VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 102788

Last change on this file since 102788 was 102093, checked in by vboxsync, 11 months ago

DBGC: Build fix.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 320.6 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 102093 2023-11-15 00:50:41Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_DBGC
33#include <VBox/dbg.h>
34#include <VBox/vmm/dbgf.h>
35#include <VBox/vmm/dbgfflowtrace.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/cpum.h>
38#include <VBox/dis.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/log.h>
42
43#include <iprt/asm.h>
44#include <iprt/mem.h>
45#include <iprt/string.h>
46#include <iprt/assert.h>
47#include <iprt/ctype.h>
48#include <iprt/time.h>
49
50#include <stdlib.h>
51#include <stdio.h>
52
53#include "DBGCInternal.h"
54
55
56/*********************************************************************************************************************************
57* Internal Functions *
58*********************************************************************************************************************************/
59static FNDBGCCMD dbgcCmdBrkAccess;
60static FNDBGCCMD dbgcCmdBrkClear;
61static FNDBGCCMD dbgcCmdBrkDisable;
62static FNDBGCCMD dbgcCmdBrkEnable;
63static FNDBGCCMD dbgcCmdBrkList;
64static FNDBGCCMD dbgcCmdBrkSet;
65static FNDBGCCMD dbgcCmdBrkREM;
66static FNDBGCCMD dbgcCmdDumpMem;
67static FNDBGCCMD dbgcCmdDumpDT;
68static FNDBGCCMD dbgcCmdDumpIDT;
69static FNDBGCCMD dbgcCmdDumpPageDir;
70static FNDBGCCMD dbgcCmdDumpPageDirBoth;
71static FNDBGCCMD dbgcCmdDumpPageHierarchy;
72static FNDBGCCMD dbgcCmdDumpPageTable;
73static FNDBGCCMD dbgcCmdDumpPageTableBoth;
74static FNDBGCCMD dbgcCmdDumpTSS;
75static FNDBGCCMD dbgcCmdDumpTypeInfo;
76static FNDBGCCMD dbgcCmdDumpTypedVal;
77static FNDBGCCMD dbgcCmdEditMem;
78static FNDBGCCMD dbgcCmdGo;
79static FNDBGCCMD dbgcCmdGoUp;
80static FNDBGCCMD dbgcCmdListModules;
81static FNDBGCCMD dbgcCmdListNear;
82static FNDBGCCMD dbgcCmdListSource;
83static FNDBGCCMD dbgcCmdListSymbols;
84static FNDBGCCMD dbgcCmdMemoryInfo;
85static FNDBGCCMD dbgcCmdReg;
86static FNDBGCCMD dbgcCmdRegGuest;
87static FNDBGCCMD dbgcCmdRegTerse;
88static FNDBGCCMD dbgcCmdSearchMem;
89static FNDBGCCMD dbgcCmdSearchMemType;
90static FNDBGCCMD dbgcCmdStepTrace;
91static FNDBGCCMD dbgcCmdStepTraceTo;
92static FNDBGCCMD dbgcCmdStepTraceToggle;
93static FNDBGCCMD dbgcCmdEventCtrl;
94static FNDBGCCMD dbgcCmdEventCtrlList;
95static FNDBGCCMD dbgcCmdEventCtrlReset;
96static FNDBGCCMD dbgcCmdStack;
97static FNDBGCCMD dbgcCmdUnassemble;
98static FNDBGCCMD dbgcCmdUnassembleCfg;
99static FNDBGCCMD dbgcCmdTraceFlowClear;
100static FNDBGCCMD dbgcCmdTraceFlowDisable;
101static FNDBGCCMD dbgcCmdTraceFlowEnable;
102static FNDBGCCMD dbgcCmdTraceFlowPrint;
103static FNDBGCCMD dbgcCmdTraceFlowReset;
104
105
106/*********************************************************************************************************************************
107* Global Variables *
108*********************************************************************************************************************************/
109/** 'ba' arguments. */
110static const DBGCVARDESC g_aArgBrkAcc[] =
111{
112 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
113 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
114 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
115 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
116 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
117 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
118 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
119};
120
121
122/** 'bc', 'bd', 'be' arguments. */
123static const DBGCVARDESC g_aArgBrks[] =
124{
125 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
126 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
127 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
128};
129
130
131/** 'bp' arguments. */
132static const DBGCVARDESC g_aArgBrkSet[] =
133{
134 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
135 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
136 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
137 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
138 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
139};
140
141
142/** 'br' arguments. */
143static const DBGCVARDESC g_aArgBrkREM[] =
144{
145 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
146 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
147 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
148 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
149 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
150};
151
152
153/** 'd?' arguments. */
154static const DBGCVARDESC g_aArgDumpMem[] =
155{
156 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
157 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory. Tip: Use the L or LB operator to specify how may items or bytes to dump." },
158};
159
160
161/** 'dg', 'dga', 'dl', 'dla' arguments. */
162static const DBGCVARDESC g_aArgDumpDT[] =
163{
164 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
165 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
166 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
167};
168
169
170/** 'di', 'dia' arguments. */
171static const DBGCVARDESC g_aArgDumpIDT[] =
172{
173 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
174 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
175};
176
177
178/** 'dpd*' arguments. */
179static const DBGCVARDESC g_aArgDumpPD[] =
180{
181 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
182 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
183 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
184};
185
186
187/** 'dpda' arguments. */
188static const DBGCVARDESC g_aArgDumpPDAddr[] =
189{
190 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
191 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
192};
193
194
195/** 'dph*' arguments. */
196static const DBGCVARDESC g_aArgDumpPH[] =
197{
198 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
199 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
200 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
201 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
202};
203
204
205/** 'dpt?' arguments. */
206static const DBGCVARDESC g_aArgDumpPT[] =
207{
208 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
209 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
210};
211
212
213/** 'dpta' arguments. */
214static const DBGCVARDESC g_aArgDumpPTAddr[] =
215{
216 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
217 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
218};
219
220
