 else
740 {
741 if (pThis->u64RIRBBase)
742 {
743 AssertPtr(pThis->pu64RirbBuf);
744 Assert(pThis->cbRirbBuf);
745
746 rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pThis->u64RIRBBase, pThis->pu64RirbBuf, pThis->cbRirbBuf);
747 Log(("hdaR3CmdSync/RIRB: phys read %RGp LB %#x (%Rrc)\n", pThis->u64RIRBBase, pThis->pu64RirbBuf, rc));
748 AssertRCReturn(rc, rc);
749 }
750 }
751
752# ifdef DEBUG_CMD_BUFFER
753 LogFunc(("fLocal=%RTbool\n", fLocal));
754
755 uint8_t i = 0;
756 do
757 {
758 LogFunc(("CORB%02x: ", i));
759 uint8_t j = 0;
760 do
761 {
762 const char *pszPrefix;
763 if ((i + j) == HDA_REG(pThis, CORBRP))
764 pszPrefix = "[R]";
765 else if ((i + j) == HDA_REG(pThis, CORBWP))
766 pszPrefix = "[W]";
767 else
768 pszPrefix = " "; /* three spaces */
769 Log((" %s%08x", pszPrefix, pThis->pu32CorbBuf[i + j]));
770 j++;
771 } while (j < 8);
772 Log(("\n"));
773 i += 8;
774 } while(i != 0);
775
776 do
777 {
778 LogFunc(("RIRB%02x: ", i));
779 uint8_t j = 0;
780 do
781 {
782 const char *prefix;
783 if ((i + j) == HDA_REG(pThis, RIRBWP))
784 prefix = "[W]";
785 else
786 prefix = " ";
787 Log((" %s%016lx", prefix, pThis->pu64RirbBuf[i + j]));
788 } while (++j < 8);
789 Log(("\n"));
790 i += 8;
791 } while (i != 0);
792# endif
793 return rc;
794}
795
796/**
797 * Processes the next CORB buffer command in the queue.
798 *
799 * This will invoke the HDA codec verb dispatcher.
800 *
801 * @returns IPRT status code.
802 * @param pThis HDA state.
803 */
804static int hdaR3CORBCmdProcess(PHDASTATE pThis)
805{
806 uint8_t corbRp = HDA_REG(pThis, CORBRP);
807 uint8_t corbWp = HDA_REG(pThis, CORBWP);
808 uint8_t rirbWp = HDA_REG(pThis, RIRBWP);
809
810 Log3Func(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", corbRp, corbWp, rirbWp));
811
812 if (!(HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA))
813 {
814 LogFunc(("CORB DMA not active, skipping\n"));
815 return VINF_SUCCESS;
816 }
817
818 Assert(pThis->cbCorbBuf);
819
820 int rc = hdaR3CmdSync(pThis, true /* Sync from guest */);
821 AssertRCReturn(rc, rc);
822
823 uint16_t cIntCnt = HDA_REG(pThis, RINTCNT) & 0xff;
824
825 if (!cIntCnt) /* 0 means 256 interrupts. */
826 cIntCnt = HDA_MAX_RINTCNT;
827
828 Log3Func(("START CORB(RP:%x, WP:%x) RIRBWP:%x, RINTCNT:%RU8/%RU8\n",
829 corbRp, corbWp, rirbWp, pThis->u16RespIntCnt, cIntCnt));
830
831 while (corbRp != corbWp)
832 {
833 corbRp = (corbRp + 1) % (pThis->cbCorbBuf / HDA_CORB_ELEMENT_SIZE); /* Advance +1 as the first command(s) are at CORBWP + 1. */
834
835 uint32_t uCmd = pThis->pu32CorbBuf[corbRp];
836 uint64_t uResp = 0;
837
838 rc = pThis->pCodec->pfnLookup(pThis->pCodec, HDA_CODEC_CMD(uCmd, 0 /* Codec index */), &uResp);
839 if (RT_FAILURE(rc))
840 LogFunc(("Codec lookup failed with rc=%Rrc\n", rc));
841
842 Log3Func(("Codec verb %08x -> response %016lx\n", uCmd, uResp));
843
844 if ( (uResp & CODEC_RESPONSE_UNSOLICITED)
845 && !(HDA_REG(pThis, GCTL) & HDA_GCTL_UNSOL))
846 {
847 LogFunc(("Unexpected unsolicited response.\n"));
848 HDA_REG(pThis, CORBRP) = corbRp;
849
850 /** @todo r=andy No CORB/RIRB syncing to guest required in that case? */
851 return rc;
852 }
853
854 rirbWp = (rirbWp + 1) % HDA_RIRB_SIZE;
855
856 pThis->pu64RirbBuf[rirbWp] = uResp;
857
858 pThis->u16RespIntCnt++;
859
860 bool fSendInterrupt = false;
861
862 if (pThis->u16RespIntCnt == cIntCnt) /* Response interrupt count reached? */
863 {
864 pThis->u16RespIntCnt = 0; /* Reset internal interrupt response counter. */
865
866 Log3Func(("Response interrupt count reached (%RU16)\n", pThis->u16RespIntCnt));
867 fSendInterrupt = true;
868
869 }
870 else if (corbRp == corbWp) /* Did we reach the end of the current command buffer? */
871 {
872 Log3Func(("Command buffer empty\n"));
873 fSendInterrupt = true;
874 }
875
876 if (fSendInterrupt)
877 {
878 if (HDA_REG(pThis, RIRBCTL) & HDA_RIRBCTL_RINTCTL) /* Response Interrupt Control (RINTCTL) enabled? */
879 {
880 HDA_REG(pThis, RIRBSTS) |= HDA_RIRBSTS_RINTFL;
881
882# ifndef LOG_ENABLED
883 rc = hdaProcessInterrupt(pThis);
884# else
885 rc = hdaProcessInterrupt(pThis, __FUNCTION__);
886# endif
887 }
888 }
889 }
890
891 Log3Func(("END CORB(RP:%x, WP:%x) RIRBWP:%x, RINTCNT:%RU8/%RU8\n",
892 corbRp, corbWp, rirbWp, pThis->u16RespIntCnt, cIntCnt));
893
894 HDA_REG(pThis, CORBRP) = corbRp;
895 HDA_REG(pThis, RIRBWP) = rirbWp;
896
897 rc = hdaR3CmdSync(pThis, false /* Sync to guest */);
898 AssertRCReturn(rc, rc);
899
900 if (RT_FAILURE(rc))
901 AssertRCReturn(rc, rc);
902
903 return rc;
904}
905
906#endif /* IN_RING3 */
907
908/* Register access handlers. */
909
910static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
911{
912 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg);
913 *pu32Value = 0;
914 return VINF_SUCCESS;
915}
916
917static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
918{
919 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
920 return VINF_SUCCESS;
921}
922
923/* U8 */
924static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
925{
926 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffffff00) == 0);
927 return hdaRegReadU32(pThis, iReg, pu32Value);
928}
929
930static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
931{
932 Assert((u32Value & 0xffffff00) == 0);
933 return hdaRegWriteU32(pThis, iReg, u32Value);
934}
935
936/* U16 */
937static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
938{
939 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffff0000) == 0);
940 return hdaRegReadU32(pThis, iReg, pu32Value);
941}
942
943static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
944{
945 Assert((u32Value & 0xffff0000) == 0);
946 return hdaRegWriteU32(pThis, iReg, u32Value);
947}
948
949/* U24 */
950static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
951{
952 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xff000000) == 0);
953 return hdaRegReadU32(pThis, iReg, pu32Value);
954}
955
956#ifdef IN_RING3
957static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
958{
959 Assert((u32Value & 0xff000000) == 0);
960 return hdaRegWriteU32(pThis, iReg, u32Value);
961}
962#endif
963
964/* U32 */
965static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
966{
967 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
968
969 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
970
971 *pu32Value = pThis->au32Regs[iRegMem] & g_aHdaRegMap[iReg].readable;
972
973 DEVHDA_UNLOCK(pThis);
974 return VINF_SUCCESS;
975}
976
977static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
978{
979 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
980
981 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
982
983 pThis->au32Regs[iRegMem] = (u32Value & g_aHdaRegMap[iReg].writable)
984 | (pThis->au32Regs[iRegMem] & ~g_aHdaRegMap[iReg].writable);
985 DEVHDA_UNLOCK(pThis);
986 return VINF_SUCCESS;
987}
988
989static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
990{
991 RT_NOREF_PV(iReg);
992#ifdef IN_RING3
993 DEVHDA_LOCK(pThis);
994#else
995 if (!(u32Value & HDA_GCTL_CRST))
996 return VINF_IOM_R3_MMIO_WRITE;
997 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
998#endif
999
1000 if (u32Value & HDA_GCTL_CRST)
1001 {
1002 /* Set the CRST bit to indicate that we're leaving reset mode. */
1003 HDA_REG(pThis, GCTL) |= HDA_GCTL_CRST;
1004 LogFunc(("Guest leaving HDA reset\n"));
1005 }
1006 else
1007 {
1008#ifdef IN_RING3
1009 /* Enter reset state. */
1010 LogFunc(("Guest entering HDA reset with DMA(RIRB:%s, CORB:%s)\n",
1011 HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA ? "on" : "off",
1012 HDA_REG(pThis, RIRBCTL) & HDA_RIRBCTL_RDMAEN ? "on" : "off"));
1013
1014 /* Clear the CRST bit to indicate that we're in reset state. */
1015 HDA_REG(pThis, GCTL) &= ~HDA_GCTL_CRST;
1016
1017 hdaR3GCTLReset(pThis);
1018#else
1019 AssertFailedReturnStmt(DEVHDA_UNLOCK(pThis), VINF_IOM_R3_MMIO_WRITE);
1020#endif
1021 }
1022
1023 if (u32Value & HDA_GCTL_FCNTRL)
1024 {
1025 /* Flush: GSTS:1 set, see 6.2.6. */
1026 HDA_REG(pThis, GSTS) |= HDA_GSTS_FSTS; /* Set the flush status. */
1027 /* DPLBASE and DPUBASE should be initialized with initial value (see 6.2.6). */
1028 }
1029
1030 DEVHDA_UNLOCK(pThis);
1031 return VINF_SUCCESS;
1032}
1033
1034static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1035{
1036 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1037
1038 uint32_t v = HDA_REG_IND(pThis, iReg);
1039 uint32_t nv = u32Value & HDA_STATESTS_SCSF_MASK;
1040
1041 HDA_REG(pThis, STATESTS) &= ~(v & nv); /* Write of 1 clears corresponding bit. */
1042
1043 DEVHDA_UNLOCK(pThis);
1044 return VINF_SUCCESS;
1045}
1046
1047static int hdaRegReadLPIB(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
1048{
1049 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
1050
1051 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, LPIB, iReg);
1052 uint32_t u32LPIB = HDA_STREAM_REG(pThis, LPIB, uSD);
1053#ifdef LOG_ENABLED
1054 const uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, uSD);
1055 LogFlowFunc(("[SD%RU8] LPIB=%RU32, CBL=%RU32\n", uSD, u32LPIB, u32CBL));
1056#endif
1057
1058 *pu32Value = u32LPIB;
1059
1060 DEVHDA_UNLOCK(pThis);
1061 return VINF_SUCCESS;
1062}
1063
1064#ifdef IN_RING3
1065/**
1066 * Returns the current maximum value the wall clock counter can be set to.
1067 * This maximum value depends on all currently handled HDA streams and their own current timing.
1068 *
1069 * @return Current maximum value the wall clock counter can be set to.
1070 * @param pThis HDA state.
1071 *
1072 * @remark Does not actually set the wall clock counter.
1073 */
1074static uint64_t hdaR3WalClkGetMax(PHDASTATE pThis)
1075{
1076 const uint64_t u64WalClkCur = ASMAtomicReadU64(&pThis->u64WalClk);
1077 const uint64_t u64FrontAbsWalClk = pThis->SinkFront.pStream
1078 ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkFront.pStream->State.Period) : 0;
1079# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1080# error "Implement me!"
1081# endif
1082 const uint64_t u64LineInAbsWalClk = pThis->SinkLineIn.pStream
1083 ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkLineIn.pStream->State.Period) : 0;
1084# ifdef VBOX_WITH_HDA_MIC_IN
1085 const uint64_t u64MicInAbsWalClk = pThis->SinkMicIn.pStream
1086 ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkMicIn.pStream->State.Period) : 0;
1087# endif
1088
1089 uint64_t u64WalClkNew = RT_MAX(u64WalClkCur, u64FrontAbsWalClk);
1090# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1091# error "Implement me!"
1092# endif
1093 u64WalClkNew = RT_MAX(u64WalClkNew, u64LineInAbsWalClk);
1094# ifdef VBOX_WITH_HDA_MIC_IN
1095 u64WalClkNew = RT_MAX(u64WalClkNew, u64MicInAbsWalClk);
1096# endif
1097
1098 Log3Func(("%RU64 -> Front=%RU64, LineIn=%RU64 -> %RU64\n",
1099 u64WalClkCur, u64FrontAbsWalClk, u64LineInAbsWalClk, u64WalClkNew));
1100
1101 return u64WalClkNew;
1102}
1103#endif /* IN_RING3 */
1104
1105static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
1106{
1107#ifdef IN_RING3
1108 RT_NOREF(iReg);
1109
1110 DEVHDA_LOCK(pThis);
1111
1112 *pu32Value = RT_LO_U32(ASMAtomicReadU64(&pThis->u64WalClk));
1113
1114 Log3Func(("%RU32 (max @ %RU64)\n",*pu32Value, hdaR3WalClkGetMax(pThis)));
1115
1116 DEVHDA_UNLOCK(pThis);
1117 return VINF_SUCCESS;
1118#else
1119 RT_NOREF(pThis, iReg, pu32Value);
1120 return VINF_IOM_R3_MMIO_WRITE;
1121#endif
1122}
1123
1124static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1125{
1126 RT_NOREF(iReg);
1127 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1128
1129 if (u32Value & HDA_CORBRP_RST)
1130 {
1131 /* Do a CORB reset. */
1132 if (pThis->cbCorbBuf)
1133 {
1134#ifdef IN_RING3
1135 Assert(pThis->pu32CorbBuf);
1136 RT_BZERO((void *)pThis->pu32CorbBuf, pThis->cbCorbBuf);
1137#else
1138 DEVHDA_UNLOCK(pThis);
1139 return VINF_IOM_R3_MMIO_WRITE;
1140#endif
1141 }
1142
1143 LogRel2(("HDA: CORB reset\n"));
1144
1145 HDA_REG(pThis, CORBRP) = HDA_CORBRP_RST; /* Clears the pointer. */
1146 }
1147 else
1148 HDA_REG(pThis, CORBRP) &= ~HDA_CORBRP_RST; /* Only CORBRP_RST bit is writable. */
1149
1150 DEVHDA_UNLOCK(pThis);
1151 return VINF_SUCCESS;
1152}
1153
1154static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1155{
1156#ifdef IN_RING3
1157 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1158
1159 int rc = hdaRegWriteU8(pThis, iReg, u32Value);
1160 AssertRC(rc);
1161
1162 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Start DMA engine. */
1163 {
1164 rc = hdaR3CORBCmdProcess(pThis);
1165 }
1166 else
1167 LogFunc(("CORB DMA not running, skipping\n"));
1168
1169 DEVHDA_UNLOCK(pThis);
1170 return rc;
1171#else
1172 RT_NOREF(pThis, iReg, u32Value);
1173 return VINF_IOM_R3_MMIO_WRITE;
1174#endif
1175}
1176
1177static int hdaRegWriteCORBSIZE(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1178{
1179#ifdef IN_RING3
1180 RT_NOREF(iReg);
1181 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1182
1183 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */
1184 {
1185 LogFunc(("CORB DMA is (still) running, skipping\n"));
1186
1187 DEVHDA_UNLOCK(pThis);
1188 return VINF_SUCCESS;
1189 }
1190
1191 u32Value = (u32Value & HDA_CORBSIZE_SZ);
1192
1193 uint16_t cEntries = HDA_CORB_SIZE; /* Set default. */
1194
1195 switch (u32Value)
1196 {
1197 case 0: /* 8 byte; 2 entries. */
1198 cEntries = 2;
1199 break;
1200
1201 case 1: /* 64 byte; 16 entries. */
1202 cEntries = 16;
1203 break;
1204
1205 case 2: /* 1 KB; 256 entries. */
1206 /* Use default size. */
1207 break;
1208
1209 default:
1210 LogRel(("HDA: Guest tried to set an invalid CORB size (0x%x), keeping default\n", u32Value));
1211 u32Value = 2;
1212 /* Use default size. */
1213 break;
1214 }
1215
1216 uint32_t cbCorbBuf = cEntries * HDA_CORB_ELEMENT_SIZE;
1217 Assert(cbCorbBuf <= HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE); /* Paranoia. */
1218
1219 if (cbCorbBuf != pThis->cbCorbBuf)
1220 {
1221 RT_BZERO(pThis->pu32CorbBuf, HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE); /* Clear CORB when setting a new size. */
1222 pThis->cbCorbBuf = cbCorbBuf;
1223 }
1224
1225 LogFunc(("CORB buffer size is now %RU32 bytes (%u entries)\n", pThis->cbCorbBuf, pThis->cbCorbBuf / HDA_CORB_ELEMENT_SIZE));
1226
1227 HDA_REG(pThis, CORBSIZE) = u32Value;
1228
1229 DEVHDA_UNLOCK(pThis);
1230 return VINF_SUCCESS;
1231#else
1232 RT_NOREF(pThis, iReg, u32Value);
1233 return VINF_IOM_R3_MMIO_WRITE;
1234#endif
1235}
1236
1237static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1238{
1239 RT_NOREF_PV(iReg);
1240 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1241
1242 uint32_t v = HDA_REG(pThis, CORBSTS);
1243 HDA_REG(pThis, CORBSTS) &= ~(v & u32Value);
1244
1245 DEVHDA_UNLOCK(pThis);
1246 return VINF_SUCCESS;
1247}
1248
1249static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1250{
1251#ifdef IN_RING3
1252 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1253
1254 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
1255 AssertRCSuccess(rc);
1256
1257 rc = hdaR3CORBCmdProcess(pThis);
1258
1259 DEVHDA_UNLOCK(pThis);
1260 return rc;
1261#else
1262 RT_NOREF(pThis, iReg, u32Value);
1263 return VINF_IOM_R3_MMIO_WRITE;
1264#endif
1265}
1266
1267static int hdaRegWriteSDCBL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1268{
1269 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1270
1271 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, CBL, iReg));
1272 if (pStream)
1273 {
1274 pStream->u32CBL = u32Value;
1275 LogFlowFunc(("[SD%RU8] CBL=%RU32\n", pStream->u8SD, u32Value));
1276 }
1277 else
1278 LogFunc(("[SD%RU8] Warning: Changing SDCBL on non-attached stream (0x%x)\n",
1279 HDA_SD_NUM_FROM_REG(pThis, CTL, iReg), u32Value));
1280
1281 int rc = hdaRegWriteU32(pThis, iReg, u32Value);
1282 AssertRCSuccess(rc);
1283
1284 DEVHDA_UNLOCK(pThis);
1285 return rc;
1286}
1287
1288static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1289{
1290#ifdef IN_RING3
1291 /* Get the stream descriptor. */
1292 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, CTL, iReg);
1293
1294 DEVHDA_LOCK_BOTH_RETURN(pThis, uSD, VINF_IOM_R3_MMIO_WRITE);
1295
1296 /*
1297 * Some guests write too much (that is, 32-bit with the top 8 bit being junk)
1298 * instead of 24-bit required for SDCTL. So just mask this here to be safe.
1299 */
1300 u32Value &= 0x00ffffff;
1301
1302 bool fRun = RT_BOOL(u32Value & HDA_SDCTL_RUN);
1303 bool fInRun = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_SDCTL_RUN);
1304
1305 bool fReset = RT_BOOL(u32Value & HDA_SDCTL_SRST);
1306 bool fInReset = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_SDCTL_SRST);
1307
1308 LogFunc(("[SD%RU8] fRun=%RTbool, fInRun=%RTbool, fReset=%RTbool, fInReset=%RTbool, %R[sdctl]\n",
1309 uSD, fRun, fInRun, fReset, fInReset, u32Value));
1310
1311 /*
1312 * Extract the stream tag the guest wants to use for this specific
1313 * stream descriptor (SDn). This only can happen if the stream is in a non-running
1314 * state, so we're doing the lookup and assignment here.
1315 *
1316 * So depending on the guest OS, SD3 can use stream tag 4, for example.
1317 */
1318 uint8_t uTag = (u32Value >> HDA_SDCTL_NUM_SHIFT) & HDA_SDCTL_NUM_MASK;
1319 if (uTag > HDA_MAX_TAGS)
1320 {
1321 LogFunc(("[SD%RU8] Warning: Invalid stream tag %RU8 specified!\n", uSD, uTag));
1322
1323 int rc = hdaRegWriteU24(pThis, iReg, u32Value);
1324 DEVHDA_UNLOCK_BOTH(pThis, uSD);
1325 return rc;
1326 }
1327
1328 PHDATAG pTag = &pThis->aTags[uTag];
1329 AssertPtr(pTag);
1330
1331 LogFunc(("[SD%RU8] Using stream tag=%RU8\n", uSD, uTag));
1332
1333 /* Assign new values. */
1334 pTag->uTag = uTag;
1335 pTag->pStream = hdaGetStreamFromSD(pThis, uSD);
1336
1337 PHDASTREAM pStream = pTag->pStream;
1338 AssertPtr(pStream);
1339
1340 if (fInReset)
1341 {
1342 Assert(!fReset);
1343 Assert(!fInRun && !fRun);
1344
1345 /* Exit reset state. */
1346 ASMAtomicXchgBool(&pStream->State.fInReset, false);
1347
1348 /* Report that we're done resetting this stream by clearing SRST. */
1349 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_SRST;
1350
1351 LogFunc(("[SD%RU8] Reset exit\n", uSD));
1352 }
1353 else if (fReset)
1354 {
1355 /* ICH6 datasheet 18.2.33 says that RUN bit should be cleared before initiation of reset. */
1356 Assert(!fInRun && !fRun);
1357
1358 LogFunc(("[SD%RU8] Reset enter\n", uSD));
1359
1360 hdaR3StreamLock(pStream);
1361
1362# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1363 hdaR3StreamAsyncIOLock(pStream);
1364 hdaR3StreamAsyncIOEnable(pStream, false /* fEnable */);
1365# endif
1366 /* Make sure to remove the run bit before doing the actual stream reset. */
1367 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_RUN;
1368
1369 hdaR3StreamReset(pThis, pStream, pStream->u8SD);
1370
1371# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1372 hdaR3StreamAsyncIOUnlock(pStream);
1373# endif
1374 hdaR3StreamUnlock(pStream);
1375 }
1376 else
1377 {
1378 /*
1379 * We enter here to change DMA states only.
1380 */
1381 if (fInRun != fRun)
1382 {
1383 Assert(!fReset && !fInReset);
1384 LogFunc(("[SD%RU8] State changed (fRun=%RTbool)\n", uSD, fRun));
1385
1386 hdaR3StreamLock(pStream);
1387
1388 int rc2;
1389
1390# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1391 if (fRun)
1392 rc2 = hdaR3StreamAsyncIOCreate(pStream);
1393
1394 hdaR3StreamAsyncIOLock(pStream);
1395# endif
1396 if (fRun)
1397 {
1398# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1399 hdaR3StreamAsyncIOEnable(pStream, fRun /* fEnable */);
1400# endif
1401 /* (Re-)initialize the stream with current values. */
1402 rc2 = hdaR3StreamInit(pStream, pStream->u8SD);
1403 AssertRC(rc2);
1404
1405 /* Remove the old stream from the device setup. */
1406 hdaR3RemoveStream(pThis, &pStream->State.Cfg);
1407
1408 /* Add the stream to the device setup. */
1409 rc2 = hdaR3AddStream(pThis, &pStream->State.Cfg);
1410 AssertRC(rc2);
1411 }
1412
1413 /* Enable/disable the stream. */
1414 rc2 = hdaR3StreamEnable(pStream, fRun /* fEnable */);
1415 AssertRC(rc2);
1416
1417 if (fRun)
1418 {
1419 /* Keep track of running streams. */
1420 pThis->cStreamsActive++;
1421
1422 /* (Re-)init the stream's period. */
1423 hdaR3StreamPeriodInit(&pStream->State.Period,
1424 pStream->u8SD, pStream->u16LVI, pStream->u32CBL, &pStream->State.Cfg);
1425
1426 /* Begin a new period for this stream. */
1427 rc2 = hdaR3StreamPeriodBegin(&pStream->State.Period, hdaWalClkGetCurrent(pThis)/* Use current wall clock time */);
1428 AssertRC(rc2);
1429
1430 rc2 = hdaR3TimerSet(pThis, pStream, TMTimerGet(pThis->pTimer[pStream->u8SD]) + pStream->State.cTransferTicks, false /* fForce */);
1431 AssertRC(rc2);
1432 }
1433 else
1434 {
1435 /* Keep track of running streams. */
1436 Assert(pThis->cStreamsActive);
1437 if (pThis->cStreamsActive)
1438 pThis->cStreamsActive--;
1439
1440 /* Make sure to (re-)schedule outstanding (delayed) interrupts. */
1441 hdaR3ReschedulePendingInterrupts(pThis);
1442
1443 /* Reset the period. */
1444 hdaR3StreamPeriodReset(&pStream->State.Period);
1445 }
1446
1447# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1448 hdaR3StreamAsyncIOUnlock(pStream);
1449# endif
1450 /* Make sure to leave the lock before (eventually) starting the timer. */
1451 hdaR3StreamUnlock(pStream);
1452 }
1453 }
1454
1455 int rc2 = hdaRegWriteU24(pThis, iReg, u32Value);
1456 AssertRC(rc2);
1457
1458 DEVHDA_UNLOCK_BOTH(pThis, uSD);
1459 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1460#else /* !IN_RING3 */
1461 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
1462 return VINF_IOM_R3_MMIO_WRITE;
1463#endif /* IN_RING3 */
1464}
1465
1466static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1467{
1468#ifdef IN_RING3
1469 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, STS, iReg);
1470
1471 DEVHDA_LOCK_BOTH_RETURN(pThis, uSD, VINF_IOM_R3_MMIO_WRITE);
1472
1473 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
1474 if (!pStream)
1475 {
1476 AssertMsgFailed(("[SD%RU8] Warning: Writing SDSTS on non-attached stream (0x%x)\n",
1477 HDA_SD_NUM_FROM_REG(pThis, STS, iReg), u32Value));
1478
1479 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
1480 DEVHDA_UNLOCK_BOTH(pThis, uSD);
1481 return rc;
1482 }
1483
1484 hdaR3StreamLock(pStream);
1485
1486 uint32_t v = HDA_REG_IND(pThis, iReg);
1487
1488 /* Clear (zero) FIFOE, DESE and BCIS bits when writing 1 to it (6.2.33). */
1489 HDA_REG_IND(pThis, iReg) &= ~(u32Value & v);
1490
1491 /* Some guests tend to write SDnSTS even if the stream is not running.
1492 * So make sure to check if the RUN bit is set first. */
1493 const bool fRunning = pStream->State.fRunning;
1494
1495 Log3Func(("[SD%RU8] fRunning=%RTbool %R[sdsts]\n", pStream->u8SD, fRunning, v));
1496
1497 PHDASTREAMPERIOD pPeriod = &pStream->State.Period;
1498
1499 if (hdaR3StreamPeriodLock(pPeriod))
1500 {
1501 const bool fNeedsInterrupt = hdaR3StreamPeriodNeedsInterrupt(pPeriod);
1502 if (fNeedsInterrupt)
1503 hdaR3StreamPeriodReleaseInterrupt(pPeriod);
1504
1505 if (hdaR3StreamPeriodIsComplete(pPeriod))
1506 {
1507 /* Make sure to try to update the WALCLK register if a period is complete.
1508 * Use the maximum WALCLK value all (active) streams agree to. */
1509 const uint64_t uWalClkMax = hdaR3WalClkGetMax(pThis);
1510 if (uWalClkMax > hdaWalClkGetCurrent(pThis))
1511 hdaR3WalClkSet(pThis, uWalClkMax, false /* fForce */);
1512
1513 hdaR3StreamPeriodEnd(pPeriod);
1514
1515 if (fRunning)
1516 hdaR3StreamPeriodBegin(pPeriod, hdaWalClkGetCurrent(pThis) /* Use current wall clock time */);
1517 }
1518
1519 hdaR3StreamPeriodUnlock(pPeriod); /* Unlock before processing interrupt. */
1520 }
1521
1522# ifndef LOG_ENABLED
1523 hdaProcessInterrupt(pThis);
1524# else
1525 hdaProcessInterrupt(pThis, __FUNCTION__);
1526# endif
1527
1528 const uint64_t tsNow = TMTimerGet(pThis->pTimer[uSD]);
1529 Assert(tsNow >= pStream->State.tsTransferLast);
1530
1531 const uint64_t cTicksElapsed = tsNow - pStream->State.tsTransferLast;
1532# ifdef LOG_ENABLED
1533 const uint64_t cTicksTransferred = pStream->State.cbTransferProcessed * pStream->State.cTicksPerByte;
1534# endif
1535
1536 uint64_t cTicksToNext = pStream->State.cTransferTicks;
1537 if (cTicksToNext) /* Only do any calculations if the stream currently is set up for transfers. */
1538 {
1539 Log3Func(("[SD%RU8] cTicksElapsed=%RU64, cTicksTransferred=%RU64, cTicksToNext=%RU64\n",
1540 pStream->u8SD, cTicksElapsed, cTicksTransferred, cTicksToNext));
1541
1542 Log3Func(("[SD%RU8] cbTransferProcessed=%RU32, cbTransferChunk=%RU32, cbTransferSize=%RU32\n",
1543 pStream->u8SD, pStream->State.cbTransferProcessed, pStream->State.cbTransferChunk, pStream->State.cbTransferSize));
1544
1545 if (cTicksElapsed <= cTicksToNext)
1546 {
1547 cTicksToNext = cTicksToNext - cTicksElapsed;
1548 }
1549 else /* Catch up. */
1550 {
1551 Log3Func(("[SD%RU8] Warning: Lagging behind (%RU64 ticks elapsed, maximum allowed is %RU64)\n",
1552 pStream->u8SD, cTicksElapsed, cTicksToNext));
1553
1554 LogRelMax2(64, ("HDA: Stream #%RU8 interrupt lagging behind (expected %uus, got %uus), trying to catch up ...\n",
1555 pStream->u8SD,
1556 (TMTimerGetFreq(pThis->pTimer[pStream->u8SD]) / pThis->u16TimerHz) / 1000,(tsNow - pStream->State.tsTransferLast) / 1000));
1557
1558 cTicksToNext = 0;
1559 }
1560
1561 Log3Func(("[SD%RU8] -> cTicksToNext=%RU64\n", pStream->u8SD, cTicksToNext));
1562
1563 /* Reset processed data counter. */
1564 pStream->State.cbTransferProcessed = 0;
1565 pStream->State.tsTransferNext = tsNow + cTicksToNext;
1566
1567 /* Only re-arm the timer if there were pending transfer interrupts left
1568 * -- it could happen that we land in here if a guest writes to SDnSTS
1569 * unconditionally. */
1570 if (pStream->State.cTransferPendingInterrupts)
1571 {
1572 pStream->State.cTransferPendingInterrupts--;
1573
1574 /* Re-arm the timer. */
1575 LogFunc(("Timer set SD%RU8\n", pStream->u8SD));
1576 hdaR3TimerSet(pThis, pStream, tsNow + cTicksToNext, false /* fForce */);
1577 }
1578 }
1579
1580 hdaR3StreamUnlock(pStream);
1581
1582 DEVHDA_UNLOCK_BOTH(pThis, uSD);
1583 return VINF_SUCCESS;
1584#else /* IN_RING3 */
1585 RT_NOREF(pThis, iReg, u32Value);
1586 return VINF_IOM_R3_MMIO_WRITE;
1587#endif /* !IN_RING3 */
1588}
1589
1590static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1591{
1592 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1593
1594 if (HDA_REG_IND(pThis, iReg) == u32Value) /* Value already set? */
1595 { /* nothing to do */ }
1596 else
1597 {
1598 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, LVI, iReg);
1599 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
1600 if (pStream)
1601 {
1602 /** @todo Validate LVI. */
1603 pStream->u16LVI = u32Value;
1604 LogFunc(("[SD%RU8] Updating LVI to %RU16\n", uSD, pStream->u16LVI));
1605
1606#ifdef HDA_USE_DMA_ACCESS_HANDLER
1607 if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT)
1608 {
1609 /* Try registering the DMA handlers.
1610 * As we can't be sure in which order LVI + BDL base are set, try registering in both routines. */
1611 if (hdaR3StreamRegisterDMAHandlers(pThis, pStream))
1612 LogFunc(("[SD%RU8] DMA logging enabled\n", pStream->u8SD));
1613 }
1614#endif
1615 }
1616 else
1617 AssertMsgFailed(("[SD%RU8] Warning: Changing SDLVI on non-attached stream (0x%x)\n", uSD, u32Value));
1618
1619 int rc2 = hdaRegWriteU16(pThis, iReg, u32Value);
1620 AssertRC(rc2);
1621 }
1622
1623 DEVHDA_UNLOCK(pThis);
1624 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1625}
1626
1627static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1628{
1629 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1630
1631 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOW, iReg);
1632
1633 if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_IN) /* FIFOW for input streams only. */
1634 {
1635#ifndef IN_RING0
1636 LogRel(("HDA: Warning: Guest tried to write read-only FIFOW to output stream #%RU8, ignoring\n", uSD));
1637 DEVHDA_UNLOCK(pThis);
1638 return VINF_SUCCESS;
1639#else
1640 DEVHDA_UNLOCK(pThis);
1641 return VINF_IOM_R3_MMIO_WRITE;
1642#endif
1643 }
1644
1645 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, FIFOW, iReg));
1646 if (!pStream)
1647 {
1648 AssertMsgFailed(("[SD%RU8] Warning: Changing FIFOW on non-attached stream (0x%x)\n", uSD, u32Value));
1649
1650 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
1651 DEVHDA_UNLOCK(pThis);
1652 return rc;
1653 }
1654
1655 uint32_t u32FIFOW = 0;
1656
1657 switch (u32Value)
1658 {
1659 case HDA_SDFIFOW_8B:
1660 case HDA_SDFIFOW_16B:
1661 case HDA_SDFIFOW_32B:
1662 u32FIFOW = u32Value;
1663 break;
1664 default:
1665 ASSERT_GUEST_LOGREL_MSG_FAILED(("Guest tried write unsupported FIFOW (0x%x) to stream #%RU8, defaulting to 32 bytes\n",
1666 u32Value, uSD));
1667 u32FIFOW = HDA_SDFIFOW_32B;
1668 break;
1669 }
1670
1671 if (u32FIFOW)
1672 {
1673 pStream->u16FIFOW = hdaSDFIFOWToBytes(u32FIFOW);
1674 LogFunc(("[SD%RU8] Updating FIFOW to %RU32 bytes\n", uSD, pStream->u16FIFOW));
1675
1676 int rc2 = hdaRegWriteU16(pThis, iReg, u32FIFOW);
1677 AssertRC(rc2);
1678 }
1679
1680 DEVHDA_UNLOCK(pThis);
1681 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1682}
1683
1684/**
1685 * @note This method could be called for changing value on Output Streams only (ICH6 datasheet 18.2.39).
1686 */
1687static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1688{
1689 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1690
1691 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOS, iReg);
1692
1693 if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_OUT) /* FIFOS for output streams only. */
1694 {
1695 LogRel(("HDA: Warning: Guest tried to write read-only FIFOS to input stream #%RU8, ignoring\n", uSD));
1696
1697 DEVHDA_UNLOCK(pThis);
1698 return VINF_SUCCESS;
1699 }
1700
1701 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
1702 if (!pStream)
1703 {
1704 AssertMsgFailed(("[SD%RU8] Warning: Changing FIFOS on non-attached stream (0x%x)\n", uSD, u32Value));
1705
1706 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
1707 DEVHDA_UNLOCK(pThis);
1708 return rc;
1709 }
1710
1711 uint32_t u32FIFOS = 0;
1712
1713 switch(u32Value)
1714 {
1715 case HDA_SDOFIFO_16B:
1716 case HDA_SDOFIFO_32B:
1717 case HDA_SDOFIFO_64B:
1718 case HDA_SDOFIFO_128B:
1719 case HDA_SDOFIFO_192B:
1720 case HDA_SDOFIFO_256B:
1721 u32FIFOS = u32Value;
1722 break;
1723
1724 default:
1725 ASSERT_GUEST_LOGREL_MSG_FAILED(("Guest tried write unsupported FIFOS (0x%x) to stream #%RU8, defaulting to 192 bytes\n",
1726 u32Value, uSD));
1727 u32FIFOS = HDA_SDOFIFO_192B;
1728 break;
1729 }
1730
1731 if (u32FIFOS)
1732 {
1733 pStream->u16FIFOS = u32FIFOS + 1;
1734 LogFunc(("[SD%RU8] Updating FIFOS to %RU32 bytes\n", uSD, pStream->u16FIFOS));
1735
1736 int rc2 = hdaRegWriteU16(pThis, iReg, u32FIFOS);
1737 AssertRC(rc2);
1738 }
1739
1740 DEVHDA_UNLOCK(pThis);
1741 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1742}
1743
1744#ifdef IN_RING3
1745
1746/**
1747 * Adds an audio output stream to the device setup using the given configuration.
1748 *
1749 * @returns IPRT status code.
1750 * @param pThis Device state.
1751 * @param pCfg Stream configuration to use for adding a stream.
1752 */
1753static int hdaR3AddStreamOut(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1754{
1755 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1756 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1757
1758 AssertReturn(pCfg->enmDir == PDMAUDIODIR_OUT, VERR_INVALID_PARAMETER);
1759
1760 LogFlowFunc(("Stream=%s\n", pCfg->szName));
1761
1762 int rc = VINF_SUCCESS;
1763
1764 bool fUseFront = true; /* Always use front out by default. */
1765# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1766 bool fUseRear;
1767 bool fUseCenter;
1768 bool fUseLFE;
1769
1770 fUseRear = fUseCenter = fUseLFE = false;
1771
1772 /*
1773 * Use commonly used setups for speaker configurations.
1774 */
1775
1776 /** @todo Make the following configurable through mixer API and/or CFGM? */
1777 switch (pCfg->Props.cChannels)
1778 {
1779 case 3: /* 2.1: Front (Stereo) + LFE. */
1780 {
1781 fUseLFE = true;
1782 break;
1783 }
1784
1785 case 4: /* Quadrophonic: Front (Stereo) + Rear (Stereo). */
1786 {
1787 fUseRear = true;
1788 break;
1789 }
1790
1791 case 5: /* 4.1: Front (Stereo) + Rear (Stereo) + LFE. */
1792 {
1793 fUseRear = true;
1794 fUseLFE = true;
1795 break;
1796 }
1797
1798 case 6: /* 5.1: Front (Stereo) + Rear (Stereo) + Center/LFE. */
1799 {
1800 fUseRear = true;
1801 fUseCenter = true;
1802 fUseLFE = true;
1803 break;
1804 }
1805
1806 default: /* Unknown; fall back to 2 front channels (stereo). */
1807 {
1808 rc = VERR_NOT_SUPPORTED;
1809 break;
1810 }
1811 }
1812# else /* !VBOX_WITH_AUDIO_HDA_51_SURROUND */
1813 /* Only support mono or stereo channels. */
1814 if ( pCfg->Props.cChannels != 1 /* Mono */
1815 && pCfg->Props.cChannels != 2 /* Stereo */)
1816 {
1817 rc = VERR_NOT_SUPPORTED;
1818 }
1819# endif /* !VBOX_WITH_AUDIO_HDA_51_SURROUND */
1820
1821 if (rc == VERR_NOT_SUPPORTED)
1822 {
1823 LogRel2(("HDA: Warning: Unsupported channel count (%RU8), falling back to stereo channels (2)\n", pCfg->Props.cChannels));
1824
1825 /* Fall back to 2 channels (see below in fUseFront block). */
1826 rc = VINF_SUCCESS;
1827 }
1828
1829 do
1830 {
1831 if (RT_FAILURE(rc))
1832 break;
1833
1834 if (fUseFront)
1835 {
1836 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Front");
1837
1838 pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_FRONT;
1839 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
1840
1841 pCfg->Props.cChannels = 2;
1842 pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cBits, pCfg->Props.cChannels);
1843
1844 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_FRONT, pCfg);
1845 }
1846
1847# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1848 if ( RT_SUCCESS(rc)
1849 && (fUseCenter || fUseLFE))
1850 {
1851 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Center/LFE");
1852
1853 pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_CENTER_LFE;
1854 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
1855
1856 pCfg->Props.cChannels = (fUseCenter && fUseLFE) ? 2 : 1;
1857 pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cBits, pCfg->Props.cChannels);
1858
1859 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_CENTER_LFE, pCfg);
1860 }
1861
1862 if ( RT_SUCCESS(rc)
1863 && fUseRear)
1864 {
1865 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Rear");
1866
1867 pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_REAR;
1868 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
1869
1870 pCfg->Props.cChannels = 2;
1871 pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cBits, pCfg->Props.cChannels);
1872
1873 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_REAR, pCfg);
1874 }
1875# endif /* VBOX_WITH_AUDIO_HDA_51_SURROUND */
1876
1877 } while (0);
1878
1879 LogFlowFuncLeaveRC(rc);
1880 return rc;
1881}
1882
1883/**
1884 * Adds an audio input stream to the device setup using the given configuration.
1885 *
1886 * @returns IPRT status code.
1887 * @param pThis Device state.
1888 * @param pCfg Stream configuration to use for adding a stream.
1889 */
1890static int hdaR3AddStreamIn(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1891{
1892 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1893 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1894
1895 AssertReturn(pCfg->enmDir == PDMAUDIODIR_IN, VERR_INVALID_PARAMETER);
1896
1897 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Source));
1898
1899 int rc;
1900
1901 switch (pCfg->DestSource.Source)
1902 {
1903 case PDMAUDIORECSOURCE_LINE:
1904 {
1905 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_LINE_IN, pCfg);
1906 break;
1907 }
1908# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
1909 case PDMAUDIORECSOURCE_MIC:
1910 {
1911 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_MIC_IN, pCfg);
1912 break;
1913 }
1914# endif
1915 default:
1916 rc = VERR_NOT_SUPPORTED;
1917 break;
1918 }
1919
1920 LogFlowFuncLeaveRC(rc);
1921 return rc;
1922}
1923
1924/**
1925 * Adds an audio stream to the device setup using the given configuration.
1926 *
1927 * @returns IPRT status code.
1928 * @param pThis Device state.
1929 * @param pCfg Stream configuration to use for adding a stream.
1930 */
1931static int hdaR3AddStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1932{
1933 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1934 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1935
1936 int rc;
1937
1938 LogFlowFuncEnter();
1939
1940 switch (pCfg->enmDir)
1941 {
1942 case PDMAUDIODIR_OUT:
1943 rc = hdaR3AddStreamOut(pThis, pCfg);
1944 break;
1945
1946 case PDMAUDIODIR_IN:
1947 rc = hdaR3AddStreamIn(pThis, pCfg);
1948 break;
1949
1950 default:
1951 rc = VERR_NOT_SUPPORTED;
1952 AssertFailed();
1953 break;
1954 }
1955
1956 LogFlowFunc(("Returning %Rrc\n", rc));
1957
1958 return rc;
1959}
1960
1961/**
1962 * Removes an audio stream from the device setup using the given configuration.
1963 *
1964 * @returns IPRT status code.
1965 * @param pThis Device state.
1966 * @param pCfg Stream configuration to use for removing a stream.
1967 */
1968static int hdaR3RemoveStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1969{
1970 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1971 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1972
1973 int rc = VINF_SUCCESS;
1974
1975 PDMAUDIOMIXERCTL enmMixerCtl = PDMAUDIOMIXERCTL_UNKNOWN;
1976 switch (pCfg->enmDir)
1977 {
1978 case PDMAUDIODIR_IN:
1979 {
1980 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Source));
1981
1982 switch (pCfg->DestSource.Source)
1983 {
1984 case PDMAUDIORECSOURCE_LINE: enmMixerCtl = PDMAUDIOMIXERCTL_LINE_IN; break;
1985# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
1986 case PDMAUDIORECSOURCE_MIC: enmMixerCtl = PDMAUDIOMIXERCTL_MIC_IN; break;
1987# endif
1988 default:
1989 rc = VERR_NOT_SUPPORTED;
1990 break;
1991 }
1992
1993 break;
1994 }
1995
1996 case PDMAUDIODIR_OUT:
1997 {
1998 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Dest));
1999
2000 switch (pCfg->DestSource.Dest)
2001 {
2002 case PDMAUDIOPLAYBACKDEST_FRONT: enmMixerCtl = PDMAUDIOMIXERCTL_FRONT; break;
2003# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2004 case PDMAUDIOPLAYBACKDEST_CENTER_LFE: enmMixerCtl = PDMAUDIOMIXERCTL_CENTER_LFE; break;
2005 case PDMAUDIOPLAYBACKDEST_REAR: enmMixerCtl = PDMAUDIOMIXERCTL_REAR; break;
2006# endif
2007 default:
2008 rc = VERR_NOT_SUPPORTED;
2009 break;
2010 }
2011 break;
2012 }
2013
2014 default:
2015 rc = VERR_NOT_SUPPORTED;
2016 break;
2017 }
2018
2019 if (RT_SUCCESS(rc))
2020 rc = hdaCodecRemoveStream(pThis->pCodec, enmMixerCtl);
2021
2022 LogFlowFuncLeaveRC(rc);
2023 return rc;
2024}
2025
2026#endif /* IN_RING3 */
2027
2028static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2029{
2030#ifdef IN_RING3 /** @todo this can be done from R0 & RC, even the logging. */
2031 DEVHDA_LOCK(pThis);
2032
2033# ifdef LOG_ENABLED
2034 if (!hdaGetStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, FMT, iReg)))
2035 LogFunc(("[SD%RU8] Warning: Changing SDFMT on non-attached stream (0x%x)\n",
2036 HDA_SD_NUM_FROM_REG(pThis, FMT, iReg), u32Value));
2037# endif
2038
2039
2040 /* Write the wanted stream format into the register in any case.
2041 *
2042 * This is important for e.g. MacOS guests, as those try to initialize streams which are not reported
2043 * by the device emulation (wants 4 channels, only have 2 channels at the moment).