221/** 'dt' arguments. */
222static const DBGCVARDESC g_aArgDumpTSS[] =
223{
224 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
225 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
226 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
227};
228
229
230/** 'dti' arguments. */
231static const DBGCVARDESC g_aArgDumpTypeInfo[] =
232{
233 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
234 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" },
235 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" }
236};
237
238
239/** 'dtv' arguments. */
240static const DBGCVARDESC g_aArgDumpTypedVal[] =
241{
242 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
243 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" },
244 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." },
245 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" }
246};
247
248
249/** 'e?' arguments. */
250static const DBGCVARDESC g_aArgEditMem[] =
251{
252 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
253 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
254 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
255};
256
257
258/** 'g' arguments. */
259static const DBGCVARDESC g_aArgGo[] =
260{
261 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
262 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "idCpu", "CPU ID." },
263};
264
265
266/** 'lm' arguments. */
267static const DBGCVARDESC g_aArgListMods[] =
268{
269 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
270 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
271};
272
273
274/** 'ln' arguments. */
275static const DBGCVARDESC g_aArgListNear[] =
276{
277 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
278 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
279 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
280};
281
282
283/** 'ls' arguments. */
284static const DBGCVARDESC g_aArgListSource[] =
285{
286 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
287 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
288};
289
290
291/** 'm' argument. */
292static const DBGCVARDESC g_aArgMemoryInfo[] =
293{
294 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
295 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
296};
297
298
299/** 'p', 'pc', 'pt', 't', 'tc' and 'tt' arguments. */
300static const DBGCVARDESC g_aArgStepTrace[] =
301{
302 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
303 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "count", "Number of instructions or source lines to step." },
304 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
305};
306
307
308/** 'pa' and 'ta' arguments. */
309static const DBGCVARDESC g_aArgStepTraceTo[] =
310{
311 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
312 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Where to stop" },
313 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
314};
315
316
317/** 'r' arguments. */
318static const DBGCVARDESC g_aArgReg[] =
319{
320 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
321 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
322 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
323 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
324};
325
326
327/** 's' arguments. */
328static const DBGCVARDESC g_aArgSearchMem[] =
329{
330 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
331 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
332 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
333 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
334 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
335 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
336 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
337 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
338 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
339 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
340};
341
342
343/** 's?' arguments. */
344static const DBGCVARDESC g_aArgSearchMemType[] =
345{
346 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
347 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
348 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
349};
350
351
352/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
353static const DBGCVARDESC g_aArgEventCtrl[] =
354{
355 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
356 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
357 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
358 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
359};
360
361/** 'sx' and 'sr' arguments. */
362static const DBGCVARDESC g_aArgEventCtrlOpt[] =
363{
364 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
365 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
366};
367
368/** 'u' arguments. */
369static const DBGCVARDESC g_aArgUnassemble[] =
370{
371 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
372 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
373};
374
375/** 'ucfg' arguments. */
376static const DBGCVARDESC g_aArgUnassembleCfg[] =
377{
378 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
379 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
380};
381
382/** 'x' arguments. */
383static const DBGCVARDESC g_aArgListSyms[] =
384{
385 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
386 { 1, 1, DBGCVAR_CAT_STRING, 0, "symbols", "The symbols to list, format is Module!Symbol with wildcards being supoprted." }
387};
388
389/** 'tflowc' arguments. */
390static const DBGCVARDESC g_aArgTraceFlowClear[] =
391{
392 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
393 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
394 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
395};
396
397/** 'tflowd' arguments. */
398static const DBGCVARDESC g_aArgTraceFlowDisable[] =
399{
400 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
401 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
402 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
403};
404
405/** 'tflowe' arguments. */
406static const DBGCVARDESC g_aArgTraceFlowEnable[] =
407{
408 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
409 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start tracing." },
410 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "<Hits>", "Maximum number of hits before the module is disabled." }
411};
412
413/** 'tflowp', 'tflowr' arguments. */
414static const DBGCVARDESC g_aArgTraceFlowPrintReset[] =
415{
416 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
417 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
418 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
419};
420
421/** Command descriptors for the CodeView / WinDbg emulation.