2044 *
2045 * When ignoring those (invalid) formats, this leads to MacOS thinking that the device is malfunctioning
2046 * and therefore disabling the device completely. */
2047 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
2048 AssertRC(rc);
2049
2050 DEVHDA_UNLOCK(pThis);
2051 return VINF_SUCCESS; /* Never return failure. */
2052#else /* !IN_RING3 */
2053 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
2054 return VINF_IOM_R3_MMIO_WRITE;
2055#endif
2056}
2057
2058/* Note: Will be called for both, BDPL and BDPU, registers. */
2059DECLINLINE(int) hdaRegWriteSDBDPX(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value, uint8_t uSD)
2060{
2061#ifdef IN_RING3
2062 DEVHDA_LOCK(pThis);
2063
2064 int rc2 = hdaRegWriteU32(pThis, iReg, u32Value);
2065 AssertRC(rc2);
2066
2067 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
2068 if (!pStream)
2069 {
2070 DEVHDA_UNLOCK(pThis);
2071 return VINF_SUCCESS;
2072 }
2073
2074 /* Update BDL base. */
2075 pStream->u64BDLBase = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, uSD),
2076 HDA_STREAM_REG(pThis, BDPU, uSD));
2077
2078# ifdef HDA_USE_DMA_ACCESS_HANDLER
2079 if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT)
2080 {
2081 /* Try registering the DMA handlers.
2082 * As we can't be sure in which order LVI + BDL base are set, try registering in both routines. */
2083 if (hdaR3StreamRegisterDMAHandlers(pThis, pStream))
2084 LogFunc(("[SD%RU8] DMA logging enabled\n", pStream->u8SD));
2085 }
2086# endif
2087
2088 LogFlowFunc(("[SD%RU8] BDLBase=0x%x\n", pStream->u8SD, pStream->u64BDLBase));
2089
2090 DEVHDA_UNLOCK(pThis);
2091 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2092#else /* !IN_RING3 */
2093 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value); RT_NOREF_PV(uSD);
2094 return VINF_IOM_R3_MMIO_WRITE;
2095#endif /* IN_RING3 */
2096}
2097
2098static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2099{
2100 return hdaRegWriteSDBDPX(pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPL, iReg));
2101}
2102
2103static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2104{
2105 return hdaRegWriteSDBDPX(pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPU, iReg));
2106}
2107
2108static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2109{
2110 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
2111
2112 /* regarding 3.4.3 we should mark IRS as busy in case CORB is active */
2113 if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP)
2114 || (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA))
2115 {
2116 HDA_REG(pThis, IRS) = HDA_IRS_ICB; /* busy */
2117 }
2118
2119 int rc = hdaRegReadU32(pThis, iReg, pu32Value);
2120 DEVHDA_UNLOCK(pThis);
2121
2122 return rc;
2123}
2124
2125static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2126{
2127 RT_NOREF_PV(iReg);
2128 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2129
2130 /*
2131 * If the guest set the ICB bit of IRS register, HDA should process the verb in IC register,
2132 * write the response to IR register, and set the IRV (valid in case of success) bit of IRS register.
2133 */
2134 if ( (u32Value & HDA_IRS_ICB)
2135 && !(HDA_REG(pThis, IRS) & HDA_IRS_ICB))
2136 {
2137#ifdef IN_RING3
2138 uint32_t uCmd = HDA_REG(pThis, IC);
2139
2140 if (HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP))
2141 {
2142 DEVHDA_UNLOCK(pThis);
2143
2144 /*
2145 * 3.4.3: Defines behavior of immediate Command status register.
2146 */
2147 LogRel(("HDA: Guest attempted process immediate verb (%x) with active CORB\n", uCmd));
2148 return VINF_SUCCESS;
2149 }
2150
2151 HDA_REG(pThis, IRS) = HDA_IRS_ICB; /* busy */
2152
2153 uint64_t uResp;
2154 int rc2 = pThis->pCodec->pfnLookup(pThis->pCodec,
2155 HDA_CODEC_CMD(uCmd, 0 /* LUN */), &uResp);
2156 if (RT_FAILURE(rc2))
2157 LogFunc(("Codec lookup failed with rc2=%Rrc\n", rc2));
2158
2159 HDA_REG(pThis, IR) = (uint32_t)uResp; /** @todo r=andy Do we need a 64-bit response? */
2160 HDA_REG(pThis, IRS) = HDA_IRS_IRV; /* result is ready */
2161 /** @todo r=michaln We just set the IRS value, why are we clearing unset bits? */
2162 HDA_REG(pThis, IRS) &= ~HDA_IRS_ICB; /* busy is clear */
2163
2164 DEVHDA_UNLOCK(pThis);
2165 return VINF_SUCCESS;
2166#else /* !IN_RING3 */
2167 DEVHDA_UNLOCK(pThis);
2168 return VINF_IOM_R3_MMIO_WRITE;
2169#endif /* !IN_RING3 */
2170 }
2171
2172 /*
2173 * Once the guest read the response, it should clear the IRV bit of the IRS register.
2174 */
2175 HDA_REG(pThis, IRS) &= ~(u32Value & HDA_IRS_IRV);
2176
2177 DEVHDA_UNLOCK(pThis);
2178 return VINF_SUCCESS;
2179}
2180
2181static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2182{
2183 RT_NOREF(iReg);
2184 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2185
2186 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */
2187 {
2188 LogFunc(("CORB DMA (still) running, skipping\n"));
2189
2190 DEVHDA_UNLOCK(pThis);
2191 return VINF_SUCCESS;
2192 }
2193
2194 if (u32Value & HDA_RIRBWP_RST)
2195 {
2196 /* Do a RIRB reset. */
2197 if (pThis->cbRirbBuf)
2198 {
2199 Assert(pThis->pu64RirbBuf);
2200 RT_BZERO((void *)pThis->pu64RirbBuf, pThis->cbRirbBuf);
2201 }
2202
2203 LogRel2(("HDA: RIRB reset\n"));
2204
2205 HDA_REG(pThis, RIRBWP) = 0;
2206 }
2207
2208 /* The remaining bits are O, see 6.2.22. */
2209
2210 DEVHDA_UNLOCK(pThis);
2211 return VINF_SUCCESS;
2212}
2213
2214static int hdaRegWriteRINTCNT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2215{
2216 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2217
2218 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */
2219 {
2220 LogFunc(("CORB DMA is (still) running, skipping\n"));
2221
2222 DEVHDA_UNLOCK(pThis);
2223 return VINF_SUCCESS;
2224 }
2225
2226 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
2227 AssertRC(rc);
2228
2229 LogFunc(("Response interrupt count is now %RU8\n", HDA_REG(pThis, RINTCNT) & 0xFF));
2230
2231 DEVHDA_UNLOCK(pThis);
2232 return rc;
2233}
2234
2235static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2236{
2237 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
2238 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2239
2240 int rc = hdaRegWriteU32(pThis, iReg, u32Value);
2241 AssertRCSuccess(rc);
2242
2243 switch (iReg)
2244 {
2245 case HDA_REG_CORBLBASE:
2246 pThis->u64CORBBase &= UINT64_C(0xFFFFFFFF00000000);
2247 pThis->u64CORBBase |= pThis->au32Regs[iRegMem];
2248 break;
2249 case HDA_REG_CORBUBASE:
2250 pThis->u64CORBBase &= UINT64_C(0x00000000FFFFFFFF);
2251 pThis->u64CORBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
2252 break;
2253 case HDA_REG_RIRBLBASE:
2254 pThis->u64RIRBBase &= UINT64_C(0xFFFFFFFF00000000);
2255 pThis->u64RIRBBase |= pThis->au32Regs[iRegMem];
2256 break;
2257 case HDA_REG_RIRBUBASE:
2258 pThis->u64RIRBBase &= UINT64_C(0x00000000FFFFFFFF);
2259 pThis->u64RIRBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
2260 break;
2261 case HDA_REG_DPLBASE:
2262 {
2263 pThis->u64DPBase = pThis->au32Regs[iRegMem] & DPBASE_ADDR_MASK;
2264 Assert(pThis->u64DPBase % 128 == 0); /* Must be 128-byte aligned. */
2265
2266 /* Also make sure to handle the DMA position enable bit. */
2267 pThis->fDMAPosition = pThis->au32Regs[iRegMem] & RT_BIT_32(0);
2268 LogRel(("HDA: %s DMA position buffer\n", pThis->fDMAPosition ? "Enabled" : "Disabled"));
2269 break;
2270 }
2271 case HDA_REG_DPUBASE:
2272 pThis->u64DPBase = RT_MAKE_U64(RT_LO_U32(pThis->u64DPBase) & DPBASE_ADDR_MASK, pThis->au32Regs[iRegMem]);
2273 break;
2274 default:
2275 AssertMsgFailed(("Invalid index\n"));
2276 break;
2277 }
2278
2279 LogFunc(("CORB base:%llx RIRB base: %llx DP base: %llx\n",
2280 pThis->u64CORBBase, pThis->u64RIRBBase, pThis->u64DPBase));
2281
2282 DEVHDA_UNLOCK(pThis);
2283 return rc;
2284}
2285
2286static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2287{
2288 RT_NOREF_PV(iReg);
2289 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2290
2291 uint8_t v = HDA_REG(pThis, RIRBSTS);
2292 HDA_REG(pThis, RIRBSTS) &= ~(v & u32Value);
2293
2294#ifndef LOG_ENABLED
2295 int rc = hdaProcessInterrupt(pThis);
2296#else
2297 int rc = hdaProcessInterrupt(pThis, __FUNCTION__);
2298#endif
2299
2300 DEVHDA_UNLOCK(pThis);
2301 return rc;
2302}
2303
2304#ifdef IN_RING3
2305
2306/**
2307 * Retrieves a corresponding sink for a given mixer control.
2308 * Returns NULL if no sink is found.
2309 *
2310 * @return PHDAMIXERSINK
2311 * @param pThis HDA state.
2312 * @param enmMixerCtl Mixer control to get the corresponding sink for.
2313 */
2314static PHDAMIXERSINK hdaR3MixerControlToSink(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl)
2315{
2316 PHDAMIXERSINK pSink;
2317
2318 switch (enmMixerCtl)
2319 {
2320 case PDMAUDIOMIXERCTL_VOLUME_MASTER:
2321 /* Fall through is intentional. */
2322 case PDMAUDIOMIXERCTL_FRONT:
2323 pSink = &pThis->SinkFront;
2324 break;
2325# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2326 case PDMAUDIOMIXERCTL_CENTER_LFE:
2327 pSink = &pThis->SinkCenterLFE;
2328 break;
2329 case PDMAUDIOMIXERCTL_REAR:
2330 pSink = &pThis->SinkRear;
2331 break;
2332# endif
2333 case PDMAUDIOMIXERCTL_LINE_IN:
2334 pSink = &pThis->SinkLineIn;
2335 break;
2336# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2337 case PDMAUDIOMIXERCTL_MIC_IN:
2338 pSink = &pThis->SinkMicIn;
2339 break;
2340# endif
2341 default:
2342 pSink = NULL;
2343 AssertMsgFailed(("Unhandled mixer control\n"));
2344 break;
2345 }
2346
2347 return pSink;
2348}
2349
2350/**
2351 * Adds a driver stream to a specific mixer sink.
2352 *
2353 * @returns IPRT status code (ignored by caller).
2354 * @param pThis HDA state.
2355 * @param pMixSink Audio mixer sink to add audio streams to.
2356 * @param pCfg Audio stream configuration to use for the audio streams to add.
2357 * @param pDrv Driver stream to add.
2358 */
2359static int hdaR3MixerAddDrvStream(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg, PHDADRIVER pDrv)
2360{
2361 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2362 AssertPtrReturn(pMixSink, VERR_INVALID_POINTER);
2363 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2364
2365 LogFunc(("Sink=%s, Stream=%s\n", pMixSink->pszName, pCfg->szName));
2366
2367 PPDMAUDIOSTREAMCFG pStreamCfg = DrvAudioHlpStreamCfgDup(pCfg);
2368 if (!pStreamCfg)
2369 return VERR_NO_MEMORY;
2370
2371 LogFunc(("[LUN#%RU8] %s\n", pDrv->uLUN, pStreamCfg->szName));
2372
2373 int rc = VINF_SUCCESS;
2374
2375 PHDADRIVERSTREAM pDrvStream = NULL;
2376
2377 if (pStreamCfg->enmDir == PDMAUDIODIR_IN)
2378 {
2379 LogFunc(("enmRecSource=%d\n", pStreamCfg->DestSource.Source));
2380
2381 switch (pStreamCfg->DestSource.Source)
2382 {
2383 case PDMAUDIORECSOURCE_LINE:
2384 pDrvStream = &pDrv->LineIn;
2385 break;
2386# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2387 case PDMAUDIORECSOURCE_MIC:
2388 pDrvStream = &pDrv->MicIn;
2389 break;
2390# endif
2391 default:
2392 rc = VERR_NOT_SUPPORTED;
2393 break;
2394 }
2395 }
2396 else if (pStreamCfg->enmDir == PDMAUDIODIR_OUT)
2397 {
2398 LogFunc(("enmPlaybackDest=%d\n", pStreamCfg->DestSource.Dest));
2399
2400 switch (pStreamCfg->DestSource.Dest)
2401 {
2402 case PDMAUDIOPLAYBACKDEST_FRONT:
2403 pDrvStream = &pDrv->Front;
2404 break;
2405# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2406 case PDMAUDIOPLAYBACKDEST_CENTER_LFE:
2407 pDrvStream = &pDrv->CenterLFE;
2408 break;
2409 case PDMAUDIOPLAYBACKDEST_REAR:
2410 pDrvStream = &pDrv->Rear;
2411 break;
2412# endif
2413 default:
2414 rc = VERR_NOT_SUPPORTED;
2415 break;
2416 }
2417 }
2418 else
2419 rc = VERR_NOT_SUPPORTED;
2420
2421 if (RT_SUCCESS(rc))
2422 {
2423 AssertPtr(pDrvStream);
2424 AssertMsg(pDrvStream->pMixStrm == NULL, ("[LUN#%RU8] Driver stream already present when it must not\n", pDrv->uLUN));
2425
2426 PAUDMIXSTREAM pMixStrm;
2427 rc = AudioMixerSinkCreateStream(pMixSink, pDrv->pConnector, pStreamCfg, 0 /* fFlags */, &pMixStrm);
2428 if (RT_SUCCESS(rc))
2429 {
2430 rc = AudioMixerSinkAddStream(pMixSink, pMixStrm);
2431 LogFlowFunc(("LUN#%RU8: Added \"%s\" to sink, rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName, rc));
2432 }
2433
2434 if (RT_SUCCESS(rc))
2435 pDrvStream->pMixStrm = pMixStrm;
2436 }
2437
2438 RTMemFree(pStreamCfg);
2439
2440 LogFlowFuncLeaveRC(rc);
2441 return rc;
2442}
2443
2444/**
2445 * Adds all current driver streams to a specific mixer sink.
2446 *
2447 * @returns IPRT status code.
2448 * @param pThis HDA state.
2449 * @param pMixSink Audio mixer sink to add stream to.
2450 * @param pCfg Audio stream configuration to use for the audio streams to add.
2451 */
2452static int hdaR3MixerAddDrvStreams(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg)
2453{
2454 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2455 AssertPtrReturn(pMixSink, VERR_INVALID_POINTER);
2456 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2457
2458 LogFunc(("Sink=%s, Stream=%s\n", pMixSink->pszName, pCfg->szName));
2459
2460 if (!DrvAudioHlpStreamCfgIsValid(pCfg))
2461 return VERR_INVALID_PARAMETER;
2462
2463 int rc = AudioMixerSinkSetFormat(pMixSink, &pCfg->Props);
2464 if (RT_FAILURE(rc))
2465 return rc;
2466
2467 PHDADRIVER pDrv;
2468 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
2469 {
2470 int rc2 = hdaR3MixerAddDrvStream(pThis, pMixSink, pCfg, pDrv);
2471 if (RT_FAILURE(rc2))
2472 LogFunc(("Attaching stream failed with %Rrc\n", rc2));
2473
2474 /* Do not pass failure to rc here, as there might be drivers which aren't
2475 * configured / ready yet. */
2476 }
2477
2478 return rc;
2479}
2480
2481/**
2482 * @interface_method_impl{HDACODEC,pfnCbMixerAddStream}
2483 *
2484 * Adds a new audio stream to a specific mixer control.
2485 *
2486 * Depending on the mixer control the stream then gets assigned to one of the internal
2487 * mixer sinks, which in turn then handle the mixing of all connected streams to that sink.
2488 *
2489 * @return IPRT status code.
2490 * @param pThis HDA state.
2491 * @param enmMixerCtl Mixer control to assign new stream to.
2492 * @param pCfg Stream configuration for the new stream.
2493 */
2494static DECLCALLBACK(int) hdaR3MixerAddStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOSTREAMCFG pCfg)
2495{
2496 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2497 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2498
2499 int rc;
2500
2501 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2502 if (pSink)
2503 {
2504 rc = hdaR3MixerAddDrvStreams(pThis, pSink->pMixSink, pCfg);
2505
2506 AssertPtr(pSink->pMixSink);
2507 LogFlowFunc(("Sink=%s, Mixer control=%s\n", pSink->pMixSink->pszName, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl)));
2508 }
2509 else
2510 rc = VERR_NOT_FOUND;
2511
2512 LogFlowFuncLeaveRC(rc);
2513 return rc;
2514}
2515
2516/**
2517 * @interface_method_impl{HDACODEC,pfnCbMixerRemoveStream}
2518 *
2519 * Removes a specified mixer control from the HDA's mixer.
2520 *
2521 * @return IPRT status code.
2522 * @param pThis HDA state.
2523 * @param enmMixerCtl Mixer control to remove.
2524 *
2525 * @remarks Can be called as a callback by the HDA codec.
2526 */
2527static DECLCALLBACK(int) hdaR3MixerRemoveStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl)
2528{
2529 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2530
2531 int rc;
2532
2533 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2534 if (pSink)
2535 {
2536 PHDADRIVER pDrv;
2537 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
2538 {
2539 PAUDMIXSTREAM pMixStream = NULL;
2540 switch (enmMixerCtl)
2541 {
2542 /*
2543 * Input.
2544 */
2545 case PDMAUDIOMIXERCTL_LINE_IN:
2546 pMixStream = pDrv->LineIn.pMixStrm;
2547 pDrv->LineIn.pMixStrm = NULL;
2548 break;
2549# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2550 case PDMAUDIOMIXERCTL_MIC_IN:
2551 pMixStream = pDrv->MicIn.pMixStrm;
2552 pDrv->MicIn.pMixStrm = NULL;
2553 break;
2554# endif
2555 /*
2556 * Output.
2557 */
2558 case PDMAUDIOMIXERCTL_FRONT:
2559 pMixStream = pDrv->Front.pMixStrm;
2560 pDrv->Front.pMixStrm = NULL;
2561 break;
2562# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2563 case PDMAUDIOMIXERCTL_CENTER_LFE:
2564 pMixStream = pDrv->CenterLFE.pMixStrm;
2565 pDrv->CenterLFE.pMixStrm = NULL;
2566 break;
2567 case PDMAUDIOMIXERCTL_REAR:
2568 pMixStream = pDrv->Rear.pMixStrm;
2569 pDrv->Rear.pMixStrm = NULL;
2570 break;
2571# endif
2572 default:
2573 AssertMsgFailed(("Mixer control %d not implemented\n", enmMixerCtl));
2574 break;
2575 }
2576
2577 if (pMixStream)
2578 {
2579 AudioMixerSinkRemoveStream(pSink->pMixSink, pMixStream);
2580 AudioMixerStreamDestroy(pMixStream);
2581
2582 pMixStream = NULL;
2583 }
2584 }
2585
2586 AudioMixerSinkRemoveAllStreams(pSink->pMixSink);
2587 rc = VINF_SUCCESS;
2588 }
2589 else
2590 rc = VERR_NOT_FOUND;
2591
2592 LogFunc(("Mixer control=%s, rc=%Rrc\n", DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), rc));
2593 return rc;
2594}
2595
2596/**
2597 * @interface_method_impl{HDACODEC,pfnCbMixerControl}
2598 *
2599 * Controls an input / output converter widget, that is, which converter is connected
2600 * to which stream (and channel).
2601 *
2602 * @returns IPRT status code.
2603 * @param pThis HDA State.
2604 * @param enmMixerCtl Mixer control to set SD stream number and channel for.
2605 * @param uSD SD stream number (number + 1) to set. Set to 0 for unassign.
2606 * @param uChannel Channel to set. Only valid if a valid SD stream number is specified.
2607 *
2608 * @remarks Can be called as a callback by the HDA codec.
2609 */
2610static DECLCALLBACK(int) hdaR3MixerControl(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, uint8_t uSD, uint8_t uChannel)
2611{
2612 LogFunc(("enmMixerCtl=%s, uSD=%RU8, uChannel=%RU8\n", DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), uSD, uChannel));
2613
2614 if (uSD == 0) /* Stream number 0 is reserved. */
2615 {
2616 Log2Func(("Invalid SDn (%RU8) number for mixer control '%s', ignoring\n", uSD, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl)));
2617 return VINF_SUCCESS;
2618 }
2619 /* uChannel is optional. */
2620
2621 /* SDn0 starts as 1. */
2622 Assert(uSD);
2623 uSD--;
2624
2625# ifndef VBOX_WITH_AUDIO_HDA_MIC_IN
2626 /* Only SDI0 (Line-In) is supported. */
2627 if ( hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN
2628 && uSD >= 1)
2629 {
2630 LogRel2(("HDA: Dedicated Mic-In support not imlpemented / built-in (stream #%RU8), using Line-In (stream #0) instead\n", uSD));
2631 uSD = 0;
2632 }
2633# endif
2634
2635 int rc = VINF_SUCCESS;
2636
2637 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2638 if (pSink)
2639 {
2640 AssertPtr(pSink->pMixSink);
2641
2642 /* If this an output stream, determine the correct SD#. */
2643 if ( (uSD < HDA_MAX_SDI)
2644 && AudioMixerSinkGetDir(pSink->pMixSink) == AUDMIXSINKDIR_OUTPUT)
2645 {
2646 uSD += HDA_MAX_SDI;
2647 }
2648
2649 /* Detach the existing stream from the sink. */
2650 if ( pSink->pStream
2651 && ( pSink->pStream->u8SD != uSD
2652 || pSink->pStream->u8Channel != uChannel)
2653 )
2654 {
2655 LogFunc(("Sink '%s' was assigned to stream #%RU8 (channel %RU8) before\n",
2656 pSink->pMixSink->pszName, pSink->pStream->u8SD, pSink->pStream->u8Channel));
2657
2658 hdaR3StreamLock(pSink->pStream);
2659
2660 /* Only disable the stream if the stream descriptor # has changed. */
2661 if (pSink->pStream->u8SD != uSD)
2662 hdaR3StreamEnable(pSink->pStream, false);
2663
2664 pSink->pStream->pMixSink = NULL;
2665
2666 hdaR3StreamUnlock(pSink->pStream);
2667
2668 pSink->pStream = NULL;
2669 }
2670
2671 Assert(uSD < HDA_MAX_STREAMS);
2672
2673 /* Attach the new stream to the sink.
2674 * Enabling the stream will be done by the gust via a separate SDnCTL call then. */
2675 if (pSink->pStream == NULL)
2676 {
2677 LogRel2(("HDA: Setting sink '%s' to stream #%RU8 (channel %RU8), mixer control=%s\n",
2678 pSink->pMixSink->pszName, uSD, uChannel, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl)));
2679
2680 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
2681 if (pStream)
2682 {
2683 hdaR3StreamLock(pStream);
2684
2685 pSink->pStream = pStream;
2686
2687 pStream->u8Channel = uChannel;
2688 pStream->pMixSink = pSink;
2689
2690 hdaR3StreamUnlock(pStream);
2691
2692 rc = VINF_SUCCESS;
2693 }
2694 else
2695 rc = VERR_NOT_IMPLEMENTED;
2696 }
2697 }
2698 else
2699 rc = VERR_NOT_FOUND;
2700
2701 if (RT_FAILURE(rc))
2702 LogRel(("HDA: Converter control for stream #%RU8 (channel %RU8) / mixer control '%s' failed with %Rrc, skipping\n",
2703 uSD, uChannel, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), rc));
2704
2705 LogFlowFuncLeaveRC(rc);
2706 return rc;
2707}
2708
2709/**
2710 * @interface_method_impl{HDACODEC,pfnCbMixerSetVolume}
2711 *
2712 * Sets the volume of a specified mixer control.
2713 *
2714 * @return IPRT status code.
2715 * @param pThis HDA State.
2716 * @param enmMixerCtl Mixer control to set volume for.
2717 * @param pVol Pointer to volume data to set.
2718 *
2719 * @remarks Can be called as a callback by the HDA codec.
2720 */
2721static DECLCALLBACK(int) hdaR3MixerSetVolume(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOVOLUME pVol)
2722{
2723 int rc;
2724
2725 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2726 if ( pSink
2727 && pSink->pMixSink)
2728 {
2729 LogRel2(("HDA: Setting volume for mixer sink '%s' to %RU8/%RU8 (%s)\n",
2730 pSink->pMixSink->pszName, pVol->uLeft, pVol->uRight, pVol->fMuted ? "Muted" : "Unmuted"));
2731
2732 /* Set the volume.
2733 * We assume that the codec already converted it to the correct range. */
2734 rc = AudioMixerSinkSetVolume(pSink->pMixSink, pVol);
2735 }
2736 else
2737 rc = VERR_NOT_FOUND;
2738
2739 LogFlowFuncLeaveRC(rc);
2740 return rc;
2741}
2742
2743/**
2744 * Main routine for the stream's timer.
2745 *
2746 * @param pDevIns Device instance.
2747 * @param pTimer Timer this callback was called for.
2748 * @param pvUser Pointer to associated HDASTREAM.
2749 */
2750static DECLCALLBACK(void) hdaR3Timer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
2751{
2752 RT_NOREF(pDevIns, pTimer);
2753
2754 PHDASTREAM pStream = (PHDASTREAM)pvUser;
2755 AssertPtr(pStream);
2756
2757 PHDASTATE pThis = pStream->pHDAState;
2758
2759 DEVHDA_LOCK_BOTH_RETURN_VOID(pStream->pHDAState, pStream->u8SD);
2760
2761 hdaR3StreamUpdate(pStream, true /* fInTimer */);
2762
2763 /* Flag indicating whether to kick the timer again for a
2764 * new data processing round. */
2765 const bool fSinkActive = AudioMixerSinkIsActive(pStream->pMixSink->pMixSink);
2766 if (fSinkActive)
2767 {
2768 const bool fTimerScheduled = hdaR3StreamTransferIsScheduled(pStream);
2769 Log3Func(("fSinksActive=%RTbool, fTimerScheduled=%RTbool\n", fSinkActive, fTimerScheduled));
2770 if (!fTimerScheduled)
2771 hdaR3TimerSet(pThis, pStream,
2772 TMTimerGet(pThis->pTimer[pStream->u8SD])
2773 + TMTimerGetFreq(pThis->pTimer[pStream->u8SD]) / pStream->pHDAState->u16TimerHz,
2774 true /* fForce */);
2775 }
2776 else
2777 Log3Func(("fSinksActive=%RTbool\n", fSinkActive));
2778
2779 DEVHDA_UNLOCK_BOTH(pThis, pStream->u8SD);
2780}
2781
2782# ifdef HDA_USE_DMA_ACCESS_HANDLER
2783/**
2784 * HC access handler for the FIFO.
2785 *
2786 * @returns VINF_SUCCESS if the handler have carried out the operation.
2787 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2788 * @param pVM VM Handle.
2789 * @param pVCpu The cross context CPU structure for the calling EMT.
2790 * @param GCPhys The physical address the guest is writing to.
2791 * @param pvPhys The HC mapping of that address.
2792 * @param pvBuf What the guest is reading/writing.
2793 * @param cbBuf How much it's reading/writing.
2794 * @param enmAccessType The access type.
2795 * @param enmOrigin Who is making the access.
2796 * @param pvUser User argument.
2797 */
2798static DECLCALLBACK(VBOXSTRICTRC) hdaR3DMAAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys,
2799 void *pvBuf, size_t cbBuf,
2800 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
2801{
2802 RT_NOREF(pVM, pVCpu, pvPhys, pvBuf, enmOrigin);
2803
2804 PHDADMAACCESSHANDLER pHandler = (PHDADMAACCESSHANDLER)pvUser;
2805 AssertPtr(pHandler);
2806
2807 PHDASTREAM pStream = pHandler->pStream;
2808 AssertPtr(pStream);
2809
2810 Assert(GCPhys >= pHandler->GCPhysFirst);
2811 Assert(GCPhys <= pHandler->GCPhysLast);
2812 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2813
2814 /* Not within BDLE range? Bail out. */
2815 if ( (GCPhys < pHandler->BDLEAddr)
2816 || (GCPhys + cbBuf > pHandler->BDLEAddr + pHandler->BDLESize))
2817 {
2818 return VINF_PGM_HANDLER_DO_DEFAULT;
2819 }
2820
2821 switch(enmAccessType)
2822 {
2823 case PGMACCESSTYPE_WRITE:
2824 {
2825# ifdef DEBUG
2826 PHDASTREAMDBGINFO pStreamDbg = &pStream->Dbg;
2827
2828 const uint64_t tsNowNs = RTTimeNanoTS();
2829 const uint32_t tsElapsedMs = (tsNowNs - pStreamDbg->tsWriteSlotBegin) / 1000 / 1000;
2830
2831 uint64_t cWritesHz = ASMAtomicReadU64(&pStreamDbg->cWritesHz);
2832 uint64_t cbWrittenHz = ASMAtomicReadU64(&pStreamDbg->cbWrittenHz);
2833
2834 if (tsElapsedMs >= (1000 / HDA_TIMER_HZ_DEFAULT))
2835 {
2836 LogFunc(("[SD%RU8] %RU32ms elapsed, cbWritten=%RU64, cWritten=%RU64 -- %RU32 bytes on average per time slot (%zums)\n",
2837 pStream->u8SD, tsElapsedMs, cbWrittenHz, cWritesHz,
2838 ASMDivU64ByU32RetU32(cbWrittenHz, cWritesHz ? cWritesHz : 1), 1000 / HDA_TIMER_HZ_DEFAULT));
2839
2840 pStreamDbg->tsWriteSlotBegin = tsNowNs;
2841
2842 cWritesHz = 0;
2843 cbWrittenHz = 0;
2844 }
2845
2846 cWritesHz += 1;
2847 cbWrittenHz += cbBuf;
2848
2849 ASMAtomicIncU64(&pStreamDbg->cWritesTotal);
2850 ASMAtomicAddU64(&pStreamDbg->cbWrittenTotal, cbBuf);
2851
2852 ASMAtomicWriteU64(&pStreamDbg->cWritesHz, cWritesHz);
2853 ASMAtomicWriteU64(&pStreamDbg->cbWrittenHz, cbWrittenHz);
2854
2855 LogFunc(("[SD%RU8] Writing %3zu @ 0x%x (off %zu)\n",
2856 pStream->u8SD, cbBuf, GCPhys, GCPhys - pHandler->BDLEAddr));
2857
2858 LogFunc(("[SD%RU8] cWrites=%RU64, cbWritten=%RU64 -> %RU32 bytes on average\n",
2859 pStream->u8SD, pStreamDbg->cWritesTotal, pStreamDbg->cbWrittenTotal,
2860 ASMDivU64ByU32RetU32(pStreamDbg->cbWrittenTotal, pStreamDbg->cWritesTotal)));
2861# endif
2862
2863 if (pThis->fDebugEnabled)
2864 {
2865 RTFILE fh;
2866 RTFileOpen(&fh, VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH "hdaDMAAccessWrite.pcm",
2867 RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND | RTFILE_O_WRITE | RTFILE_O_DENY_NONE);
2868 RTFileWrite(fh, pvBuf, cbBuf, NULL);
2869 RTFileClose(fh);
2870 }
2871
2872# ifdef HDA_USE_DMA_ACCESS_HANDLER_WRITING
2873 PRTCIRCBUF pCircBuf = pStream->State.pCircBuf;
2874 AssertPtr(pCircBuf);
2875
2876 uint8_t *pbBuf = (uint8_t *)pvBuf;
2877 while (cbBuf)
2878 {
2879 /* Make sure we only copy as much as the stream's FIFO can hold (SDFIFOS, 18.2.39). */
2880 void *pvChunk;
2881 size_t cbChunk;
2882 RTCircBufAcquireWriteBlock(pCircBuf, cbBuf, &pvChunk, &cbChunk);
2883
2884 if (cbChunk)
2885 {
2886 memcpy(pvChunk, pbBuf, cbChunk);
2887
2888 pbBuf += cbChunk;
2889 Assert(cbBuf >= cbChunk);
2890 cbBuf -= cbChunk;
2891 }
2892 else
2893 {
2894 //AssertMsg(RTCircBufFree(pCircBuf), ("No more space but still %zu bytes to write\n", cbBuf));
2895 break;
2896 }
2897
2898 LogFunc(("[SD%RU8] cbChunk=%zu\n", pStream->u8SD, cbChunk));
2899
2900 RTCircBufReleaseWriteBlock(pCircBuf, cbChunk);
2901 }
2902# endif /* HDA_USE_DMA_ACCESS_HANDLER_WRITING */
2903 break;
2904 }
2905
2906 default:
2907 AssertMsgFailed(("Access type not implemented\n"));
2908 break;
2909 }
2910
2911 return VINF_PGM_HANDLER_DO_DEFAULT;
2912}
2913# endif /* HDA_USE_DMA_ACCESS_HANDLER */
2914
2915/**
2916 * Soft reset of the device triggered via GCTL.
2917 *
2918 * @param pThis HDA state.
2919 *
2920 */
2921static void hdaR3GCTLReset(PHDASTATE pThis)
2922{
2923 LogFlowFuncEnter();
2924
2925 pThis->cStreamsActive = 0;
2926
2927 HDA_REG(pThis, GCAP) = HDA_MAKE_GCAP(HDA_MAX_SDO, HDA_MAX_SDI, 0, 0, 1); /* see 6.2.1 */
2928 HDA_REG(pThis, VMIN) = 0x00; /* see 6.2.2 */
2929 HDA_REG(pThis, VMAJ) = 0x01; /* see 6.2.3 */
2930 HDA_REG(pThis, OUTPAY) = 0x003C; /* see 6.2.4 */
2931 HDA_REG(pThis, INPAY) = 0x001D; /* see 6.2.5 */
2932 HDA_REG(pThis, CORBSIZE) = 0x42; /* Up to 256 CORB entries see 6.2.1 */
2933 HDA_REG(pThis, RIRBSIZE) = 0x42; /* Up to 256 RIRB entries see 6.2.1 */
2934 HDA_REG(pThis, CORBRP) = 0x0;
2935 HDA_REG(pThis, CORBWP) = 0x0;
2936 HDA_REG(pThis, RIRBWP) = 0x0;
2937 /* Some guests (like Haiku) don't set RINTCNT explicitly but expect an interrupt after each
2938 * RIRB response -- so initialize RINTCNT to 1 by default. */
2939 HDA_REG(pThis, RINTCNT) = 0x1;
2940
2941 /*
2942 * Stop any audio currently playing and/or recording.
2943 */
2944 pThis->SinkFront.pStream = NULL;
2945 if (pThis->SinkFront.pMixSink)
2946 AudioMixerSinkReset(pThis->SinkFront.pMixSink);
2947# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2948 pThis->SinkMicIn.pStream = NULL;
2949 if (pThis->SinkMicIn.pMixSink)
2950 AudioMixerSinkReset(pThis->SinkMicIn.pMixSink);
2951# endif
2952 pThis->SinkLineIn.pStream = NULL;
2953 if (pThis->SinkLineIn.pMixSink)
2954 AudioMixerSinkReset(pThis->SinkLineIn.pMixSink);
2955# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2956 pThis->SinkCenterLFE = NULL;
2957 if (pThis->SinkCenterLFE.pMixSink)
2958 AudioMixerSinkReset(pThis->SinkCenterLFE.pMixSink);
2959 pThis->SinkRear.pStream = NULL;
2960 if (pThis->SinkRear.pMixSink)
2961 AudioMixerSinkReset(pThis->SinkRear.pMixSink);
2962# endif
2963
2964 /*
2965 * Reset the codec.
2966 */
2967 if ( pThis->pCodec
2968 && pThis->pCodec->pfnReset)
2969 {
2970 pThis->pCodec->pfnReset(pThis->pCodec);
2971 }
2972
2973 /*
2974 * Set some sensible defaults for which HDA sinks
2975 * are connected to which stream number.
2976 *
2977 * We use SD0 for input and SD4 for output by default.
2978 * These stream numbers can be changed by the guest dynamically lateron.
2979 */
2980# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2981 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_MIC_IN , 1 /* SD0 */, 0 /* Channel */);
2982# endif
2983 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_LINE_IN , 1 /* SD0 */, 0 /* Channel */);
2984
2985 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_FRONT , 5 /* SD4 */, 0 /* Channel */);
2986# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2987 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_CENTER_LFE, 5 /* SD4 */, 0 /* Channel */);
2988 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_REAR , 5 /* SD4 */, 0 /* Channel */);
2989# endif
2990
2991 /* Reset CORB. */
2992 pThis->cbCorbBuf = HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE;
2993 RT_BZERO(pThis->pu32CorbBuf, pThis->cbCorbBuf);
2994
2995 /* Reset RIRB. */
2996 pThis->cbRirbBuf = HDA_RIRB_SIZE * HDA_RIRB_ELEMENT_SIZE;
2997 RT_BZERO(pThis->pu64RirbBuf, pThis->cbRirbBuf);
2998
2999 /* Clear our internal response interrupt counter. */
3000 pThis->u16RespIntCnt = 0;
3001
3002 for (uint8_t uSD = 0; uSD < HDA_MAX_STREAMS; ++uSD)
3003 {
3004 int rc2 = hdaR3StreamEnable(&pThis->aStreams[uSD], false /* fEnable */);
3005 if (RT_SUCCESS(rc2))
3006 {
3007 /* Remove the RUN bit from SDnCTL in case the stream was in a running state before. */
3008 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_RUN;
3009 hdaR3StreamReset(pThis, &pThis->aStreams[uSD], uSD);
3010 }
3011 }
3012
3013 /* Clear stream tags <-> objects mapping table. */
3014 RT_ZERO(pThis->aTags);
3015
3016 /* Emulation of codec "wake up" (HDA spec 5.5.1 and 6.5). */
3017 HDA_REG(pThis, STATESTS) = 0x1;
3018
3019 LogFlowFuncLeave();
3020 LogRel(("HDA: Reset\n"));
3021}
3022
3023#endif /* IN_RING3 */
3024
3025/* MMIO callbacks */
3026
3027/**
3028 * @callback_method_impl{FNIOMMMIOREAD, Looks up and calls the appropriate handler.}
3029 *
3030 * @note During implementation, we discovered so-called "forgotten" or "hole"
3031 * registers whose description is not listed in the RPM, datasheet, or
3032 * spec.
3033 */
3034PDMBOTHCBDECL(int) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
3035{
3036 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
3037 int rc;
3038 RT_NOREF_PV(pvUser);
3039 Assert(pThis->uAlignmentCheckMagic == HDASTATE_ALIGNMENT_CHECK_MAGIC);
3040
3041 /*
3042 * Look up and log.
3043 */
3044 uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr;
3045 int idxRegDsc = hdaRegLookup(offReg); /* Register descriptor index. */
3046#ifdef LOG_ENABLED
3047 unsigned const cbLog = cb;
3048 uint32_t offRegLog = offReg;
3049#endif
3050
3051 Log3Func(("offReg=%#x cb=%#x\n", offReg, cb));
3052 Assert(cb == 4); Assert((offReg & 3) == 0);
3053
3054 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
3055
3056 if (!(HDA_REG(pThis, GCTL) & HDA_GCTL_CRST) && idxRegDsc != HDA_REG_GCTL)
3057 LogFunc(("Access to registers except GCTL is blocked while reset\n"));
3058
3059 if (idxRegDsc == -1)
3060 LogRel(("HDA: Invalid read access @0x%x (bytes=%u)\n", offReg, cb));
3061
3062 if (idxRegDsc != -1)
3063 {
3064 /* Leave lock before calling read function. */
3065 DEVHDA_UNLOCK(pThis);
3066
3067 /* ASSUMES gapless DWORD at end of map. */
3068 if (g_aHdaRegMap[idxRegDsc].size == 4)
3069 {
3070 /*
3071 * Straight forward DWORD access.
3072 */
3073 rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, (uint32_t *)pv);
3074 Log3Func(("\tRead %s => %x (%Rrc)\n", g_aHdaRegMap[idxRegDsc].abbrev, *(uint32_t *)pv, rc));
3075 }
3076 else
3077 {
3078 /*
3079 * Multi register read (unless there are trailing gaps).
3080 * ASSUMES that only DWORD reads have sideeffects.
3081 */
3082#ifdef IN_RING3
3083 uint32_t u32Value = 0;
3084 unsigned cbLeft = 4;
3085 do
3086 {
3087 uint32_t const cbReg = g_aHdaRegMap[idxRegDsc].size;
3088 uint32_t u32Tmp = 0;
3089
3090 rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, &u32Tmp);
3091 Log3Func(("\tRead %s[%db] => %x (%Rrc)*\n", g_aHdaRegMap[idxRegDsc].abbrev, cbReg, u32Tmp, rc));
3092 if (rc != VINF_SUCCESS)
3093 break;
3094 u32Value |= (u32Tmp & g_afMasks[cbReg]) << ((4 - cbLeft) * 8);
3095
3096 cbLeft -= cbReg;
3097 offReg += cbReg;
3098 idxRegDsc++;
3099 } while (cbLeft > 0 && g_aHdaRegMap[idxRegDsc].offset == offReg);
3100
3101 if (rc == VINF_SUCCESS)
3102 *(uint32_t *)pv = u32Value;
3103 else
3104 Assert(!IOM_SUCCESS(rc));
3105#else /* !IN_RING3 */
3106 /* Take the easy way out. */
3107 rc = VINF_IOM_R3_MMIO_READ;
3108#endif /* !IN_RING3 */
3109 }
3110 }
3111 else
3112 {
3113 DEVHDA_UNLOCK(pThis);
3114
3115 rc = VINF_IOM_MMIO_UNUSED_FF;
3116 Log3Func(("\tHole at %x is accessed for read\n", offReg));
3117 }
3118
3119 /*
3120 * Log the outcome.
3121 */
3122#ifdef LOG_ENABLED
3123 if (cbLog == 4)
3124 Log3Func(("\tReturning @%#05x -> %#010x %Rrc\n", offRegLog, *(uint32_t *)pv, rc));
3125 else if (cbLog == 2)
3126 Log3Func(("\tReturning @%#05x -> %#06x %Rrc\n", offRegLog, *(uint16_t *)pv, rc));
3127 else if (cbLog == 1)
3128 Log3Func(("\tReturning @%#05x -> %#04x %Rrc\n", offRegLog, *(uint8_t *)pv, rc));
3129#endif
3130 return rc;
3131}
3132
3133
3134DECLINLINE(int) hdaWriteReg(PHDASTATE pThis, int idxRegDsc, uint32_t u32Value, char const *pszLog)
3135{
3136 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
3137
3138 if (!(HDA_REG(pThis, GCTL) & HDA_GCTL_CRST) && idxRegDsc != HDA_REG_GCTL)
3139 {
3140 Log(("hdaWriteReg: Warning: Access to %s is blocked while controller is in reset mode\n", g_aHdaRegMap[idxRegDsc].abbrev));
3141 LogRel2(("HDA: Warning: Access to register %s is blocked while controller is in reset mode\n",
3142 g_aHdaRegMap[idxRegDsc].abbrev));
3143
3144 DEVHDA_UNLOCK(pThis);
3145 return VINF_SUCCESS;
3146 }
3147
3148 /*
3149 * Handle RD (register description) flags.
3150 */
3151
3152 /* For SDI / SDO: Check if writes to those registers are allowed while SDCTL's RUN bit is set. */
3153 if (idxRegDsc >= HDA_NUM_GENERAL_REGS)
3154 {
3155 const uint32_t uSDCTL = HDA_STREAM_REG(pThis, CTL, HDA_SD_NUM_FROM_REG(pThis, CTL, idxRegDsc));
3156
3157 /*
3158 * Some OSes (like Win 10 AU) violate the spec by writing stuff to registers which are not supposed to be be touched
3159 * while SDCTL's RUN bit is set. So just ignore those values.
3160 */
3161
3162 /* Is the RUN bit currently set? */
3163 if ( RT_BOOL(uSDCTL & HDA_SDCTL_RUN)
3164 /* Are writes to the register denied if RUN bit is set? */
3165 && !(g_aHdaRegMap[idxRegDsc].fFlags & HDA_RD_FLAG_SD_WRITE_RUN))
3166 {
3167 Log(("hdaWriteReg: Warning: Access to %s is blocked! %R[sdctl]\n", g_aHdaRegMap[idxRegDsc].abbrev, uSDCTL));
3168 LogRel2(("HDA: Warning: Access to register %s is blocked while the stream's RUN bit is set\n",
3169 g_aHdaRegMap[idxRegDsc].abbrev));
3170
3171 DEVHDA_UNLOCK(pThis);
3172 return VINF_SUCCESS;
3173 }
3174 }
3175
3176 /* Leave the lock before calling write function. */
3177 /** @todo r=bird: Why do we need to do that?? There is no
3178 * explanation why this is necessary here...
3179 *
3180 * More or less all write functions retake the lock, so why not let
3181 * those who need to drop the lock or take additional locks release
3182 * it? See, releasing a lock you already got always runs the risk
3183 * of someone else grabbing it and forcing you to wait, better to
3184 * do the two-three things a write handle needs to do than enter
3185 * and exit the lock all the time. */
3186 DEVHDA_UNLOCK(pThis);
3187
3188#ifdef LOG_ENABLED
3189 uint32_t const idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
3190 uint32_t const u32OldValue = pThis->au32Regs[idxRegMem];
3191#endif
3192 int rc = g_aHdaRegMap[idxRegDsc].pfnWrite(pThis, idxRegDsc, u32Value);
3193 Log3Func(("Written value %#x to %s[%d byte]; %x => %x%s, rc=%d\n", u32Value, g_aHdaRegMap[idxRegDsc].abbrev,
3194 g_aHdaRegMap[idxRegDsc].size, u32OldValue, pThis->au32Regs[idxRegMem], pszLog, rc));
3195 RT_NOREF(pszLog);
3196 return rc;
3197}
3198
3199
3200/**
3201 * @callback_method_impl{FNIOMMMIOWRITE, Looks up and calls the appropriate handler.}
3202 */
3203PDMBOTHCBDECL(int) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
3204{
3205 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
3206 int rc;
3207 RT_NOREF_PV(pvUser);
3208 Assert(pThis->uAlignmentCheckMagic == HDASTATE_ALIGNMENT_CHECK_MAGIC);
3209
3210 /*
3211 * The behavior of accesses that aren't aligned on natural boundraries is
3212 * undefined. Just reject them outright.