422 * The emulation isn't attempting to be identical, only somewhat similar.
423 */
424const DBGCCMD g_aCmdsCodeView[] =
425{
426 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
427 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
428 "Sets a data access breakpoint." },
429 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
430 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
431 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
432 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
433 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
434 "Sets a breakpoint (int 3)." },
435 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
436 "Sets a recompiler specific breakpoint." },
437 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size and type." },
438 { "dF", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16." },
439 { "dFs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16 with near symbols." },
440 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
441 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
442 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
443 { "dds", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as double words with near symbols." },
444 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
445 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
446 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
447 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
448 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
449 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
450 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
451 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
452 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
453 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
454 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
455 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
456 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
457 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
458 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
459 { "dp", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words." },
460 { "dps", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words with near symbols." },
461 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
462 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
463 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
464 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
465 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
466 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
467 { "dqs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as quad words with near symbols." },
468 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
469 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
470 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
471 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
472 { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo,"<type> [levels]", "Dump type information." },
473 { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal,"<type> <addr> [levels]", "Dump a memory buffer using the information in the given type." },
474 { "du", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as unicode string (little endian)." },
475 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
476 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
477 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
478 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
479 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
480 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
481 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
482 { "g", 0, 1, &g_aArgGo[0], RT_ELEMENTS(g_aArgGo), 0, dbgcCmdGo, "[idCpu]", "Continue execution of all or the specified CPU. (The latter is not recommended unless you know exactly what you're doing.)" },
483 { "gu", 0, 0, NULL, 0, 0, dbgcCmdGoUp, "", "Go up - continue execution till after return." },
484 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
485 { "kv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack." },
486 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
487 { "kgv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack - guest." },
488 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
489 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
490 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
491 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
492 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
493 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
494 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
495 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
496 { "p", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step over." },
497 { "pr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
498 { "pa", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Step to the given address." },
499 { "pc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next call instruction." },
500 { "pt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next return instruction." },
501 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." },
502 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." },
503 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
504 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
505 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
506 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
507 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
508 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
509 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
510 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
511 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
512 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
513 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
514 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
515 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
516 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
517 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
518 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
519 { "t", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace ." },
520 { "tflowc", 1, ~0U, &g_aArgTraceFlowClear[0], RT_ELEMENTS(g_aArgTraceFlowClear), 0, dbgcCmdTraceFlowClear, "all | <tf#> [tf# []]", "Clears trace execution flow for the given method." },
521 { "tflowd", 0, 1, &g_aArgTraceFlowDisable[0], RT_ELEMENTS(g_aArgTraceFlowDisable), 0, dbgcCmdTraceFlowDisable, "all | <tf#> [tf# []]", "Disables trace execution flow for the given method." },
522 { "tflowe", 0, 2, &g_aArgTraceFlowEnable[0], RT_ELEMENTS(g_aArgTraceFlowEnable), 0, dbgcCmdTraceFlowEnable, "<addr> <hits>", "Enable trace execution flow of the given method." },
523 { "tflowp", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowPrint, "all | <tf#> [tf# []]", "Prints the collected trace data of the given method." },
524 { "tflowr", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowReset, "all | <tf#> [tf# []]", "Resets the collected trace data of the given trace flow module." },
525 { "tr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
526 { "ta", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Trace to the given address." },
527 { "tc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next call instruction." },
528 { "tt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next return instruction." },
529 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
530 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
531 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
532 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
533 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
534 { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." },
535 { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." },
536 { "x", 1, 1, &g_aArgListSyms[0], RT_ELEMENTS(g_aArgListSyms), 0, dbgcCmdListSymbols, "* | <Module!Symbol>", "Examine symbols." },
537};
538
539/** The number of commands in the CodeView/WinDbg emulation. */
540const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
541
542
543/**
544 * Selectable debug event descriptors.
545 *
546 * @remarks Sorted by DBGCSXEVT::enmType value.