3213 */
3214 /** @todo IOM could check this, it could also split the 8 byte accesses for us. */
3215 Assert(cb == 1 || cb == 2 || cb == 4 || cb == 8);
3216 if (GCPhysAddr & (cb - 1))
3217 return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "misaligned write access: GCPhysAddr=%RGp cb=%u\n", GCPhysAddr, cb);
3218
3219 /*
3220 * Look up and log the access.
3221 */
3222 uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr;
3223 int idxRegDsc = hdaRegLookup(offReg);
3224#if defined(IN_RING3) || defined(LOG_ENABLED)
3225 uint32_t idxRegMem = idxRegDsc != -1 ? g_aHdaRegMap[idxRegDsc].mem_idx : UINT32_MAX;
3226#endif
3227 uint64_t u64Value;
3228 if (cb == 4) u64Value = *(uint32_t const *)pv;
3229 else if (cb == 2) u64Value = *(uint16_t const *)pv;
3230 else if (cb == 1) u64Value = *(uint8_t const *)pv;
3231 else if (cb == 8) u64Value = *(uint64_t const *)pv;
3232 else
3233 {
3234 u64Value = 0; /* shut up gcc. */
3235 AssertReleaseMsgFailed(("%u\n", cb));
3236 }
3237
3238#ifdef LOG_ENABLED
3239 uint32_t const u32LogOldValue = idxRegDsc >= 0 ? pThis->au32Regs[idxRegMem] : UINT32_MAX;
3240 if (idxRegDsc == -1)
3241 Log3Func(("@%#05x u32=%#010x cb=%d\n", offReg, *(uint32_t const *)pv, cb));
3242 else if (cb == 4)
3243 Log3Func(("@%#05x u32=%#010x %s\n", offReg, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
3244 else if (cb == 2)
3245 Log3Func(("@%#05x u16=%#06x (%#010x) %s\n", offReg, *(uint16_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
3246 else if (cb == 1)
3247 Log3Func(("@%#05x u8=%#04x (%#010x) %s\n", offReg, *(uint8_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
3248
3249 if (idxRegDsc >= 0 && g_aHdaRegMap[idxRegDsc].size != cb)
3250 Log3Func(("\tsize=%RU32 != cb=%u!!\n", g_aHdaRegMap[idxRegDsc].size, cb));
3251#endif
3252
3253 /*
3254 * Try for a direct hit first.
3255 */
3256 if (idxRegDsc != -1 && g_aHdaRegMap[idxRegDsc].size == cb)
3257 {
3258 rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "");
3259 Log3Func(("\t%#x -> %#x\n", u32LogOldValue, idxRegMem != UINT32_MAX ? pThis->au32Regs[idxRegMem] : UINT32_MAX));
3260 }
3261 /*
3262 * Partial or multiple register access, loop thru the requested memory.
3263 */
3264 else
3265 {
3266#ifdef IN_RING3
3267 /*
3268 * If it's an access beyond the start of the register, shift the input
3269 * value and fill in missing bits. Natural alignment rules means we
3270 * will only see 1 or 2 byte accesses of this kind, so no risk of
3271 * shifting out input values.
3272 */
3273 if (idxRegDsc == -1 && (idxRegDsc = hdaR3RegLookupWithin(offReg)) != -1)
3274 {
3275 uint32_t const cbBefore = offReg - g_aHdaRegMap[idxRegDsc].offset; Assert(cbBefore > 0 && cbBefore < 4);
3276 offReg -= cbBefore;
3277 idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
3278 u64Value <<= cbBefore * 8;
3279 u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbBefore];
3280 Log3Func(("\tWithin register, supplied %u leading bits: %#llx -> %#llx ...\n",
3281 cbBefore * 8, ~g_afMasks[cbBefore] & u64Value, u64Value));
3282 }
3283
3284 /* Loop thru the write area, it may cover multiple registers. */
3285 rc = VINF_SUCCESS;
3286 for (;;)
3287 {
3288 uint32_t cbReg;
3289 if (idxRegDsc != -1)
3290 {
3291 idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
3292 cbReg = g_aHdaRegMap[idxRegDsc].size;
3293 if (cb < cbReg)
3294 {
3295 u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbReg] & ~g_afMasks[cb];
3296 Log3Func(("\tSupplying missing bits (%#x): %#llx -> %#llx ...\n",
3297 g_afMasks[cbReg] & ~g_afMasks[cb], u64Value & g_afMasks[cb], u64Value));
3298 }
3299# ifdef LOG_ENABLED
3300 uint32_t uLogOldVal = pThis->au32Regs[idxRegMem];
3301# endif
3302 rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "*");
3303 Log3Func(("\t%#x -> %#x\n", uLogOldVal, pThis->au32Regs[idxRegMem]));
3304 }
3305 else
3306 {
3307 LogRel(("HDA: Invalid write access @0x%x\n", offReg));
3308 cbReg = 1;
3309 }
3310 if (rc != VINF_SUCCESS)
3311 break;
3312 if (cbReg >= cb)
3313 break;
3314
3315 /* Advance. */
3316 offReg += cbReg;
3317 cb -= cbReg;
3318 u64Value >>= cbReg * 8;
3319 if (idxRegDsc == -1)
3320 idxRegDsc = hdaRegLookup(offReg);
3321 else
3322 {
3323 idxRegDsc++;
3324 if ( (unsigned)idxRegDsc >= RT_ELEMENTS(g_aHdaRegMap)
3325 || g_aHdaRegMap[idxRegDsc].offset != offReg)
3326 {
3327 idxRegDsc = -1;
3328 }
3329 }
3330 }
3331
3332#else /* !IN_RING3 */
3333 /* Take the simple way out. */
3334 rc = VINF_IOM_R3_MMIO_WRITE;
3335#endif /* !IN_RING3 */
3336 }
3337
3338 return rc;
3339}
3340
3341
3342/* PCI callback. */
3343
3344#ifdef IN_RING3
3345/**
3346 * @callback_method_impl{FNPCIIOREGIONMAP}
3347 */
3348static DECLCALLBACK(int) hdaR3PciIoRegionMap(PPDMDEVINS pDevIns, PPDMPCIDEV pPciDev, uint32_t iRegion,
3349 RTGCPHYS GCPhysAddress, RTGCPHYS cb, PCIADDRESSSPACE enmType)
3350{
3351 RT_NOREF(iRegion, enmType);
3352 PHDASTATE pThis = RT_FROM_MEMBER(pPciDev, HDASTATE, PciDev);
3353
3354 /*
3355 * 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word.
3356 *
3357 * Let IOM talk DWORDs when reading, saves a lot of complications. On
3358 * writing though, we have to do it all ourselves because of sideeffects.
3359 */
3360 Assert(enmType == PCI_ADDRESS_SPACE_MEM);
3361 int rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/,
3362 IOMMMIO_FLAGS_READ_DWORD
3363 | IOMMMIO_FLAGS_WRITE_PASSTHRU,
3364 hdaMMIOWrite, hdaMMIORead, "HDA");
3365
3366 if (RT_FAILURE(rc))
3367 return rc;
3368
3369 if (pThis->fRZEnabled)
3370 {
3371 rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/,
3372 "hdaMMIOWrite", "hdaMMIORead");
3373 if (RT_FAILURE(rc))
3374 return rc;
3375
3376 rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/,
3377 "hdaMMIOWrite", "hdaMMIORead");
3378 if (RT_FAILURE(rc))
3379 return rc;
3380 }
3381
3382 pThis->MMIOBaseAddr = GCPhysAddress;
3383 return VINF_SUCCESS;
3384}
3385
3386
3387/* Saved state workers and callbacks. */
3388
3389static int hdaR3SaveStream(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, PHDASTREAM pStream)
3390{
3391 RT_NOREF(pDevIns);
3392#ifdef VBOX_STRICT
3393 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
3394#endif
3395
3396 Log2Func(("[SD%RU8]\n", pStream->u8SD));
3397
3398 /* Save stream ID. */
3399 int rc = SSMR3PutU8(pSSM, pStream->u8SD);
3400 AssertRCReturn(rc, rc);
3401 Assert(pStream->u8SD < HDA_MAX_STREAMS);
3402
3403 rc = SSMR3PutStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE), 0 /*fFlags*/, g_aSSMStreamStateFields7, NULL);
3404 AssertRCReturn(rc, rc);
3405
3406#ifdef VBOX_STRICT /* Sanity checks. */
3407 uint64_t u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, pStream->u8SD),
3408 HDA_STREAM_REG(pThis, BDPU, pStream->u8SD));
3409 uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, pStream->u8SD);
3410 uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, pStream->u8SD);
3411
3412 Assert(u64BaseDMA == pStream->u64BDLBase);
3413 Assert(u16LVI == pStream->u16LVI);
3414 Assert(u32CBL == pStream->u32CBL);
3415#endif
3416
3417 rc = SSMR3PutStructEx(pSSM, &pStream->State.BDLE.Desc, sizeof(HDABDLEDESC),
3418 0 /*fFlags*/, g_aSSMBDLEDescFields7, NULL);
3419 AssertRCReturn(rc, rc);
3420
3421 rc = SSMR3PutStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE),
3422 0 /*fFlags*/, g_aSSMBDLEStateFields7, NULL);
3423 AssertRCReturn(rc, rc);
3424
3425 rc = SSMR3PutStructEx(pSSM, &pStream->State.Period, sizeof(HDASTREAMPERIOD),
3426 0 /* fFlags */, g_aSSMStreamPeriodFields7, NULL);
3427 AssertRCReturn(rc, rc);
3428
3429#ifdef VBOX_STRICT /* Sanity checks. */
3430 PHDABDLE pBDLE = &pStream->State.BDLE;
3431 if (u64BaseDMA)
3432 {
3433 Assert(pStream->State.uCurBDLE <= u16LVI + 1);
3434
3435 HDABDLE curBDLE;
3436 rc = hdaR3BDLEFetch(pThis, &curBDLE, u64BaseDMA, pStream->State.uCurBDLE);
3437 AssertRC(rc);
3438
3439 Assert(curBDLE.Desc.u32BufSize == pBDLE->Desc.u32BufSize);
3440 Assert(curBDLE.Desc.u64BufAdr == pBDLE->Desc.u64BufAdr);
3441 Assert(curBDLE.Desc.fFlags == pBDLE->Desc.fFlags);
3442 }
3443 else
3444 {
3445 Assert(pBDLE->Desc.u64BufAdr == 0);
3446 Assert(pBDLE->Desc.u32BufSize == 0);
3447 }
3448#endif
3449
3450 uint32_t cbCircBufSize = 0;
3451 uint32_t cbCircBufUsed = 0;
3452
3453 if (pStream->State.pCircBuf)
3454 {
3455 cbCircBufSize = (uint32_t)RTCircBufSize(pStream->State.pCircBuf);
3456 cbCircBufUsed = (uint32_t)RTCircBufUsed(pStream->State.pCircBuf);
3457 }
3458
3459 rc = SSMR3PutU32(pSSM, cbCircBufSize);
3460 AssertRCReturn(rc, rc);
3461
3462 rc = SSMR3PutU32(pSSM, cbCircBufUsed);
3463 AssertRCReturn(rc, rc);
3464
3465 if (cbCircBufUsed)
3466 {
3467 /*
3468 * We now need to get the circular buffer's data without actually modifying
3469 * the internal read / used offsets -- otherwise we would end up with broken audio
3470 * data after saving the state.
3471 *
3472 * So get the current read offset and serialize the buffer data manually based on that.
3473 */
3474 size_t cbCircBufOffRead = RTCircBufOffsetRead(pStream->State.pCircBuf);
3475
3476 void *pvBuf;
3477 size_t cbBuf;
3478 RTCircBufAcquireReadBlock(pStream->State.pCircBuf, cbCircBufUsed, &pvBuf, &cbBuf);
3479
3480 if (cbBuf)
3481 {
3482 size_t cbToRead = cbCircBufUsed;
3483 size_t cbEnd = 0;
3484
3485 if (cbCircBufUsed > cbCircBufOffRead)
3486 cbEnd = cbCircBufUsed - cbCircBufOffRead;
3487
3488 if (cbEnd) /* Save end of buffer first. */
3489 {
3490 rc = SSMR3PutMem(pSSM, (uint8_t *)pvBuf + cbCircBufSize - cbEnd /* End of buffer */, cbEnd);
3491 AssertRCReturn(rc, rc);
3492
3493 Assert(cbToRead >= cbEnd);
3494 cbToRead -= cbEnd;
3495 }
3496
3497 if (cbToRead) /* Save remaining stuff at start of buffer (if any). */
3498 {
3499 rc = SSMR3PutMem(pSSM, (uint8_t *)pvBuf - cbCircBufUsed /* Start of buffer */, cbToRead);
3500 AssertRCReturn(rc, rc);
3501 }
3502 }
3503
3504 RTCircBufReleaseReadBlock(pStream->State.pCircBuf, 0 /* Don't advance read pointer -- see comment above */);
3505 }
3506
3507 Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n",
3508 pStream->u8SD,
3509 HDA_STREAM_REG(pThis, LPIB, pStream->u8SD), HDA_STREAM_REG(pThis, CBL, pStream->u8SD), HDA_STREAM_REG(pThis, LVI, pStream->u8SD)));
3510
3511#ifdef LOG_ENABLED
3512 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
3513#endif
3514
3515 return rc;
3516}
3517
3518/**
3519 * @callback_method_impl{FNSSMDEVSAVEEXEC}
3520 */
3521static DECLCALLBACK(int) hdaR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
3522{
3523 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
3524
3525 /* Save Codec nodes states. */
3526 hdaCodecSaveState(pThis->pCodec, pSSM);
3527
3528 /* Save MMIO registers. */
3529 SSMR3PutU32(pSSM, RT_ELEMENTS(pThis->au32Regs));
3530 SSMR3PutMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
3531
3532 /* Save controller-specifc internals. */
3533 SSMR3PutU64(pSSM, pThis->u64WalClk);
3534 SSMR3PutU8(pSSM, pThis->u8IRQL);
3535
3536 /* Save number of streams. */
3537 SSMR3PutU32(pSSM, HDA_MAX_STREAMS);
3538
3539 /* Save stream states. */
3540 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
3541 {
3542 int rc = hdaR3SaveStream(pDevIns, pSSM, &pThis->aStreams[i]);
3543 AssertRCReturn(rc, rc);
3544 }
3545
3546 return VINF_SUCCESS;
3547}
3548
3549/**
3550 * Does required post processing when loading a saved state.
3551 *
3552 * @param pThis Pointer to HDA state.
3553 */
3554static int hdaR3LoadExecPost(PHDASTATE pThis)
3555{
3556 int rc = VINF_SUCCESS;
3557
3558 /*
3559 * Enable all previously active streams.
3560 */
3561 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
3562 {
3563 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, i);
3564 if (pStream)
3565 {
3566 int rc2;
3567
3568 bool fActive = RT_BOOL(HDA_STREAM_REG(pThis, CTL, i) & HDA_SDCTL_RUN);
3569 if (fActive)
3570 {
3571#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
3572 /* Make sure to also create the async I/O thread before actually enabling the stream. */
3573 rc2 = hdaR3StreamAsyncIOCreate(pStream);
3574 AssertRC(rc2);
3575
3576 /* ... and enabling it. */
3577 hdaR3StreamAsyncIOEnable(pStream, true /* fEnable */);
3578#endif
3579 /* Resume the stream's period. */
3580 hdaR3StreamPeriodResume(&pStream->State.Period);
3581
3582 /* (Re-)enable the stream. */
3583 rc2 = hdaR3StreamEnable(pStream, true /* fEnable */);
3584 AssertRC(rc2);
3585
3586 /* Add the stream to the device setup. */
3587 rc2 = hdaR3AddStream(pThis, &pStream->State.Cfg);
3588 AssertRC(rc2);
3589
3590#ifdef HDA_USE_DMA_ACCESS_HANDLER
3591 /* (Re-)install the DMA handler. */
3592 hdaR3StreamRegisterDMAHandlers(pThis, pStream);
3593#endif
3594 if (hdaR3StreamTransferIsScheduled(pStream))
3595 hdaR3TimerSet(pThis, pStream, hdaR3StreamTransferGetNext(pStream), true /* fForce */);
3596
3597 /* Also keep track of the currently active streams. */
3598 pThis->cStreamsActive++;
3599 }
3600 }
3601 }
3602
3603 LogFlowFuncLeaveRC(rc);
3604 return rc;
3605}
3606
3607
3608/**
3609 * Handles loading of all saved state versions older than the current one.
3610 *
3611 * @param pThis Pointer to HDA state.
3612 * @param pSSM Pointer to SSM handle.
3613 * @param uVersion Saved state version to load.
3614 * @param uPass Loading stage to handle.
3615 */
3616static int hdaR3LoadExecLegacy(PHDASTATE pThis, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3617{
3618 RT_NOREF(uPass);
3619
3620 int rc = VINF_SUCCESS;
3621
3622 /*
3623 * Load MMIO registers.
3624 */
3625 uint32_t cRegs;
3626 switch (uVersion)
3627 {
3628 case HDA_SSM_VERSION_1:
3629 /* Starting with r71199, we would save 112 instead of 113
3630 registers due to some code cleanups. This only affected trunk
3631 builds in the 4.1 development period. */
3632 cRegs = 113;
3633 if (SSMR3HandleRevision(pSSM) >= 71199)
3634 {
3635 uint32_t uVer = SSMR3HandleVersion(pSSM);
3636 if ( VBOX_FULL_VERSION_GET_MAJOR(uVer) == 4
3637 && VBOX_FULL_VERSION_GET_MINOR(uVer) == 0
3638 && VBOX_FULL_VERSION_GET_BUILD(uVer) >= 51)
3639 cRegs = 112;
3640 }
3641 break;
3642
3643 case HDA_SSM_VERSION_2:
3644 case HDA_SSM_VERSION_3:
3645 cRegs = 112;
3646 AssertCompile(RT_ELEMENTS(pThis->au32Regs) >= 112);
3647 break;
3648
3649 /* Since version 4 we store the register count to stay flexible. */
3650 case HDA_SSM_VERSION_4:
3651 case HDA_SSM_VERSION_5:
3652 case HDA_SSM_VERSION_6:
3653 rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc);
3654 if (cRegs != RT_ELEMENTS(pThis->au32Regs))
3655 LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs)));
3656 break;
3657
3658 default:
3659 LogRel(("HDA: Warning: Unsupported / too new saved state version (%RU32)\n", uVersion));
3660 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3661 }
3662
3663 if (cRegs >= RT_ELEMENTS(pThis->au32Regs))
3664 {
3665 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
3666 SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs)));
3667 }
3668 else
3669 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs);
3670
3671 /* Make sure to update the base addresses first before initializing any streams down below. */
3672 pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE));
3673 pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE));
3674 pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE) & DPBASE_ADDR_MASK, HDA_REG(pThis, DPUBASE));
3675
3676 /* Also make sure to update the DMA position bit if this was enabled when saving the state. */
3677 pThis->fDMAPosition = RT_BOOL(HDA_REG(pThis, DPLBASE) & RT_BIT_32(0));
3678
3679 /*
3680 * Note: Saved states < v5 store LVI (u32BdleMaxCvi) for
3681 * *every* BDLE state, whereas it only needs to be stored
3682 * *once* for every stream. Most of the BDLE state we can
3683 * get out of the registers anyway, so just ignore those values.
3684 *
3685 * Also, only the current BDLE was saved, regardless whether
3686 * there were more than one (and there are at least two entries,
3687 * according to the spec).
3688 */
3689#define HDA_SSM_LOAD_BDLE_STATE_PRE_V5(v, x) \
3690 { \
3691 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */ \
3692 AssertRCReturn(rc, rc); \
3693 rc = SSMR3GetU64(pSSM, &x.Desc.u64BufAdr); /* u64BdleCviAddr */ \
3694 AssertRCReturn(rc, rc); \
3695 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* u32BdleMaxCvi */ \
3696 AssertRCReturn(rc, rc); \
3697 rc = SSMR3GetU32(pSSM, &x.State.u32BDLIndex); /* u32BdleCvi */ \
3698 AssertRCReturn(rc, rc); \
3699 rc = SSMR3GetU32(pSSM, &x.Desc.u32BufSize); /* u32BdleCviLen */ \
3700 AssertRCReturn(rc, rc); \
3701 rc = SSMR3GetU32(pSSM, &x.State.u32BufOff); /* u32BdleCviPos */ \
3702 AssertRCReturn(rc, rc); \
3703 bool fIOC; \
3704 rc = SSMR3GetBool(pSSM, &fIOC); /* fBdleCviIoc */ \
3705 AssertRCReturn(rc, rc); \
3706 x.Desc.fFlags = fIOC ? HDA_BDLE_FLAG_IOC : 0; \
3707 rc = SSMR3GetU32(pSSM, &x.State.cbBelowFIFOW); /* cbUnderFifoW */ \
3708 AssertRCReturn(rc, rc); \
3709 rc = SSMR3Skip(pSSM, sizeof(uint8_t) * 256); /* FIFO */ \
3710 AssertRCReturn(rc, rc); \
3711 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */ \
3712 AssertRCReturn(rc, rc); \
3713 }
3714
3715 /*
3716 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
3717 */
3718 switch (uVersion)
3719 {
3720 case HDA_SSM_VERSION_1:
3721 case HDA_SSM_VERSION_2:
3722 case HDA_SSM_VERSION_3:
3723 case HDA_SSM_VERSION_4:
3724 {
3725 /* Only load the internal states.
3726 * The rest will be initialized from the saved registers later. */
3727
3728 /* Note 1: Only the *current* BDLE for a stream was saved! */
3729 /* Note 2: The stream's saving order is/was fixed, so don't touch! */
3730
3731 /* Output */
3732 PHDASTREAM pStream = &pThis->aStreams[4];
3733 rc = hdaR3StreamInit(pStream, 4 /* Stream descriptor, hardcoded */);
3734 if (RT_FAILURE(rc))
3735 break;
3736 HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE);
3737 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
3738
3739 /* Microphone-In */
3740 pStream = &pThis->aStreams[2];
3741 rc = hdaR3StreamInit(pStream, 2 /* Stream descriptor, hardcoded */);
3742 if (RT_FAILURE(rc))
3743 break;
3744 HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE);
3745 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
3746
3747 /* Line-In */
3748 pStream = &pThis->aStreams[0];
3749 rc = hdaR3StreamInit(pStream, 0 /* Stream descriptor, hardcoded */);
3750 if (RT_FAILURE(rc))
3751 break;
3752 HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE);
3753 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
3754 break;
3755 }
3756
3757#undef HDA_SSM_LOAD_BDLE_STATE_PRE_V5
3758
3759 default: /* Since v5 we support flexible stream and BDLE counts. */
3760 {
3761 uint32_t cStreams;
3762 rc = SSMR3GetU32(pSSM, &cStreams);
3763 if (RT_FAILURE(rc))
3764 break;
3765
3766 if (cStreams > HDA_MAX_STREAMS)
3767 cStreams = HDA_MAX_STREAMS; /* Sanity. */
3768
3769 /* Load stream states. */
3770 for (uint32_t i = 0; i < cStreams; i++)
3771 {
3772 uint8_t uStreamID;
3773 rc = SSMR3GetU8(pSSM, &uStreamID);
3774 if (RT_FAILURE(rc))
3775 break;
3776
3777 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uStreamID);
3778 HDASTREAM StreamDummy;
3779
3780 if (!pStream)
3781 {
3782 pStream = &StreamDummy;
3783 LogRel2(("HDA: Warning: Stream ID=%RU32 not supported, skipping to load ...\n", uStreamID));
3784 }
3785
3786 rc = hdaR3StreamInit(pStream, uStreamID);
3787 if (RT_FAILURE(rc))
3788 {
3789 LogRel(("HDA: Stream #%RU32: Initialization of stream %RU8 failed, rc=%Rrc\n", i, uStreamID, rc));
3790 break;
3791 }
3792
3793 /*
3794 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
3795 */
3796
3797 if (uVersion == HDA_SSM_VERSION_5)
3798 {
3799 /* Get the current BDLE entry and skip the rest. */
3800 uint16_t cBDLE;
3801
3802 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */
3803 AssertRC(rc);
3804 rc = SSMR3GetU16(pSSM, &cBDLE); /* cBDLE */
3805 AssertRC(rc);
3806 rc = SSMR3GetU16(pSSM, &pStream->State.uCurBDLE); /* uCurBDLE */
3807 AssertRC(rc);
3808 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */
3809 AssertRC(rc);
3810
3811 uint32_t u32BDLEIndex;
3812 for (uint16_t a = 0; a < cBDLE; a++)
3813 {
3814 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */
3815 AssertRC(rc);
3816 rc = SSMR3GetU32(pSSM, &u32BDLEIndex); /* u32BDLIndex */
3817 AssertRC(rc);
3818
3819 /* Does the current BDLE index match the current BDLE to process? */
3820 if (u32BDLEIndex == pStream->State.uCurBDLE)
3821 {
3822 rc = SSMR3GetU32(pSSM, &pStream->State.BDLE.State.cbBelowFIFOW); /* cbBelowFIFOW */
3823 AssertRC(rc);
3824 rc = SSMR3Skip(pSSM, sizeof(uint8_t) * 256); /* FIFO, deprecated */
3825 AssertRC(rc);
3826 rc = SSMR3GetU32(pSSM, &pStream->State.BDLE.State.u32BufOff); /* u32BufOff */
3827 AssertRC(rc);
3828 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */
3829 AssertRC(rc);
3830 }
3831 else /* Skip not current BDLEs. */
3832 {
3833 rc = SSMR3Skip(pSSM, sizeof(uint32_t) /* cbBelowFIFOW */
3834 + sizeof(uint8_t) * 256 /* au8FIFO */
3835 + sizeof(uint32_t) /* u32BufOff */
3836 + sizeof(uint32_t)); /* End marker */
3837 AssertRC(rc);
3838 }
3839 }
3840 }
3841 else
3842 {
3843 rc = SSMR3GetStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE),
3844 0 /* fFlags */, g_aSSMStreamStateFields6, NULL);
3845 if (RT_FAILURE(rc))
3846 break;
3847
3848 /* Get HDABDLEDESC. */
3849 uint32_t uMarker;
3850 rc = SSMR3GetU32(pSSM, &uMarker); /* Begin marker. */
3851 AssertRC(rc);
3852 Assert(uMarker == UINT32_C(0x19200102) /* SSMR3STRUCT_BEGIN */);
3853 rc = SSMR3GetU64(pSSM, &pStream->State.BDLE.Desc.u64BufAdr);
3854 AssertRC(rc);
3855 rc = SSMR3GetU32(pSSM, &pStream->State.BDLE.Desc.u32BufSize);
3856 AssertRC(rc);
3857 bool fFlags = false;
3858 rc = SSMR3GetBool(pSSM, &fFlags); /* Saved states < v7 only stored the IOC as boolean flag. */
3859 AssertRC(rc);
3860 pStream->State.BDLE.Desc.fFlags = fFlags ? HDA_BDLE_FLAG_IOC : 0;
3861 rc = SSMR3GetU32(pSSM, &uMarker); /* End marker. */
3862 AssertRC(rc);
3863 Assert(uMarker == UINT32_C(0x19920406) /* SSMR3STRUCT_END */);
3864
3865 rc = SSMR3GetStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE),
3866 0 /* fFlags */, g_aSSMBDLEStateFields6, NULL);
3867 if (RT_FAILURE(rc))
3868 break;
3869
3870 Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n",
3871 uStreamID,
3872 HDA_STREAM_REG(pThis, LPIB, uStreamID), HDA_STREAM_REG(pThis, CBL, uStreamID), HDA_STREAM_REG(pThis, LVI, uStreamID)));
3873#ifdef LOG_ENABLED
3874 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
3875#endif
3876 }
3877
3878 } /* for cStreams */
3879 break;
3880 } /* default */
3881 }
3882
3883 return rc;
3884}
3885
3886/**
3887 * @callback_method_impl{FNSSMDEVLOADEXEC}
3888 */
3889static DECLCALLBACK(int) hdaR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3890{
3891 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
3892
3893 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3894
3895 LogRel2(("hdaR3LoadExec: uVersion=%RU32, uPass=0x%x\n", uVersion, uPass));
3896
3897 /*
3898 * Load Codec nodes states.
3899 */
3900 int rc = hdaCodecLoadState(pThis->pCodec, pSSM, uVersion);
3901 if (RT_FAILURE(rc))
3902 {
3903 LogRel(("HDA: Failed loading codec state (version %RU32, pass 0x%x), rc=%Rrc\n", uVersion, uPass, rc));
3904 return rc;
3905 }
3906
3907 if (uVersion < HDA_SSM_VERSION) /* Handle older saved states? */
3908 {
3909 rc = hdaR3LoadExecLegacy(pThis, pSSM, uVersion, uPass);
3910 if (RT_SUCCESS(rc))
3911 rc = hdaR3LoadExecPost(pThis);
3912
3913 return rc;
3914 }
3915
3916 /*
3917 * Load MMIO registers.
3918 */
3919 uint32_t cRegs;
3920 rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc);
3921 if (cRegs != RT_ELEMENTS(pThis->au32Regs))
3922 LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs)));
3923
3924 if (cRegs >= RT_ELEMENTS(pThis->au32Regs))
3925 {
3926 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
3927 SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs)));
3928 }
3929 else
3930 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs);
3931
3932 /* Make sure to update the base addresses first before initializing any streams down below. */
3933 pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE));
3934 pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE));
3935 pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE) & DPBASE_ADDR_MASK, HDA_REG(pThis, DPUBASE));
3936
3937 /* Also make sure to update the DMA position bit if this was enabled when saving the state. */
3938 pThis->fDMAPosition = RT_BOOL(HDA_REG(pThis, DPLBASE) & RT_BIT_32(0));
3939
3940 /*
3941 * Load controller-specifc internals.
3942 * Don't annoy other team mates (forgot this for state v7).
3943 */
3944 if ( SSMR3HandleRevision(pSSM) >= 116273
3945 || SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(5, 2, 0))
3946 {
3947 rc = SSMR3GetU64(pSSM, &pThis->u64WalClk);
3948 AssertRC(rc);
3949
3950 rc = SSMR3GetU8(pSSM, &pThis->u8IRQL);
3951 AssertRC(rc);
3952 }
3953
3954 /*
3955 * Load streams.
3956 */
3957 uint32_t cStreams;
3958 rc = SSMR3GetU32(pSSM, &cStreams);
3959 AssertRC(rc);
3960
3961 if (cStreams > HDA_MAX_STREAMS)
3962 cStreams = HDA_MAX_STREAMS; /* Sanity. */
3963
3964 Log2Func(("cStreams=%RU32\n", cStreams));
3965
3966 /* Load stream states. */
3967 for (uint32_t i = 0; i < cStreams; i++)
3968 {
3969 uint8_t uStreamID;
3970 rc = SSMR3GetU8(pSSM, &uStreamID);
3971 AssertRC(rc);
3972
3973 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uStreamID);
3974 HDASTREAM StreamDummy;
3975
3976 if (!pStream)
3977 {
3978 pStream = &StreamDummy;
3979 LogRel2(("HDA: Warning: Loading of stream #%RU8 not supported, skipping to load ...\n", uStreamID));
3980 }
3981
3982 rc = hdaR3StreamInit(pStream, uStreamID);
3983 if (RT_FAILURE(rc))
3984 {
3985 LogRel(("HDA: Stream #%RU8: Loading initialization failed, rc=%Rrc\n", uStreamID, rc));
3986 /* Continue. */
3987 }
3988
3989 rc = SSMR3GetStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE),
3990 0 /* fFlags */, g_aSSMStreamStateFields7,
3991 NULL);
3992 AssertRC(rc);
3993
3994 /*
3995 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
3996 */
3997 rc = SSMR3GetStructEx(pSSM, &pStream->State.BDLE.Desc, sizeof(HDABDLEDESC),
3998 0 /* fFlags */, g_aSSMBDLEDescFields7, NULL);
3999 AssertRC(rc);
4000
4001 rc = SSMR3GetStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE),
4002 0 /* fFlags */, g_aSSMBDLEStateFields7, NULL);
4003 AssertRC(rc);
4004
4005 Log2Func(("[SD%RU8] %R[bdle]\n", pStream->u8SD, &pStream->State.BDLE));
4006
4007 /*
4008 * Load period state.
4009 * Don't annoy other team mates (forgot this for state v7).
4010 */
4011 hdaR3StreamPeriodInit(&pStream->State.Period,
4012 pStream->u8SD, pStream->u16LVI, pStream->u32CBL, &pStream->State.Cfg);
4013
4014 if ( SSMR3HandleRevision(pSSM) >= 116273
4015 || SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(5, 2, 0))
4016 {
4017 rc = SSMR3GetStructEx(pSSM, &pStream->State.Period, sizeof(HDASTREAMPERIOD),
4018 0 /* fFlags */, g_aSSMStreamPeriodFields7, NULL);
4019 AssertRC(rc);
4020 }
4021
4022 /*
4023 * Load internal (FIFO) buffer.
4024 */
4025 uint32_t cbCircBufSize = 0;
4026 rc = SSMR3GetU32(pSSM, &cbCircBufSize); /* cbCircBuf */
4027 AssertRC(rc);
4028
4029 uint32_t cbCircBufUsed = 0;
4030 rc = SSMR3GetU32(pSSM, &cbCircBufUsed); /* cbCircBuf */
4031 AssertRC(rc);
4032
4033 if (cbCircBufSize) /* If 0, skip the buffer. */
4034 {
4035 /* Paranoia. */
4036 AssertReleaseMsg(cbCircBufSize <= _1M,
4037 ("HDA: Saved state contains bogus DMA buffer size (%RU32) for stream #%RU8",
4038 cbCircBufSize, uStreamID));
4039 AssertReleaseMsg(cbCircBufUsed <= cbCircBufSize,
4040 ("HDA: Saved state contains invalid DMA buffer usage (%RU32/%RU32) for stream #%RU8",
4041 cbCircBufUsed, cbCircBufSize, uStreamID));
4042 AssertPtr(pStream->State.pCircBuf);
4043
4044 /* Do we need to cre-create the circular buffer do fit the data size? */
4045 if (cbCircBufSize != (uint32_t)RTCircBufSize(pStream->State.pCircBuf))
4046 {
4047 RTCircBufDestroy(pStream->State.pCircBuf);
4048 pStream->State.pCircBuf = NULL;
4049
4050 rc = RTCircBufCreate(&pStream->State.pCircBuf, cbCircBufSize);
4051 AssertRC(rc);
4052 }
4053
4054 if ( RT_SUCCESS(rc)
4055 && cbCircBufUsed)
4056 {
4057 void *pvBuf;
4058 size_t cbBuf;
4059
4060 RTCircBufAcquireWriteBlock(pStream->State.pCircBuf, cbCircBufUsed, &pvBuf, &cbBuf);
4061
4062 if (cbBuf)
4063 {
4064 rc = SSMR3GetMem(pSSM, pvBuf, cbBuf);
4065 AssertRC(rc);
4066 }
4067
4068 RTCircBufReleaseWriteBlock(pStream->State.pCircBuf, cbBuf);
4069
4070 Assert(cbBuf == cbCircBufUsed);
4071 }
4072 }
4073
4074 Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n",
4075 uStreamID,
4076 HDA_STREAM_REG(pThis, LPIB, uStreamID), HDA_STREAM_REG(pThis, CBL, uStreamID), HDA_STREAM_REG(pThis, LVI, uStreamID)));
4077#ifdef LOG_ENABLED
4078 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
4079#endif
4080 /** @todo (Re-)initialize active periods? */
4081
4082 } /* for cStreams */
4083
4084 rc = hdaR3LoadExecPost(pThis);
4085 AssertRC(rc);
4086
4087 LogFlowFuncLeaveRC(rc);
4088 return rc;
4089}
4090
4091/* IPRT format type handlers. */
4092
4093/**
4094 * @callback_method_impl{FNRTSTRFORMATTYPE}
4095 */
4096static DECLCALLBACK(size_t) hdaR3StrFmtBDLE(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4097 const char *pszType, void const *pvValue,
4098 int cchWidth, int cchPrecision, unsigned fFlags,
4099 void *pvUser)
4100{
4101 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4102 PHDABDLE pBDLE = (PHDABDLE)pvValue;
4103 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
4104 "BDLE(idx:%RU32, off:%RU32, fifow:%RU32, IOC:%RTbool, DMA[%RU32 bytes @ 0x%x])",
4105 pBDLE->State.u32BDLIndex, pBDLE->State.u32BufOff, pBDLE->State.cbBelowFIFOW,
4106 pBDLE->Desc.fFlags & HDA_BDLE_FLAG_IOC, pBDLE->Desc.u32BufSize, pBDLE->Desc.u64BufAdr);
4107}
4108
4109/**
4110 * @callback_method_impl{FNRTSTRFORMATTYPE}
4111 */
4112static DECLCALLBACK(size_t) hdaR3StrFmtSDCTL(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4113 const char *pszType, void const *pvValue,
4114 int cchWidth, int cchPrecision, unsigned fFlags,
4115 void *pvUser)
4116{
4117 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4118 uint32_t uSDCTL = (uint32_t)(uintptr_t)pvValue;
4119 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
4120 "SDCTL(raw:%#x, DIR:%s, TP:%RTbool, STRIPE:%x, DEIE:%RTbool, FEIE:%RTbool, IOCE:%RTbool, RUN:%RTbool, RESET:%RTbool)",
4121 uSDCTL,
4122 uSDCTL & HDA_SDCTL_DIR ? "OUT" : "IN",
4123 RT_BOOL(uSDCTL & HDA_SDCTL_TP),
4124 (uSDCTL & HDA_SDCTL_STRIPE_MASK) >> HDA_SDCTL_STRIPE_SHIFT,
4125 RT_BOOL(uSDCTL & HDA_SDCTL_DEIE),
4126 RT_BOOL(uSDCTL & HDA_SDCTL_FEIE),
4127 RT_BOOL(uSDCTL & HDA_SDCTL_IOCE),
4128 RT_BOOL(uSDCTL & HDA_SDCTL_RUN),
4129 RT_BOOL(uSDCTL & HDA_SDCTL_SRST));
4130}
4131
4132/**
4133 * @callback_method_impl{FNRTSTRFORMATTYPE}
4134 */
4135static DECLCALLBACK(size_t) hdaR3StrFmtSDFIFOS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4136 const char *pszType, void const *pvValue,
4137 int cchWidth, int cchPrecision, unsigned fFlags,
4138 void *pvUser)
4139{
4140 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4141 uint32_t uSDFIFOS = (uint32_t)(uintptr_t)pvValue;
4142 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOS(raw:%#x, sdfifos:%RU8 B)", uSDFIFOS, uSDFIFOS ? uSDFIFOS + 1 : 0);
4143}
4144
4145/**
4146 * @callback_method_impl{FNRTSTRFORMATTYPE}
4147 */
4148static DECLCALLBACK(size_t) hdaR3StrFmtSDFIFOW(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4149 const char *pszType, void const *pvValue,
4150 int cchWidth, int cchPrecision, unsigned fFlags,
4151 void *pvUser)
4152{
4153 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4154 uint32_t uSDFIFOW = (uint32_t)(uintptr_t)pvValue;
4155 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOW(raw: %#0x, sdfifow:%d B)", uSDFIFOW, hdaSDFIFOWToBytes(uSDFIFOW));
4156}
4157
4158/**
4159 * @callback_method_impl{FNRTSTRFORMATTYPE}
4160 */
4161static DECLCALLBACK(size_t) hdaR3StrFmtSDSTS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4162 const char *pszType, void const *pvValue,
4163 int cchWidth, int cchPrecision, unsigned fFlags,
4164 void *pvUser)
4165{
4166 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4167 uint32_t uSdSts = (uint32_t)(uintptr_t)pvValue;
4168 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
4169 "SDSTS(raw:%#0x, fifordy:%RTbool, dese:%RTbool, fifoe:%RTbool, bcis:%RTbool)",
4170 uSdSts,
4171 RT_BOOL(uSdSts & HDA_SDSTS_FIFORDY),
4172 RT_BOOL(uSdSts & HDA_SDSTS_DESE),
4173 RT_BOOL(uSdSts & HDA_SDSTS_FIFOE),
4174 RT_BOOL(uSdSts & HDA_SDSTS_BCIS));
4175}
4176
4177/* Debug info dumpers */
4178
4179static int hdaR3DbgLookupRegByName(const char *pszArgs)
4180{
4181 int iReg = 0;
4182 for (; iReg < HDA_NUM_REGS; ++iReg)
4183 if (!RTStrICmp(g_aHdaRegMap[iReg].abbrev, pszArgs))
4184 return iReg;
4185 return -1;
4186}
4187
4188
4189static void hdaR3DbgPrintRegister(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaIndex)
4190{
4191 Assert( pThis
4192 && iHdaIndex >= 0
4193 && iHdaIndex < HDA_NUM_REGS);
4194 pHlp->pfnPrintf(pHlp, "%s: 0x%x\n", g_aHdaRegMap[iHdaIndex].abbrev, pThis->au32Regs[g_aHdaRegMap[iHdaIndex].mem_idx]);
4195}
4196
4197/**
4198 * @callback_method_impl{FNDBGFHANDLERDEV}
4199 */
4200static DECLCALLBACK(void) hdaR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4201{
4202 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4203 int iHdaRegisterIndex = hdaR3DbgLookupRegByName(pszArgs);
4204 if (iHdaRegisterIndex != -1)
4205 hdaR3DbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
4206 else
4207 {
4208 for(iHdaRegisterIndex = 0; (unsigned int)iHdaRegisterIndex < HDA_NUM_REGS; ++iHdaRegisterIndex)
4209 hdaR3DbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
4210 }
4211}
4212
4213static void hdaR3DbgPrintStream(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx)
4214{
4215 Assert( pThis
4216 && iIdx >= 0
4217 && iIdx < HDA_MAX_STREAMS);
4218
4219 const PHDASTREAM pStream = &pThis->aStreams[iIdx];
4220
4221 pHlp->pfnPrintf(pHlp, "Stream #%d:\n", iIdx);
4222 pHlp->pfnPrintf(pHlp, "\tSD%dCTL : %R[sdctl]\n", iIdx, HDA_STREAM_REG(pThis, CTL, iIdx));
4223 pHlp->pfnPrintf(pHlp, "\tSD%dCTS : %R[sdsts]\n", iIdx, HDA_STREAM_REG(pThis, STS, iIdx));
4224 pHlp->pfnPrintf(pHlp, "\tSD%dFIFOS: %R[sdfifos]\n", iIdx, HDA_STREAM_REG(pThis, FIFOS, iIdx));
4225 pHlp->pfnPrintf(pHlp, "\tSD%dFIFOW: %R[sdfifow]\n", iIdx, HDA_STREAM_REG(pThis, FIFOW, iIdx));
4226 pHlp->pfnPrintf(pHlp, "\tBDLE : %R[bdle]\n", &pStream->State.BDLE);
4227}
4228
4229static void hdaR3DbgPrintBDLE(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx)
4230{
4231 Assert( pThis
4232 && iIdx >= 0
4233 && iIdx < HDA_MAX_STREAMS);
4234
4235 const PHDASTREAM pStream = &pThis->aStreams[iIdx];
4236 const PHDABDLE pBDLE = &pStream->State.BDLE;
4237
4238 pHlp->pfnPrintf(pHlp, "Stream #%d BDLE:\n", iIdx);
4239
4240 uint64_t u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, iIdx),
4241 HDA_STREAM_REG(pThis, BDPU, iIdx));
4242 uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, iIdx);
4243 uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, iIdx);
4244
4245 if (!u64BaseDMA)
4246 return;
4247
4248 pHlp->pfnPrintf(pHlp, "\tCurrent: %R[bdle]\n\n", pBDLE);
4249
4250 pHlp->pfnPrintf(pHlp, "\tMemory:\n");
4251
4252 uint32_t cbBDLE = 0;
4253 for (uint16_t i = 0; i < u16LVI + 1; i++)
4254 {
4255 HDABDLEDESC bd;
4256 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + i * sizeof(HDABDLEDESC), &bd, sizeof(bd));
4257
4258 pHlp->pfnPrintf(pHlp, "\t\t%s #%03d BDLE(adr:0x%llx, size:%RU32, ioc:%RTbool)\n",
4259 pBDLE->State.u32BDLIndex == i ? "*" : " ", i, bd.u64BufAdr, bd.u32BufSize, bd.fFlags & HDA_BDLE_FLAG_IOC);
4260
4261 cbBDLE += bd.u32BufSize;
4262 }
4263
4264 pHlp->pfnPrintf(pHlp, "Total: %RU32 bytes\n", cbBDLE);
4265
4266 if (cbBDLE != u32CBL)
4267 pHlp->pfnPrintf(pHlp, "Warning: %RU32 bytes does not match CBL (%RU32)!\n", cbBDLE, u32CBL);
4268
4269 pHlp->pfnPrintf(pHlp, "DMA counters (base @ 0x%llx):\n", u64BaseDMA);
4270 if (!u64BaseDMA) /* No DMA base given? Bail out. */
4271 {
4272 pHlp->pfnPrintf(pHlp, "\tNo counters found\n");
4273 return;
4274 }
4275
4276 for (int i = 0; i < u16LVI + 1; i++)
4277 {
4278 uint32_t uDMACnt;
4279 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + (i * 2 * sizeof(uint32_t)),
4280 &uDMACnt, sizeof(uDMACnt));
4281
4282 pHlp->pfnPrintf(pHlp, "\t#%03d DMA @ 0x%x\n", i , uDMACnt);
4283 }
4284}
4285
4286static int hdaR3DbgLookupStrmIdx(PHDASTATE pThis, const char *pszArgs)
4287{
4288 RT_NOREF(pThis, pszArgs);
4289 /** @todo Add args parsing. */
4290 return -1;
4291}
4292
4293/**
4294 * @callback_method_impl{FNDBGFHANDLERDEV}
4295 */
4296static DECLCALLBACK(void) hdaR3DbgInfoStream(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4297{
4298 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4299 int iHdaStreamdex = hdaR3DbgLookupStrmIdx(pThis, pszArgs);
4300 if (iHdaStreamdex != -1)
4301 hdaR3DbgPrintStream(pThis, pHlp, iHdaStreamdex);
4302 else
4303 for(iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex)
4304 hdaR3DbgPrintStream(pThis, pHlp, iHdaStreamdex);
4305}
4306
4307/**
4308 * @callback_method_impl{FNDBGFHANDLERDEV}
4309 */
4310static DECLCALLBACK(void) hdaR3DbgInfoBDLE(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4311{
4312 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4313 int iHdaStreamdex = hdaR3DbgLookupStrmIdx(pThis, pszArgs);
4314 if (iHdaStreamdex != -1)
4315 hdaR3DbgPrintBDLE(pThis, pHlp, iHdaStreamdex);
4316 else
4317 for (iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex)
4318 hdaR3DbgPrintBDLE(pThis, pHlp, iHdaStreamdex);
4319}
4320
4321/**
4322 * @callback_method_impl{FNDBGFHANDLERDEV}
4323 */
4324static DECLCALLBACK(void) hdaR3DbgInfoCodecNodes(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4325{
4326 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4327
4328 if (pThis->pCodec->pfnDbgListNodes)
4329 pThis->pCodec->pfnDbgListNodes(pThis->pCodec, pHlp, pszArgs);
4330 else
4331 pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
4332}
4333
4334/**
4335 * @callback_method_impl{FNDBGFHANDLERDEV}
4336 */
4337static DECLCALLBACK(void) hdaR3DbgInfoCodecSelector(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4338{
4339 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4340
4341 if (pThis->pCodec->pfnDbgSelector)
4342 pThis->pCodec->pfnDbgSelector(pThis->pCodec, pHlp, pszArgs);
4343 else
4344 pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
4345}
4346
4347/**
4348 * @callback_method_impl{FNDBGFHANDLERDEV}
4349 */
4350static DECLCALLBACK(void) hdaR3DbgInfoMixer(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4351{
4352 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4353
4354 if (pThis->pMixer)
4355 AudioMixerDebug(pThis->pMixer, pHlp, pszArgs);
4356 else
4357 pHlp->pfnPrintf(pHlp, "Mixer not available\n");
4358}
4359
4360
4361/* PDMIBASE */
4362
4363/**
4364 * @interface_method_impl{PDMIBASE,pfnQueryInterface}
4365 */
4366static DECLCALLBACK(void *) hdaR3QueryInterface(struct PDMIBASE *pInterface, const char *pszIID)
4367{
4368 PHDASTATE pThis = RT_FROM_MEMBER(pInterface, HDASTATE, IBase);
4369 Assert(&pThis->IBase == pInterface);
4370
4371 PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase);
4372 return NULL;
4373}
4374
4375
4376/* PDMDEVREG */
4377
4378/**
4379 * Attach command, internal version.