547 */
548const DBGCSXEVT g_aDbgcSxEvents[] =
549{
550 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
551 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
552 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
553 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
554 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
555 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
556 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
557 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
558 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
559 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
560 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
561 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
562 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
563 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
564 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
565 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
566 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
567 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
568 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
569 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
570 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
571 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
572 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
573 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
574 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
575 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
576 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
577 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
578 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
579 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
580 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
581 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
582 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
583 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
584 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
585 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
586 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
587 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
588 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
589 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
590 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
591 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
592 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
593 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
594 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
595 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
596 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
597 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
598 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
599 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
600 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
601 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
602 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
603 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
604 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
605 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
606 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
607 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
608 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
609 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
610 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
611 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
612 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
613 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
614 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
615 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
616 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
617 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
618 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
619 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
620 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
621 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
622 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
623 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
624 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
625 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
626 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
627 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
628 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
629 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
630 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
631 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
632 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
633 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
634 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
635 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
636 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
637 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
638 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
639 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
640 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
641 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
642 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
643 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
644 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
645 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
646 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
647 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
648 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
649 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
650 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
651 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
652 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
653 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
654 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
655 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
656 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
657 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
658 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
659 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
660 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
661 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
662 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
663 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
664 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
665 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
666 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
667 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
668 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
669 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
670 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
671 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
672 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
673 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
674 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
675 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
676 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
677 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
678 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
679 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
680 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
681 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
682 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
683 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
684 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
685 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
686 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
687 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
688 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
689 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
690 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
691 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
692 { DBGFEVENT_VMX_SPLIT_LOCK, "vmx_split_lock", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
693 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
694 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
695 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
696 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
697 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
698 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
699 { DBGFEVENT_BSOD_VMMDEV, "bsod_vmmdev", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
700};
701/** Number of entries in g_aDbgcSxEvents. */
702const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
703
704
705
706/**
707 * @callback_method_impl{FNDBGCCMD, The 'g' command.}
708 */
709static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
710{
711 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
712
713 /*
714 * Parse arguments.
715 */
716 VMCPUID idCpu = VMCPUID_ALL;
717 if (cArgs == 1)
718 {
719 VMCPUID cCpus = DBGFR3CpuGetCount(pUVM);
720 if (paArgs[0].u.u64Number >= cCpus)
721 return DBGCCmdHlpFail(pCmdHlp, pCmd, "idCpu %RU64 is out of range! Highest valid ID is %u.\n",
722 paArgs[0].u.u64Number, cCpus - 1);
723 idCpu = (VMCPUID)paArgs[0].u.u64Number;
724 }
725 else
726 Assert(cArgs == 0);
727
728 /*
729 * Try resume the VM or CPU.
730 */
731 int rc = DBGFR3Resume(pUVM, idCpu);
732 if (RT_SUCCESS(rc))
733 {
734 Assert(rc == VINF_SUCCESS || rc == VWRN_DBGF_ALREADY_RUNNING);
735 if (rc != VWRN_DBGF_ALREADY_RUNNING)
736 return VINF_SUCCESS;
737 if (idCpu == VMCPUID_ALL)
738 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
739 return DBGCCmdHlpFail(pCmdHlp, pCmd, "CPU %u is already running", idCpu);
740 }
741 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
742}
743
744
745/**
746 * @callback_method_impl{FNDBGCCMD, The 'gu' command.}
747 */
748static DECLCALLBACK(int) dbgcCmdGoUp(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
749{
750 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
751 RT_NOREF(pCmd, paArgs, cArgs);
752
753 /* The simple way out. */
754 PDBGFADDRESS pStackPop = NULL; /** @todo try set up some stack limitations */
755 RTGCPTR cbStackPop = 0;
756 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET, NULL, pStackPop, cbStackPop, _512K);
757 if (RT_SUCCESS(rc))
758 pDbgc->fReady = false;
759 else
760 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET,) failed");
761 return rc;
762}
763
764
765/**
766 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
767 */
768static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
769{
770 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
771
772 /*
773 * Interpret access type.
774 */
775 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
776 || paArgs[0].u.pszString[1])
777 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
778 paArgs[0].u.pszString, pCmd->pszCmd);
779 uint8_t fType = 0;
780 switch (paArgs[0].u.pszString[0])
781 {
782 case 'x': fType = X86_DR7_RW_EO; break;
783 case 'r': fType = X86_DR7_RW_RW; break;
784 case 'w': fType = X86_DR7_RW_WO; break;
785 case 'i': fType = X86_DR7_RW_IO; break;
786 }
787
788 /*
789 * Validate size.
790 */
791 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
792 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
793 paArgs[1].u.u64Number, pCmd->pszCmd);
794 switch (paArgs[1].u.u64Number)
795 {
796 case 1:
797 case 2:
798 case 4:
799 break;
800 /*case 8: - later*/
801 default:
802 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
803 paArgs[1].u.u64Number, pCmd->pszCmd);
804 }
805 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
806
807 /*
808 * Convert the pointer to a DBGF address.
809 */
810 DBGFADDRESS Address;
811 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
812 if (RT_FAILURE(rc))
813 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
814
815 /*
816 * Pick out the optional arguments.
817 */
818 uint64_t iHitTrigger = 0;
819 uint64_t iHitDisable = UINT64_MAX;
820 const char *pszCmds = NULL;
821 unsigned iArg = 3;
822 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
823 {
824 iHitTrigger = paArgs[iArg].u.u64Number;
825 iArg++;
826 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
827 {
828 iHitDisable = paArgs[iArg].u.u64Number;
829 iArg++;
830 }
831 }
832 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
833 {
834 pszCmds = paArgs[iArg].u.pszString;
835 iArg++;
836 }
837
838 /*
839 * Try set the breakpoint.
840 */
841 uint32_t iBp;
842 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
843 if (RT_SUCCESS(rc))
844 {
845 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
846 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
847 if (RT_SUCCESS(rc))
848 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
849 if (rc == VERR_DBGC_BP_EXISTS)
850 {
851 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
852 if (RT_SUCCESS(rc))
853 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
854 }
855 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
856 AssertRC(rc2);
857 }
858 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
859}
860
861
862/**
863 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
864 */
865static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
866{
867 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
868
869 /*
870 * Enumerate the arguments.
871 */
872 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
873 int rc = VINF_SUCCESS;
874 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
875 {
876 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
877 {
878 /* one */
879 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
880 if (iBp == paArgs[iArg].u.u64Number)
881 {
882 int rc2 = DBGFR3BpClear(pUVM, iBp);
883 if (RT_FAILURE(rc2))
884 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
885 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
886 dbgcBpDelete(pDbgc, iBp);
887 }
888 else
889 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
890 }
891 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
892 {
893 /* all */
894 PDBGCBP pBp = pDbgc->pFirstBp;
895 while (pBp)
896 {
897 uint32_t iBp = pBp->iBp;
898 pBp = pBp->pNext;
899
900 int rc2 = DBGFR3BpClear(pUVM, iBp);
901 if (RT_FAILURE(rc2))
902 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
903 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
904 dbgcBpDelete(pDbgc, iBp);
905 }
906 }
907 else
908 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
909 }
910 return rc;
911}
912
913
914/**
915 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
916 */
917static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
918{
919 /*
920 * Enumerate the arguments.
921 */
922 int rc = VINF_SUCCESS;
923 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
924 {
925 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
926 {
927 /* one */
928 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
929 if (iBp == paArgs[iArg].u.u64Number)
930 {
931 rc = DBGFR3BpDisable(pUVM, iBp);
932 if (RT_FAILURE(rc))
933 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
934 }
935 else
936 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
937 }
938 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
939 {
940 /* all */
941 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
942 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
943 {
944 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
945 if (RT_FAILURE(rc2))
946 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
947 }
948 }
949 else
950 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
951 }
952 return rc;
953}
954
955
956/**
957 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
958 */
959static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
960{
961 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
962
963 /*
964 * Enumerate the arguments.
965 */
966 int rc = VINF_SUCCESS;
967 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
968 {
969 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
970 {
971 /* one */
972 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
973 if (iBp == paArgs[iArg].u.u64Number)
974 {
975 rc = DBGFR3BpEnable(pUVM, iBp);
976 if (RT_FAILURE(rc))
977 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
978 }
979 else
980 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
981 }
982 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
983 {
984 /* all */
985 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
986 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
987 {
988 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
989 if (RT_FAILURE(rc2))
990 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
991 }
992 }
993 else
994 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
995 }
996 return rc;
997}
998
999
1000/**
1001 * Breakpoint enumeration callback function.
1002 *
1003 * @returns VBox status code. Any failure will stop the enumeration.
1004 * @param pUVM The user mode VM handle.
1005 * @param pvUser The user argument.
1006 * @param hBp The DBGF breakpoint handle.
1007 * @param pBp Pointer to the breakpoint information. (readonly)
1008 */
1009static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, DBGFBP hBp, PCDBGFBPPUB pBp)
1010{
1011 PDBGC pDbgc = (PDBGC)pvUser;
1012 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, hBp);
1013
1014 /*
1015 * BP type and size.
1016 */
1017 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", hBp, DBGF_BP_PUB_IS_ENABLED(pBp) ? 'e' : 'd');
1018 bool fHasAddress = false;
1019 switch (DBGF_BP_PUB_GET_TYPE(pBp))
1020 {
1021 case DBGFBPTYPE_INT3:
1022 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
1023 fHasAddress = true;
1024 break;
1025 case DBGFBPTYPE_REG:
1026 {
1027 char chType;
1028 switch (pBp->u.Reg.fType)
1029 {
1030 case X86_DR7_RW_EO: chType = 'x'; break;
1031 case X86_DR7_RW_WO: chType = 'w'; break;
1032 case X86_DR7_RW_IO: chType = 'i'; break;
1033 case X86_DR7_RW_RW: chType = 'r'; break;
1034 default: chType = '?'; break;
1035
1036 }
1037 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
1038 fHasAddress = true;
1039 break;
1040 }
1041
1042/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
1043 case DBGFBPTYPE_PORT_IO:
1044 case DBGFBPTYPE_MMIO:
1045 {
1046 uint32_t fAccess = DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
1047 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? " i" : " m");
1048 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1049 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
1050 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
1051 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
1052 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
1053 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
1054 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
1055 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1056 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
1057 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
1058 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
1059 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
1060 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
1061 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
1062 if (DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO)
1063 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
1064 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
1065 else
1066 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
1067 break;
1068 }
1069
1070 default:
1071 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", DBGF_BP_PUB_GET_TYPE(pBp));
1072 AssertFailed();
1073 break;
1074
1075 }
1076 if (pBp->iHitDisable == ~(uint64_t)0)
1077 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
1078 else
1079 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
1080
1081 /*
1082 * Try resolve the address if it has one.
1083 */
1084 if (fHasAddress)
1085 {
1086 RTDBGSYMBOL Sym;
1087 RTINTPTR off;
1088 DBGFADDRESS Addr;
1089 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
1090 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1091 &off, &Sym, NULL);
1092 if (RT_SUCCESS(rc))
1093 {
1094 if (!off)
1095 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
1096 else if (off > 0)
1097 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
1098 else
1099 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
1100 }
1101 }
1102
1103 /*
1104 * The commands.
1105 */
1106 if (pDbgcBp)
1107 {
1108 if (pDbgcBp->cchCmd)
1109 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
1110 else
1111 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
1112 }
1113 else
1114 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
1115
1116 return VINF_SUCCESS;
1117}
1118
1119
1120/**
1121 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
1122 */
1123static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1124{
1125 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1126 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
1127 NOREF(paArgs);
1128
1129 /*
1130 * Enumerate the breakpoints.
1131 */
1132 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1133 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
1134 if (RT_FAILURE(rc))
1135 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
1136 return rc;
1137}
1138
1139
1140/**
1141 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
1142 */
1143static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1144{
1145 /*
1146 * Convert the pointer to a DBGF address.
1147 */
1148 DBGFADDRESS Address;
1149 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1150 if (RT_FAILURE(rc))
1151 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1152
1153 /*
1154 * Pick out the optional arguments.
1155 */
1156 uint64_t iHitTrigger = 0;
1157 uint64_t iHitDisable = UINT64_MAX;
1158 const char *pszCmds = NULL;
1159 unsigned iArg = 1;
1160 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1161 {
1162 iHitTrigger = paArgs[iArg].u.u64Number;
1163 iArg++;
1164 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1165 {
1166 iHitDisable = paArgs[iArg].u.u64Number;
1167 iArg++;
1168 }
1169 }
1170 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1171 {
1172 pszCmds = paArgs[iArg].u.pszString;
1173 iArg++;
1174 }
1175
1176 /*
1177 * Try set the breakpoint.
1178 */
1179 uint32_t iBp;
1180 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1181 rc = DBGFR3BpSetInt3(pUVM, pDbgc->idCpu, &Address, iHitTrigger, iHitDisable, &iBp);
1182 if (RT_SUCCESS(rc))
1183 {
1184 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1185 if (RT_SUCCESS(rc))
1186 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1187 if (rc == VERR_DBGC_BP_EXISTS)
1188 {
1189 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1190 if (RT_SUCCESS(rc))
1191 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1192 }
1193 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1194 AssertRC(rc2);
1195 }
1196 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1197}
1198
1199
1200/**
1201 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1202 */
1203static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1204{
1205 /*
1206 * Convert the pointer to a DBGF address.
1207 */
1208 DBGFADDRESS Address;
1209 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1210 if (RT_FAILURE(rc))
1211 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1212
1213 /*
1214 * Pick out the optional arguments.
1215 */
1216 uint64_t iHitTrigger = 0;
1217 uint64_t iHitDisable = UINT64_MAX;
1218 const char *pszCmds = NULL;
1219 unsigned iArg = 1;
1220 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1221 {
1222 iHitTrigger = paArgs[iArg].u.u64Number;
1223 iArg++;
1224 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1225 {
1226 iHitDisable = paArgs[iArg].u.u64Number;
1227 iArg++;
1228 }
1229 }
1230 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1231 {
1232 pszCmds = paArgs[iArg].u.pszString;
1233 iArg++;
1234 }
1235
1236 /*
1237 * Try set the breakpoint.
1238 */
1239 uint32_t iBp;
1240 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1241 if (RT_SUCCESS(rc))
1242 {
1243 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1244 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1245 if (RT_SUCCESS(rc))
1246 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1247 if (rc == VERR_DBGC_BP_EXISTS)
1248 {
1249 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1250 if (RT_SUCCESS(rc))
1251 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1252 }
1253 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1254 AssertRC(rc2);
1255 }
1256 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1257}
1258
1259
1260/**
1261 * Helps the unassmble ('u') command display symbols it starts at and passes.
1262 *
1263 * @param pUVM The user mode VM handle.
1264 * @param pCmdHlp The command helpers for printing via.
1265 * @param hDbgAs The address space to look up addresses in.
1266 * @param pAddress The current address.
1267 * @param pcbCallAgain Where to return the distance to the next check (in
1268 * instruction bytes).
1269 */
1270static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1271 PRTUINTPTR pcbCallAgain)
1272{
1273 RTDBGSYMBOL Symbol;
1274 RTGCINTPTR offDispSym;
1275 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1276 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1277 &offDispSym, &Symbol, NULL);
1278 if (RT_FAILURE(rc) || offDispSym > _1G)
1279 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1280 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1281 &offDispSym, &Symbol, NULL);
1282 if (RT_SUCCESS(rc) && offDispSym < _1G)
1283 {
1284 if (!offDispSym)
1285 {
1286 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1287 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1288 }
1289 else if (offDispSym > 0)
1290 {
1291 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1292 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1293 }
1294 else
1295 {
1296 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1297 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1298 }
1299 }
1300 else
1301 *pcbCallAgain = UINT32_MAX;
1302}
1303
1304
1305/**
1306 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1307 */
1308static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1309{
1310 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1311
1312 /*
1313 * Validate input.
1314 */
1315 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1316 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1317 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1318
1319 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1320 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1321
1322 /*
1323 * Check the desired mode.
1324 */
1325 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1326 switch (pCmd->pszCmd[1])
1327 {
1328 default: AssertFailed(); RT_FALL_THRU();
1329 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1330 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1331 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1332 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1333 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1334 }
1335
1336 /** @todo should use DBGFADDRESS for everything */
1337
1338 /*
1339 * Find address.
1340 */
1341 if (!cArgs)
1342 {
1343 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1344 {
1345#if defined(VBOX_VMM_TARGET_ARMV8)
1346 AssertReleaseFailed();
1347#else
1348 /** @todo Batch query CS, RIP, CPU mode and flags. */
1349 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1350 if (CPUMIsGuestIn64BitCode(pVCpu))
1351 {
1352 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1353 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1354 }
1355 else
1356 {
1357 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1358 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
1359 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
1360 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1361 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1362 {
1363 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1364 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1365 }
1366 }
1367#endif
1368
1369 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1370 }
1371 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1372 {
1373 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1374 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
1375 }
1376 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1377 }
1378 else
1379 pDbgc->DisasmPos = paArgs[0];
1380 pDbgc->pLastPos = &pDbgc->DisasmPos;
1381
1382 /*
1383 * Range.
1384 */
1385 switch (pDbgc->DisasmPos.enmRangeType)
1386 {
1387 case DBGCVAR_RANGE_NONE:
1388 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1389 pDbgc->DisasmPos.u64Range = 10;
1390 break;
1391
1392 case DBGCVAR_RANGE_ELEMENTS:
1393 if (pDbgc->DisasmPos.u64Range > 2048)
1394 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1395 break;
1396
1397 case DBGCVAR_RANGE_BYTES:
1398 if (pDbgc->DisasmPos.u64Range > 65536)
1399 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1400 break;
1401
1402 default:
1403 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1404 }
1405
1406 /*
1407 * Convert physical and host addresses to guest addresses.
1408 */
1409 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1410 int rc;
1411 switch (pDbgc->DisasmPos.enmType)
1412 {
1413 case DBGCVAR_TYPE_GC_FLAT:
1414 case DBGCVAR_TYPE_GC_FAR:
1415 break;
1416 case DBGCVAR_TYPE_GC_PHYS:
1417 hDbgAs = DBGF_AS_PHYS;
1418 RT_FALL_THRU();
1419 case DBGCVAR_TYPE_HC_FLAT:
1420 case DBGCVAR_TYPE_HC_PHYS:
1421 {
1422 DBGCVAR VarTmp;
1423 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1424 if (RT_FAILURE(rc))
1425 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1426 pDbgc->DisasmPos = VarTmp;
1427 break;
1428 }
1429 default: AssertFailed(); break;
1430 }
1431
1432 DBGFADDRESS CurAddr;
1433 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1434 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1435 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1436 else
1437 {
1438 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1439 if (RT_FAILURE(rc))
1440 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1441 }
1442
1443 pDbgc->fDisasm = fFlags;
1444
1445 /*
1446 * Figure out where we are and display it. Also calculate when we need to
1447 * check for a new symbol if possible.
1448 */
1449 RTGCUINTPTR cbCheckSymbol;
1450 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1451
1452 /*
1453 * Do the disassembling.
1454 */
1455 unsigned cTries = 32;
1456 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1457 if (iRangeLeft == 0) /* kludge for 'r'. */
1458 iRangeLeft = -1;
1459 for (;;)
1460 {
1461 /*
1462 * Disassemble the instruction.
1463 */
1464 char szDis[256];
1465 uint32_t cbInstr = 1;
1466 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1467 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1468 &szDis[0], sizeof(szDis), &cbInstr);
1469 else
1470 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1471 &szDis[0], sizeof(szDis), &cbInstr);
1472 if (RT_SUCCESS(rc))
1473 {
1474 /* print it */
1475 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1476 if (RT_FAILURE(rc))
1477 return rc;
1478 }
1479 else
1480 {
1481 /* bitch. */
1482 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1483 if (RT_FAILURE(rc2))
1484 return rc2;
1485 if (cTries-- > 0)
1486 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1487 cbInstr = 1;
1488 }
1489
1490 /* advance */
1491 if (iRangeLeft < 0) /* 'r' */
1492 break;
1493 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1494 iRangeLeft--;
1495 else
1496 iRangeLeft -= cbInstr;
1497 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1498 if (RT_FAILURE(rc))
1499 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1500 if (iRangeLeft <= 0)
1501 break;
1502 fFlags &= ~DBGF_DISAS_FLAGS_CURRENT_GUEST;
1503
1504 /* Print next symbol? */
1505 if (cbCheckSymbol <= cbInstr)
1506 {
1507 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1508 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1509 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1510 else
1511 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1512 if (RT_SUCCESS(rc))
1513 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1514 else
1515 cbCheckSymbol = UINT32_MAX;
1516 }
1517 else
1518 cbCheckSymbol -= cbInstr;
1519 }
1520
1521 NOREF(pCmd);
1522 return VINF_SUCCESS;
1523}
1524
1525
1526/**
1527 * @callback_method_impl{FNDGCSCREENBLIT}
1528 */
1529static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser)
1530{
1531 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
1532 return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz);
1533}
1534
1535
1536/**
1537 * Checks whether both addresses are equal.
1538 *
1539 * @returns true if both addresses point to the same location, false otherwise.
1540 * @param pAddr1 First address.
1541 * @param pAddr2 Second address.
1542 */
1543static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1544{
1545 return pAddr1->Sel == pAddr2->Sel
1546 && pAddr1->off == pAddr2->off;
1547}
1548
1549
1550/**
1551 * Checks whether the first given address is lower than the second one.
1552 *
1553 * @returns true if both addresses point to the same location, false otherwise.
1554 * @param pAddr1 First address.
1555 * @param pAddr2 Second address.
1556 */
1557static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1558{
1559 return pAddr1->Sel == pAddr2->Sel
1560 && pAddr1->off < pAddr2->off;
1561}
1562
1563
1564/**
1565 * Calculates the size required for the given basic block including the
1566 * border and spacing on the edges.
1567 *
1568 * @param hFlowBb The basic block handle.
1569 * @param pDumpBb The dumper state to fill in for the basic block.
1570 */
1571static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb)
1572{
1573 uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb);
1574 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb);
1575
1576 pDumpBb->hFlowBb = hFlowBb;
1577 pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */
1578 pDumpBb->cchWidth = 0;
1579 DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart);
1580
1581 DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb);
1582 if ( enmType == DBGFFLOWBBENDTYPE_COND
1583 || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1584 || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP)
1585 DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget);
1586
1587 if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1588 {
1589 const char *pszErr = NULL;
1590 DBGFR3FlowBbQueryError(hFlowBb, &pszErr);
1591 if (pszErr)
1592 {
1593 pDumpBb->cchHeight++;
1594 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszErr));
1595 }
1596 }
1597 for (unsigned i = 0; i < cInstr; i++)
1598 {
1599 const char *pszInstr = NULL;
1600 int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr);
1601 AssertRC(rc);
1602 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszInstr));
1603 }
1604 pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */
1605}
1606
1607
1608/**
1609 * Dumps a top or bottom boundary line.
1610 *
1611 * @param hScreen The screen to draw to.
1612 * @param uStartX Where to start drawing the boundary.
1613 * @param uStartY Y coordinate.
1614 * @param cchWidth Width of the boundary.
1615 * @param enmColor The color to use for drawing.
1616 */
1617static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1618 DBGCSCREENCOLOR enmColor)
1619{
1620 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor);
1621 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1622 uStartY, '-', enmColor);
1623 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor);
1624}
1625
1626
1627/**
1628 * Dumps a spacing line between the top or bottom boundary and the actual disassembly.
1629 *
1630 * @param hScreen The screen to draw to.
1631 * @param uStartX Where to start drawing the spacing.
1632 * @param uStartY Y coordinate.
1633 * @param cchWidth Width of the spacing.
1634 * @param enmColor The color to use for drawing.
1635 */
1636static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1637 DBGCSCREENCOLOR enmColor)
1638{
1639 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor);
1640 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1641 uStartY, ' ', enmColor);
1642 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor);
1643}
1644
1645
1646/**
1647 * Writes a given text to the screen.
1648 *
1649 * @param hScreen The screen to draw to.
1650 * @param uStartX Where to start drawing the line.
1651 * @param uStartY Y coordinate.
1652 * @param cchWidth Maximum width of the text.
1653 * @param pszText The text to write.
1654 * @param enmTextColor The color to use for drawing the text.
1655 * @param enmBorderColor The color to use for drawing the border.
1656 */
1657static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY,
1658 uint32_t cchWidth, const char *pszText,
1659 DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor)
1660{
1661 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor);
1662 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor);
1663 dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor);
1664 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor);
1665}
1666
1667
1668/**
1669 * Dumps one basic block using the dumper callback.
1670 *
1671 * @param pDumpBb The basic block dump state to dump.
1672 * @param hScreen The screen to draw to.
1673 */
1674static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen)
1675{
1676 uint32_t uStartY = pDumpBb->uStartY;
1677 bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR);
1678 DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT;
1679
1680 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1681 uStartY++;
1682 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1683 uStartY++;
1684