4380 *
4381 * This is called to let the device attach to a driver for a specified LUN
4382 * during runtime. This is not called during VM construction, the device
4383 * constructor has to attach to all the available drivers.
4384 *
4385 * @returns VBox status code.
4386 * @param pThis HDA state.
4387 * @param uLUN The logical unit which is being detached.
4388 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
4389 * @param ppDrv Attached driver instance on success. Optional.
4390 */
4391static int hdaR3AttachInternal(PHDASTATE pThis, unsigned uLUN, uint32_t fFlags, PHDADRIVER *ppDrv)
4392{
4393 RT_NOREF(fFlags);
4394
4395 /*
4396 * Attach driver.
4397 */
4398 char *pszDesc;
4399 if (RTStrAPrintf(&pszDesc, "Audio driver port (HDA) for LUN#%u", uLUN) <= 0)
4400 AssertLogRelFailedReturn(VERR_NO_MEMORY);
4401
4402 PPDMIBASE pDrvBase;
4403 int rc = PDMDevHlpDriverAttach(pThis->pDevInsR3, uLUN,
4404 &pThis->IBase, &pDrvBase, pszDesc);
4405 if (RT_SUCCESS(rc))
4406 {
4407 PHDADRIVER pDrv = (PHDADRIVER)RTMemAllocZ(sizeof(HDADRIVER));
4408 if (pDrv)
4409 {
4410 pDrv->pDrvBase = pDrvBase;
4411 pDrv->pConnector = PDMIBASE_QUERY_INTERFACE(pDrvBase, PDMIAUDIOCONNECTOR);
4412 AssertMsg(pDrv->pConnector != NULL, ("Configuration error: LUN#%u has no host audio interface, rc=%Rrc\n", uLUN, rc));
4413 pDrv->pHDAState = pThis;
4414 pDrv->uLUN = uLUN;
4415
4416 /*
4417 * For now we always set the driver at LUN 0 as our primary
4418 * host backend. This might change in the future.
4419 */
4420 if (pDrv->uLUN == 0)
4421 pDrv->fFlags |= PDMAUDIODRVFLAGS_PRIMARY;
4422
4423 LogFunc(("LUN#%u: pCon=%p, drvFlags=0x%x\n", uLUN, pDrv->pConnector, pDrv->fFlags));
4424
4425 /* Attach to driver list if not attached yet. */
4426 if (!pDrv->fAttached)
4427 {
4428 RTListAppend(&pThis->lstDrv, &pDrv->Node);
4429 pDrv->fAttached = true;
4430 }
4431
4432 if (ppDrv)
4433 *ppDrv = pDrv;
4434 }
4435 else
4436 rc = VERR_NO_MEMORY;
4437 }
4438 else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
4439 LogFunc(("No attached driver for LUN #%u\n", uLUN));
4440
4441 if (RT_FAILURE(rc))
4442 {
4443 /* Only free this string on failure;
4444 * must remain valid for the live of the driver instance. */
4445 RTStrFree(pszDesc);
4446 }
4447
4448 LogFunc(("uLUN=%u, fFlags=0x%x, rc=%Rrc\n", uLUN, fFlags, rc));
4449 return rc;
4450}
4451
4452/**
4453 * Detach command, internal version.
4454 *
4455 * This is called to let the device detach from a driver for a specified LUN
4456 * during runtime.
4457 *
4458 * @returns VBox status code.
4459 * @param pThis HDA state.
4460 * @param pDrv Driver to detach device from.
4461 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
4462 */
4463static int hdaR3DetachInternal(PHDASTATE pThis, PHDADRIVER pDrv, uint32_t fFlags)
4464{
4465 RT_NOREF(fFlags);
4466
4467 AudioMixerSinkRemoveStream(pThis->SinkFront.pMixSink, pDrv->Front.pMixStrm);
4468 AudioMixerStreamDestroy(pDrv->Front.pMixStrm);
4469 pDrv->Front.pMixStrm = NULL;
4470
4471#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
4472 AudioMixerSinkRemoveStream(pThis->SinkCenterLFE.pMixSink, pDrv->CenterLFE.pMixStrm);
4473 AudioMixerStreamDestroy(pDrv->CenterLFE.pMixStrm);
4474 pDrv->CenterLFE.pMixStrm = NULL;
4475
4476 AudioMixerSinkRemoveStream(pThis->SinkRear.pMixSink, pDrv->Rear.pMixStrm);
4477 AudioMixerStreamDestroy(pDrv->Rear.pMixStrm);
4478 pDrv->Rear.pMixStrm = NULL;
4479#endif
4480
4481 AudioMixerSinkRemoveStream(pThis->SinkLineIn.pMixSink, pDrv->LineIn.pMixStrm);
4482 AudioMixerStreamDestroy(pDrv->LineIn.pMixStrm);
4483 pDrv->LineIn.pMixStrm = NULL;
4484
4485#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
4486 AudioMixerSinkRemoveStream(pThis->SinkMicIn.pMixSink, pDrv->MicIn.pMixStrm);
4487 AudioMixerStreamDestroy(pDrv->MicIn.pMixStrm);
4488 pDrv->MicIn.pMixStrm = NULL;
4489#endif
4490
4491 RTListNodeRemove(&pDrv->Node);
4492
4493 LogFunc(("uLUN=%u, fFlags=0x%x\n", pDrv->uLUN, fFlags));
4494 return VINF_SUCCESS;
4495}
4496
4497/**
4498 * @interface_method_impl{PDMDEVREG,pfnAttach}
4499 */
4500static DECLCALLBACK(int) hdaR3Attach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags)
4501{
4502 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4503
4504 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
4505
4506 LogFunc(("uLUN=%u, fFlags=0x%x\n", uLUN, fFlags));
4507
4508 PHDADRIVER pDrv;
4509 int rc2 = hdaR3AttachInternal(pThis, uLUN, fFlags, &pDrv);
4510 if (RT_SUCCESS(rc2))
4511 {
4512 PHDASTREAM pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkFront);
4513 if (DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
4514 hdaR3MixerAddDrvStream(pThis, pThis->SinkFront.pMixSink, &pStream->State.Cfg, pDrv);
4515
4516#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
4517 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkCenterLFE);
4518 if (DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
4519 hdaR3MixerAddDrvStream(pThis, pThis->SinkCenterLFE.pMixSink, &pStream->State.Cfg, pDrv);
4520
4521 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkRear);
4522 if (DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
4523 hdaR3MixerAddDrvStream(pThis, pThis->SinkRear.pMixSink, &pStream->State.Cfg, pDrv);
4524#endif
4525 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkLineIn);
4526 if (DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
4527 hdaR3MixerAddDrvStream(pThis, pThis->SinkLineIn.pMixSink, &pStream->State.Cfg, pDrv);
4528
4529#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
4530 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkMicIn);
4531 if (DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
4532 hdaR3MixerAddDrvStream(pThis, pThis->SinkMicIn.pMixSink, &pStream->State.Cfg, pDrv);
4533#endif
4534 }
4535
4536 DEVHDA_UNLOCK(pThis);
4537
4538 return VINF_SUCCESS;
4539}
4540
4541/**
4542 * @interface_method_impl{PDMDEVREG,pfnDetach}
4543 */
4544static DECLCALLBACK(void) hdaR3Detach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags)
4545{
4546 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4547
4548 DEVHDA_LOCK(pThis);
4549
4550 LogFunc(("uLUN=%u, fFlags=0x%x\n", uLUN, fFlags));
4551
4552 PHDADRIVER pDrv, pDrvNext;
4553 RTListForEachSafe(&pThis->lstDrv, pDrv, pDrvNext, HDADRIVER, Node)
4554 {
4555 if (pDrv->uLUN == uLUN)
4556 {
4557 int rc2 = hdaR3DetachInternal(pThis, pDrv, fFlags);
4558 if (RT_SUCCESS(rc2))
4559 {
4560 RTMemFree(pDrv);
4561 pDrv = NULL;
4562 }
4563
4564 break;
4565 }
4566 }
4567
4568 DEVHDA_UNLOCK(pThis);
4569}
4570
4571/**
4572 * Powers off the device.
4573 *
4574 * @param pDevIns Device instance to power off.
4575 */
4576static DECLCALLBACK(void) hdaR3PowerOff(PPDMDEVINS pDevIns)
4577{
4578 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4579
4580 DEVHDA_LOCK_RETURN_VOID(pThis);
4581
4582 LogRel2(("HDA: Powering off ...\n"));
4583
4584 /* Ditto goes for the codec, which in turn uses the mixer. */
4585 hdaCodecPowerOff(pThis->pCodec);
4586
4587 /*
4588 * Note: Destroy the mixer while powering off and *not* in hdaR3Destruct,
4589 * giving the mixer the chance to release any references held to
4590 * PDM audio streams it maintains.
4591 */
4592 if (pThis->pMixer)
4593 {
4594 AudioMixerDestroy(pThis->pMixer);
4595 pThis->pMixer = NULL;
4596 }
4597
4598 DEVHDA_UNLOCK(pThis);
4599}
4600
4601
4602/**
4603 * Re-attaches (replaces) a driver with a new driver.
4604 *
4605 * This is only used by to attach the Null driver when it failed to attach the
4606 * one that was configured.
4607 *
4608 * @returns VBox status code.
4609 * @param pThis Device instance to re-attach driver to.
4610 * @param pDrv Driver instance used for attaching to.
4611 * If NULL is specified, a new driver will be created and appended
4612 * to the driver list.
4613 * @param uLUN The logical unit which is being re-detached.
4614 * @param pszDriver New driver name to attach.
4615 */
4616static int hdaR3ReattachInternal(PHDASTATE pThis, PHDADRIVER pDrv, uint8_t uLUN, const char *pszDriver)
4617{
4618 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
4619 AssertPtrReturn(pszDriver, VERR_INVALID_POINTER);
4620
4621 int rc;
4622
4623 if (pDrv)
4624 {
4625 rc = hdaR3DetachInternal(pThis, pDrv, 0 /* fFlags */);
4626 if (RT_SUCCESS(rc))
4627 rc = PDMDevHlpDriverDetach(pThis->pDevInsR3, PDMIBASE_2_PDMDRV(pDrv->pDrvBase), 0 /* fFlags */);
4628
4629 if (RT_FAILURE(rc))
4630 return rc;
4631
4632 pDrv = NULL;
4633 }
4634
4635 PVM pVM = PDMDevHlpGetVM(pThis->pDevInsR3);
4636 PCFGMNODE pRoot = CFGMR3GetRoot(pVM);
4637 PCFGMNODE pDev0 = CFGMR3GetChild(pRoot, "Devices/hda/0/");
4638
4639 /* Remove LUN branch. */
4640 CFGMR3RemoveNode(CFGMR3GetChildF(pDev0, "LUN#%u/", uLUN));
4641
4642#define RC_CHECK() if (RT_FAILURE(rc)) { AssertReleaseRC(rc); break; }
4643
4644 do
4645 {
4646 PCFGMNODE pLunL0;
4647 rc = CFGMR3InsertNodeF(pDev0, &pLunL0, "LUN#%u/", uLUN); RC_CHECK();
4648 rc = CFGMR3InsertString(pLunL0, "Driver", "AUDIO"); RC_CHECK();
4649 rc = CFGMR3InsertNode(pLunL0, "Config/", NULL); RC_CHECK();
4650
4651 PCFGMNODE pLunL1, pLunL2;
4652 rc = CFGMR3InsertNode (pLunL0, "AttachedDriver/", &pLunL1); RC_CHECK();
4653 rc = CFGMR3InsertNode (pLunL1, "Config/", &pLunL2); RC_CHECK();
4654 rc = CFGMR3InsertString(pLunL1, "Driver", pszDriver); RC_CHECK();
4655
4656 rc = CFGMR3InsertString(pLunL2, "AudioDriver", pszDriver); RC_CHECK();
4657
4658 } while (0);
4659
4660 if (RT_SUCCESS(rc))
4661 rc = hdaR3AttachInternal(pThis, uLUN, 0 /* fFlags */, NULL /* ppDrv */);
4662
4663 LogFunc(("pThis=%p, uLUN=%u, pszDriver=%s, rc=%Rrc\n", pThis, uLUN, pszDriver, rc));
4664
4665#undef RC_CHECK
4666
4667 return rc;
4668}
4669
4670
4671/**
4672 * @interface_method_impl{PDMDEVREG,pfnReset}
4673 */
4674static DECLCALLBACK(void) hdaR3Reset(PPDMDEVINS pDevIns)
4675{
4676 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4677
4678 LogFlowFuncEnter();
4679
4680 DEVHDA_LOCK_RETURN_VOID(pThis);
4681
4682 /*
4683 * 18.2.6,7 defines that values of this registers might be cleared on power on/reset
4684 * hdaR3Reset shouldn't affects these registers.
4685 */
4686 HDA_REG(pThis, WAKEEN) = 0x0;
4687
4688 hdaR3GCTLReset(pThis);
4689
4690 /* Indicate that HDA is not in reset. The firmware is supposed to (un)reset HDA,
4691 * but we can take a shortcut.
4692 */
4693 HDA_REG(pThis, GCTL) = HDA_GCTL_CRST;
4694
4695 DEVHDA_UNLOCK(pThis);
4696}
4697
4698
4699/**
4700 * @interface_method_impl{PDMDEVREG,pfnRelocate}
4701 */
4702static DECLCALLBACK(void) hdaR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
4703{
4704 NOREF(offDelta);
4705 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4706 pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
4707}
4708
4709
4710/**
4711 * @interface_method_impl{PDMDEVREG,pfnDestruct}
4712 */
4713static DECLCALLBACK(int) hdaR3Destruct(PPDMDEVINS pDevIns)
4714{
4715 PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns); /* this shall come first */
4716 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4717 DEVHDA_LOCK(pThis); /** @todo r=bird: this will fail on early constructor failure. */
4718
4719 PHDADRIVER pDrv;
4720 while (!RTListIsEmpty(&pThis->lstDrv))
4721 {
4722 pDrv = RTListGetFirst(&pThis->lstDrv, HDADRIVER, Node);
4723
4724 RTListNodeRemove(&pDrv->Node);
4725 RTMemFree(pDrv);
4726 }
4727
4728 if (pThis->pCodec)
4729 {
4730 hdaCodecDestruct(pThis->pCodec);
4731
4732 RTMemFree(pThis->pCodec);
4733 pThis->pCodec = NULL;
4734 }
4735
4736 RTMemFree(pThis->pu32CorbBuf);
4737 pThis->pu32CorbBuf = NULL;
4738
4739 RTMemFree(pThis->pu64RirbBuf);
4740 pThis->pu64RirbBuf = NULL;
4741
4742 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
4743 hdaR3StreamDestroy(&pThis->aStreams[i]);
4744
4745 DEVHDA_UNLOCK(pThis);
4746 return VINF_SUCCESS;
4747}
4748
4749
4750/**
4751 * @interface_method_impl{PDMDEVREG,pfnConstruct}
4752 */
4753static DECLCALLBACK(int) hdaR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
4754{
4755 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* this shall come first */
4756 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4757 Assert(iInstance == 0); RT_NOREF(iInstance);
4758
4759 /*
4760 * Initialize the state sufficently to make the destructor work.
4761 */
4762 pThis->uAlignmentCheckMagic = HDASTATE_ALIGNMENT_CHECK_MAGIC;
4763 RTListInit(&pThis->lstDrv);
4764 /** @todo r=bird: There are probably other things which should be
4765 * initialized here before we start failing. */
4766
4767 /*
4768 * Validations.
4769 */
4770 if (!CFGMR3AreValuesValid(pCfg, "RZEnabled\0"
4771 "TimerHz\0"
4772 "PosAdjustEnabled\0"
4773 "PosAdjustFrames\0"
4774 "DebugEnabled\0"
4775 "DebugPathOut\0"))
4776 {
4777 return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
4778 N_ ("Invalid configuration for the Intel HDA device"));
4779 }
4780
4781 int rc = CFGMR3QueryBoolDef(pCfg, "RZEnabled", &pThis->fRZEnabled, true);
4782 if (RT_FAILURE(rc))
4783 return PDMDEV_SET_ERROR(pDevIns, rc,
4784 N_("HDA configuration error: failed to read RCEnabled as boolean"));
4785
4786
4787 rc = CFGMR3QueryU16Def(pCfg, "TimerHz", &pThis->u16TimerHz, HDA_TIMER_HZ_DEFAULT /* Default value, if not set. */);
4788 if (RT_FAILURE(rc))
4789 return PDMDEV_SET_ERROR(pDevIns, rc,
4790 N_("HDA configuration error: failed to read Hertz (Hz) rate as unsigned integer"));
4791
4792 if (pThis->u16TimerHz != HDA_TIMER_HZ_DEFAULT)
4793 LogRel(("HDA: Using custom device timer rate (%RU16Hz)\n", pThis->u16TimerHz));
4794
4795 rc = CFGMR3QueryBoolDef(pCfg, "PosAdjustEnabled", &pThis->fPosAdjustEnabled, true);
4796 if (RT_FAILURE(rc))
4797 return PDMDEV_SET_ERROR(pDevIns, rc,
4798 N_("HDA configuration error: failed to read position adjustment enabled as boolean"));
4799
4800 if (!pThis->fPosAdjustEnabled)
4801 LogRel(("HDA: Position adjustment is disabled\n"));
4802
4803 rc = CFGMR3QueryU16Def(pCfg, "PosAdjustFrames", &pThis->cPosAdjustFrames, HDA_POS_ADJUST_DEFAULT);
4804 if (RT_FAILURE(rc))
4805 return PDMDEV_SET_ERROR(pDevIns, rc,
4806 N_("HDA configuration error: failed to read position adjustment frames as unsigned integer"));
4807
4808 if (pThis->cPosAdjustFrames)
4809 LogRel(("HDA: Using custom position adjustment (%RU16 audio frames)\n", pThis->cPosAdjustFrames));
4810
4811 rc = CFGMR3QueryBoolDef(pCfg, "DebugEnabled", &pThis->Dbg.fEnabled, false);
4812 if (RT_FAILURE(rc))
4813 return PDMDEV_SET_ERROR(pDevIns, rc,
4814 N_("HDA configuration error: failed to read debugging enabled flag as boolean"));
4815
4816 rc = CFGMR3QueryStringDef(pCfg, "DebugPathOut", pThis->Dbg.szOutPath, sizeof(pThis->Dbg.szOutPath),
4817 VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH);
4818 if (RT_FAILURE(rc))
4819 return PDMDEV_SET_ERROR(pDevIns, rc,
4820 N_("HDA configuration error: failed to read debugging output path flag as string"));
4821
4822 if (!strlen(pThis->Dbg.szOutPath))
4823 RTStrPrintf(pThis->Dbg.szOutPath, sizeof(pThis->Dbg.szOutPath), VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH);
4824
4825 if (pThis->Dbg.fEnabled)
4826 LogRel2(("HDA: Debug output will be saved to '%s'\n", pThis->Dbg.szOutPath));
4827
4828 /*
4829 * Use an own critical section for the device instead of the default
4830 * one provided by PDM. This allows fine-grained locking in combination
4831 * with TM when timer-specific stuff is being called in e.g. the MMIO handlers.
4832 */
4833 rc = PDMDevHlpCritSectInit(pDevIns, &pThis->CritSect, RT_SRC_POS, "HDA");
4834 AssertRCReturn(rc, rc);
4835
4836 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
4837 AssertRCReturn(rc, rc);
4838
4839 /*
4840 * Initialize data (most of it anyway).
4841 */
4842 pThis->pDevInsR3 = pDevIns;
4843 pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
4844 pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
4845 /* IBase */
4846 pThis->IBase.pfnQueryInterface = hdaR3QueryInterface;
4847
4848 /* PCI Device */
4849 PCIDevSetVendorId (&pThis->PciDev, HDA_PCI_VENDOR_ID); /* nVidia */
4850 PCIDevSetDeviceId (&pThis->PciDev, HDA_PCI_DEVICE_ID); /* HDA */
4851
4852 PCIDevSetCommand (&pThis->PciDev, 0x0000); /* 04 rw,ro - pcicmd. */
4853 PCIDevSetStatus (&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST); /* 06 rwc?,ro? - pcists. */
4854 PCIDevSetRevisionId (&pThis->PciDev, 0x01); /* 08 ro - rid. */
4855 PCIDevSetClassProg (&pThis->PciDev, 0x00); /* 09 ro - pi. */
4856 PCIDevSetClassSub (&pThis->PciDev, 0x03); /* 0a ro - scc; 03 == HDA. */
4857 PCIDevSetClassBase (&pThis->PciDev, 0x04); /* 0b ro - bcc; 04 == multimedia. */
4858 PCIDevSetHeaderType (&pThis->PciDev, 0x00); /* 0e ro - headtyp. */
4859 PCIDevSetBaseAddress (&pThis->PciDev, 0, /* 10 rw - MMIO */
4860 false /* fIoSpace */, false /* fPrefetchable */, true /* f64Bit */, 0x00000000);
4861 PCIDevSetInterruptLine (&pThis->PciDev, 0x00); /* 3c rw. */
4862 PCIDevSetInterruptPin (&pThis->PciDev, 0x01); /* 3d ro - INTA#. */
4863
4864#if defined(HDA_AS_PCI_EXPRESS)
4865 PCIDevSetCapabilityList (&pThis->PciDev, 0x80);
4866#elif defined(VBOX_WITH_MSI_DEVICES)
4867 PCIDevSetCapabilityList (&pThis->PciDev, 0x60);
4868#else
4869 PCIDevSetCapabilityList (&pThis->PciDev, 0x50); /* ICH6 datasheet 18.1.16 */
4870#endif
4871
4872 /// @todo r=michaln: If there are really no PCIDevSetXx for these, the meaning
4873 /// of these values needs to be properly documented!
4874 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
4875 PCIDevSetByte(&pThis->PciDev, 0x40, 0x01);
4876
4877 /* Power Management */
4878 PCIDevSetByte(&pThis->PciDev, 0x50 + 0, VBOX_PCI_CAP_ID_PM);
4879 PCIDevSetByte(&pThis->PciDev, 0x50 + 1, 0x0); /* next */
4880 PCIDevSetWord(&pThis->PciDev, 0x50 + 2, VBOX_PCI_PM_CAP_DSI | 0x02 /* version, PM1.1 */ );
4881
4882#ifdef HDA_AS_PCI_EXPRESS
4883 /* PCI Express */
4884 PCIDevSetByte(&pThis->PciDev, 0x80 + 0, VBOX_PCI_CAP_ID_EXP); /* PCI_Express */
4885 PCIDevSetByte(&pThis->PciDev, 0x80 + 1, 0x60); /* next */
4886 /* Device flags */
4887 PCIDevSetWord(&pThis->PciDev, 0x80 + 2,
4888 /* version */ 0x1 |
4889 /* Root Complex Integrated Endpoint */ (VBOX_PCI_EXP_TYPE_ROOT_INT_EP << 4) |
4890 /* MSI */ (100) << 9 );
4891 /* Device capabilities */
4892 PCIDevSetDWord(&pThis->PciDev, 0x80 + 4, VBOX_PCI_EXP_DEVCAP_FLRESET);
4893 /* Device control */
4894 PCIDevSetWord( &pThis->PciDev, 0x80 + 8, 0);
4895 /* Device status */
4896 PCIDevSetWord( &pThis->PciDev, 0x80 + 10, 0);
4897 /* Link caps */
4898 PCIDevSetDWord(&pThis->PciDev, 0x80 + 12, 0);
4899 /* Link control */
4900 PCIDevSetWord( &pThis->PciDev, 0x80 + 16, 0);
4901 /* Link status */
4902 PCIDevSetWord( &pThis->PciDev, 0x80 + 18, 0);
4903 /* Slot capabilities */
4904 PCIDevSetDWord(&pThis->PciDev, 0x80 + 20, 0);
4905 /* Slot control */
4906 PCIDevSetWord( &pThis->PciDev, 0x80 + 24, 0);
4907 /* Slot status */
4908 PCIDevSetWord( &pThis->PciDev, 0x80 + 26, 0);
4909 /* Root control */
4910 PCIDevSetWord( &pThis->PciDev, 0x80 + 28, 0);
4911 /* Root capabilities */
4912 PCIDevSetWord( &pThis->PciDev, 0x80 + 30, 0);
4913 /* Root status */
4914 PCIDevSetDWord(&pThis->PciDev, 0x80 + 32, 0);
4915 /* Device capabilities 2 */
4916 PCIDevSetDWord(&pThis->PciDev, 0x80 + 36, 0);
4917 /* Device control 2 */
4918 PCIDevSetQWord(&pThis->PciDev, 0x80 + 40, 0);
4919 /* Link control 2 */
4920 PCIDevSetQWord(&pThis->PciDev, 0x80 + 48, 0);
4921 /* Slot control 2 */
4922 PCIDevSetWord( &pThis->PciDev, 0x80 + 56, 0);
4923#endif
4924
4925 /*
4926 * Register the PCI device.
4927 */
4928 rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev);
4929 if (RT_FAILURE(rc))
4930 return rc;
4931
4932 rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, 0x4000, PCI_ADDRESS_SPACE_MEM, hdaR3PciIoRegionMap);
4933 if (RT_FAILURE(rc))
4934 return rc;
4935
4936#ifdef VBOX_WITH_MSI_DEVICES
4937 PDMMSIREG MsiReg;
4938 RT_ZERO(MsiReg);
4939 MsiReg.cMsiVectors = 1;
4940 MsiReg.iMsiCapOffset = 0x60;
4941 MsiReg.iMsiNextOffset = 0x50;
4942 rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg);
4943 if (RT_FAILURE(rc))
4944 {
4945 /* That's OK, we can work without MSI */
4946 PCIDevSetCapabilityList(&pThis->PciDev, 0x50);
4947 }
4948#endif
4949
4950 rc = PDMDevHlpSSMRegister(pDevIns, HDA_SSM_VERSION, sizeof(*pThis), hdaR3SaveExec, hdaR3LoadExec);
4951 if (RT_FAILURE(rc))
4952 return rc;
4953
4954#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
4955 LogRel(("HDA: Asynchronous I/O enabled\n"));
4956#endif
4957
4958 uint8_t uLUN;
4959 for (uLUN = 0; uLUN < UINT8_MAX; ++uLUN)
4960 {
4961 LogFunc(("Trying to attach driver for LUN #%RU32 ...\n", uLUN));
4962 rc = hdaR3AttachInternal(pThis, uLUN, 0 /* fFlags */, NULL /* ppDrv */);
4963 if (RT_FAILURE(rc))
4964 {
4965 if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
4966 rc = VINF_SUCCESS;
4967 else if (rc == VERR_AUDIO_BACKEND_INIT_FAILED)
4968 {
4969 hdaR3ReattachInternal(pThis, NULL /* pDrv */, uLUN, "NullAudio");
4970 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
4971 N_("Host audio backend initialization has failed. Selecting the NULL audio backend "
4972 "with the consequence that no sound is audible"));
4973 /* Attaching to the NULL audio backend will never fail. */
4974 rc = VINF_SUCCESS;
4975 }
4976 break;
4977 }
4978 }
4979
4980 LogFunc(("cLUNs=%RU8, rc=%Rrc\n", uLUN, rc));
4981
4982 if (RT_SUCCESS(rc))
4983 {
4984 rc = AudioMixerCreate("HDA Mixer", 0 /* uFlags */, &pThis->pMixer);
4985 if (RT_SUCCESS(rc))
4986 {
4987 /*
4988 * Add mixer output sinks.
4989 */
4990#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
4991 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Front",
4992 AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink);
4993 AssertRC(rc);
4994 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Center / Subwoofer",
4995 AUDMIXSINKDIR_OUTPUT, &pThis->SinkCenterLFE.pMixSink);
4996 AssertRC(rc);
4997 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Rear",
4998 AUDMIXSINKDIR_OUTPUT, &pThis->SinkRear.pMixSink);
4999 AssertRC(rc);
5000#else
5001 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] PCM Output",
5002 AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink);
5003 AssertRC(rc);
5004#endif
5005 /*
5006 * Add mixer input sinks.
5007 */
5008 rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Line In",
5009 AUDMIXSINKDIR_INPUT, &pThis->SinkLineIn.pMixSink);
5010 AssertRC(rc);
5011#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5012 rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Microphone In",
5013 AUDMIXSINKDIR_INPUT, &pThis->SinkMicIn.pMixSink);
5014 AssertRC(rc);
5015#endif
5016 /* There is no master volume control. Set the master to max. */
5017 PDMAUDIOVOLUME vol = { false, 255, 255 };
5018 rc = AudioMixerSetMasterVolume(pThis->pMixer, &vol);
5019 AssertRC(rc);
5020 }
5021 }
5022
5023 if (RT_SUCCESS(rc))
5024 {
5025 /* Allocate CORB buffer. */
5026 pThis->cbCorbBuf = HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE;
5027 pThis->pu32CorbBuf = (uint32_t *)RTMemAllocZ(pThis->cbCorbBuf);
5028 if (pThis->pu32CorbBuf)
5029 {
5030 /* Allocate RIRB buffer. */
5031 pThis->cbRirbBuf = HDA_RIRB_SIZE * HDA_RIRB_ELEMENT_SIZE;
5032 pThis->pu64RirbBuf = (uint64_t *)RTMemAllocZ(pThis->cbRirbBuf);
5033 if (pThis->pu64RirbBuf)
5034 {
5035 /* Allocate codec. */
5036 pThis->pCodec = (PHDACODEC)RTMemAllocZ(sizeof(HDACODEC));
5037 if (!pThis->pCodec)
5038 rc = PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating HDA codec state"));
5039 }
5040 else
5041 rc = PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating RIRB"));
5042 }
5043 else
5044 rc = PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating CORB"));
5045
5046 if (RT_SUCCESS(rc))
5047 {
5048 /* Set codec callbacks to this controller. */
5049 pThis->pCodec->pfnCbMixerAddStream = hdaR3MixerAddStream;
5050 pThis->pCodec->pfnCbMixerRemoveStream = hdaR3MixerRemoveStream;
5051 pThis->pCodec->pfnCbMixerControl = hdaR3MixerControl;
5052 pThis->pCodec->pfnCbMixerSetVolume = hdaR3MixerSetVolume;
5053
5054 pThis->pCodec->pHDAState = pThis; /* Assign HDA controller state to codec. */
5055
5056 /* Construct the codec. */
5057 rc = hdaCodecConstruct(pDevIns, pThis->pCodec, 0 /* Codec index */, pCfg);
5058 if (RT_FAILURE(rc))
5059 AssertRCReturn(rc, rc);
5060
5061 /* ICH6 datasheet defines 0 values for SVID and SID (18.1.14-15), which together with values returned for
5062 verb F20 should provide device/codec recognition. */
5063 Assert(pThis->pCodec->u16VendorId);
5064 Assert(pThis->pCodec->u16DeviceId);
5065 PCIDevSetSubSystemVendorId(&pThis->PciDev, pThis->pCodec->u16VendorId); /* 2c ro - intel.) */
5066 PCIDevSetSubSystemId( &pThis->PciDev, pThis->pCodec->u16DeviceId); /* 2e ro. */
5067 }
5068 }
5069
5070 if (RT_SUCCESS(rc))
5071 {
5072 /*
5073 * Create all hardware streams.
5074 */
5075 for (uint8_t i = 0; i < HDA_MAX_STREAMS; ++i)
5076 {
5077 /* Create the emulation timer (per stream).
5078 *
5079 * Note: Use TMCLOCK_VIRTUAL_SYNC here, as the guest's HDA driver
5080 * relies on exact (virtual) DMA timing and uses DMA Position Buffers
5081 * instead of the LPIB registers.
5082 */
5083 char szTimer[16];
5084 RTStrPrintf2(szTimer, sizeof(szTimer), "HDA SD%RU8", i);
5085
5086 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, hdaR3Timer, &pThis->aStreams[i],
5087 TMTIMER_FLAGS_NO_CRIT_SECT, szTimer, &pThis->pTimer[i]);
5088 AssertRCReturn(rc, rc);
5089
5090 /* Use our own critcal section for the device timer.
5091 * That way we can control more fine-grained when to lock what. */
5092 rc = TMR3TimerSetCritSect(pThis->pTimer[i], &pThis->CritSect);
5093 AssertRCReturn(rc, rc);
5094
5095 rc = hdaR3StreamCreate(&pThis->aStreams[i], pThis, i /* u8SD */);
5096 AssertRC(rc);
5097 }
5098
5099#ifdef VBOX_WITH_AUDIO_HDA_ONETIME_INIT
5100 /*
5101 * Initialize the driver chain.
5102 */
5103 PHDADRIVER pDrv;
5104 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
5105 {
5106 /*
5107 * Only primary drivers are critical for the VM to run. Everything else
5108 * might not worth showing an own error message box in the GUI.
5109 */
5110 if (!(pDrv->fFlags & PDMAUDIODRVFLAGS_PRIMARY))
5111 continue;
5112
5113 PPDMIAUDIOCONNECTOR pCon = pDrv->pConnector;
5114 AssertPtr(pCon);
5115
5116 bool fValidLineIn = AudioMixerStreamIsValid(pDrv->LineIn.pMixStrm);
5117# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5118 bool fValidMicIn = AudioMixerStreamIsValid(pDrv->MicIn.pMixStrm);
5119# endif
5120 bool fValidOut = AudioMixerStreamIsValid(pDrv->Front.pMixStrm);
5121# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
5122 /** @todo Anything to do here? */
5123# endif
5124
5125 if ( !fValidLineIn
5126# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5127 && !fValidMicIn
5128# endif
5129 && !fValidOut)
5130 {
5131 LogRel(("HDA: Falling back to NULL backend (no sound audible)\n"));
5132
5133 hdaR3Reset(pDevIns);
5134 hdaR3ReattachInternal(pThis, pDrv, pDrv->uLUN, "NullAudio");
5135
5136 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
5137 N_("No audio devices could be opened. Selecting the NULL audio backend "
5138 "with the consequence that no sound is audible"));
5139 }
5140 else
5141 {
5142 bool fWarn = false;
5143
5144 PDMAUDIOBACKENDCFG backendCfg;
5145 int rc2 = pCon->pfnGetConfig(pCon, &backendCfg);
5146 if (RT_SUCCESS(rc2))
5147 {
5148 if (backendCfg.cMaxStreamsIn)
5149 {
5150# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5151 /* If the audio backend supports two or more input streams at once,
5152 * warn if one of our two inputs (microphone-in and line-in) failed to initialize. */
5153 if (backendCfg.cMaxStreamsIn >= 2)
5154 fWarn = !fValidLineIn || !fValidMicIn;
5155 /* If the audio backend only supports one input stream at once (e.g. pure ALSA, and
5156 * *not* ALSA via PulseAudio plugin!), only warn if both of our inputs failed to initialize.
5157 * One of the two simply is not in use then. */
5158 else if (backendCfg.cMaxStreamsIn == 1)
5159 fWarn = !fValidLineIn && !fValidMicIn;
5160 /* Don't warn if our backend is not able of supporting any input streams at all. */
5161# else /* !VBOX_WITH_AUDIO_HDA_MIC_IN */
5162 /* We only have line-in as input source. */
5163 fWarn = !fValidLineIn;
5164# endif /* VBOX_WITH_AUDIO_HDA_MIC_IN */
5165 }
5166
5167 if ( !fWarn
5168 && backendCfg.cMaxStreamsOut)
5169 {
5170 fWarn = !fValidOut;
5171 }
5172 }
5173 else
5174 {
5175 LogRel(("HDA: Unable to retrieve audio backend configuration for LUN #%RU8, rc=%Rrc\n", pDrv->uLUN, rc2));
5176 fWarn = true;
5177 }
5178
5179 if (fWarn)
5180 {
5181 char szMissingStreams[255];
5182 size_t len = 0;
5183 if (!fValidLineIn)
5184 {
5185 LogRel(("HDA: WARNING: Unable to open PCM line input for LUN #%RU8!\n", pDrv->uLUN));
5186 len = RTStrPrintf(szMissingStreams, sizeof(szMissingStreams), "PCM Input");
5187 }
5188# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5189 if (!fValidMicIn)
5190 {
5191 LogRel(("HDA: WARNING: Unable to open PCM microphone input for LUN #%RU8!\n", pDrv->uLUN));
5192 len += RTStrPrintf(szMissingStreams + len,
5193 sizeof(szMissingStreams) - len, len ? ", PCM Microphone" : "PCM Microphone");
5194 }
5195# endif /* VBOX_WITH_AUDIO_HDA_MIC_IN */
5196 if (!fValidOut)
5197 {
5198 LogRel(("HDA: WARNING: Unable to open PCM output for LUN #%RU8!\n", pDrv->uLUN));
5199 len += RTStrPrintf(szMissingStreams + len,
5200 sizeof(szMissingStreams) - len, len ? ", PCM Output" : "PCM Output");
5201 }
5202
5203 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
5204 N_("Some HDA audio streams (%s) could not be opened. Guest applications generating audio "
5205 "output or depending on audio input may hang. Make sure your host audio device "
5206 "is working properly. Check the logfile for error messages of the audio "
5207 "subsystem"), szMissingStreams);
5208 }
5209 }
5210 }
5211#endif /* VBOX_WITH_AUDIO_HDA_ONETIME_INIT */
5212 }
5213
5214 if (RT_SUCCESS(rc))
5215 {
5216 hdaR3Reset(pDevIns);
5217
5218 /*
5219 * Debug and string formatter types.
5220 */
5221 PDMDevHlpDBGFInfoRegister(pDevIns, "hda", "HDA info. (hda [register case-insensitive])", hdaR3DbgInfo);
5222 PDMDevHlpDBGFInfoRegister(pDevIns, "hdabdle", "HDA stream BDLE info. (hdabdle [stream number])", hdaR3DbgInfoBDLE);
5223 PDMDevHlpDBGFInfoRegister(pDevIns, "hdastream", "HDA stream info. (hdastream [stream number])", hdaR3DbgInfoStream);
5224 PDMDevHlpDBGFInfoRegister(pDevIns, "hdcnodes", "HDA codec nodes.", hdaR3DbgInfoCodecNodes);
5225 PDMDevHlpDBGFInfoRegister(pDevIns, "hdcselector", "HDA codec's selector states [node number].", hdaR3DbgInfoCodecSelector);
5226 PDMDevHlpDBGFInfoRegister(pDevIns, "hdamixer", "HDA mixer state.", hdaR3DbgInfoMixer);
5227
5228 rc = RTStrFormatTypeRegister("bdle", hdaR3StrFmtBDLE, NULL);
5229 AssertRC(rc);
5230 rc = RTStrFormatTypeRegister("sdctl", hdaR3StrFmtSDCTL, NULL);
5231 AssertRC(rc);
5232 rc = RTStrFormatTypeRegister("sdsts", hdaR3StrFmtSDSTS, NULL);
5233 AssertRC(rc);
5234 rc = RTStrFormatTypeRegister("sdfifos", hdaR3StrFmtSDFIFOS, NULL);
5235 AssertRC(rc);
5236 rc = RTStrFormatTypeRegister("sdfifow", hdaR3StrFmtSDFIFOW, NULL);
5237 AssertRC(rc);
5238
5239 /*
5240 * Some debug assertions.
5241 */
5242 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
5243 {
5244 struct HDAREGDESC const *pReg = &g_aHdaRegMap[i];
5245 struct HDAREGDESC const *pNextReg = i + 1 < RT_ELEMENTS(g_aHdaRegMap) ? &g_aHdaRegMap[i + 1] : NULL;
5246
5247 /* binary search order. */
5248 AssertReleaseMsg(!pNextReg || pReg->offset + pReg->size <= pNextReg->offset,
5249 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
5250 i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
5251
5252 /* alignment. */
5253 AssertReleaseMsg( pReg->size == 1
5254 || (pReg->size == 2 && (pReg->offset & 1) == 0)
5255 || (pReg->size == 3 && (pReg->offset & 3) == 0)
5256 || (pReg->size == 4 && (pReg->offset & 3) == 0),
5257 ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5258
5259 /* registers are packed into dwords - with 3 exceptions with gaps at the end of the dword. */
5260 AssertRelease(((pReg->offset + pReg->size) & 3) == 0 || pNextReg);
5261 if (pReg->offset & 3)
5262 {
5263 struct HDAREGDESC const *pPrevReg = i > 0 ? &g_aHdaRegMap[i - 1] : NULL;
5264 AssertReleaseMsg(pPrevReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5265 if (pPrevReg)
5266 AssertReleaseMsg(pPrevReg->offset + pPrevReg->size == pReg->offset,
5267 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
5268 i - 1, pPrevReg->offset, pPrevReg->size, i + 1, pReg->offset, pReg->size));
5269 }
5270#if 0
5271 if ((pReg->offset + pReg->size) & 3)
5272 {
5273 AssertReleaseMsg(pNextReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5274 if (pNextReg)
5275 AssertReleaseMsg(pReg->offset + pReg->size == pNextReg->offset,
5276 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
5277 i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
5278 }
5279#endif
5280 /* The final entry is a full DWORD, no gaps! Allows shortcuts. */
5281 AssertReleaseMsg(pNextReg || ((pReg->offset + pReg->size) & 3) == 0,
5282 ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5283 }
5284 }
5285
5286# ifdef VBOX_WITH_STATISTICS
5287 if (RT_SUCCESS(rc))
5288 {
5289 /*
5290 * Register statistics.
5291 */
5292 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTimer, STAMTYPE_PROFILE, "/Devices/HDA/Timer", STAMUNIT_TICKS_PER_CALL, "Profiling hdaR3Timer.");
5293 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIn, STAMTYPE_PROFILE, "/Devices/HDA/Input", STAMUNIT_TICKS_PER_CALL, "Profiling input.");
5294 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatOut, STAMTYPE_PROFILE, "/Devices/HDA/Output", STAMUNIT_TICKS_PER_CALL, "Profiling output.");
5295 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesRead, STAMTYPE_COUNTER, "/Devices/HDA/BytesRead" , STAMUNIT_BYTES, "Bytes read from HDA emulation.");
5296 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesWritten, STAMTYPE_COUNTER, "/Devices/HDA/BytesWritten", STAMUNIT_BYTES, "Bytes written to HDA emulation.");
5297 }
5298# endif
5299
5300 LogFlowFuncLeaveRC(rc);
5301 return rc;
5302}
5303
5304/**
5305 * The device registration structure.
5306 */
5307const PDMDEVREG g_DeviceHDA =
5308{
5309 /* u32Version */
5310 PDM_DEVREG_VERSION,
5311 /* szName */
5312 "hda",
5313 /* szRCMod */
5314 "VBoxDDRC.rc",
5315 /* szR0Mod */
5316 "VBoxDDR0.r0",
5317 /* pszDescription */
5318 "Intel HD Audio Controller",
5319 /* fFlags */
5320 PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
5321 /* fClass */
5322 PDM_DEVREG_CLASS_AUDIO,
5323 /* cMaxInstances */
5324 1,
5325 /* cbInstance */
5326 sizeof(HDASTATE),
5327 /* pfnConstruct */
5328 hdaR3Construct,
5329 /* pfnDestruct */
5330 hdaR3Destruct,
5331 /* pfnRelocate */
5332 hdaR3Relocate,
5333 /* pfnMemSetup */
5334 NULL,
5335 /* pfnPowerOn */
5336 NULL,
5337 /* pfnReset */
5338 hdaR3Reset,
5339 /* pfnSuspend */
5340 NULL,
5341 /* pfnResume */
5342 NULL,
5343 /* pfnAttach */
5344 hdaR3Attach,
5345 /* pfnDetach */
5346 hdaR3Detach,
5347 /* pfnQueryInterface. */
5348 NULL,
5349 /* pfnInitComplete */
5350 NULL,
5351 /* pfnPowerOff */
5352 hdaR3PowerOff,
5353 /* pfnSoftReset */
5354 NULL,
5355 /* u32VersionEnd */
5356 PDM_DEVREG_VERSION
5357};
5358
5359#endif /* IN_RING3 */
5360#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
5361
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette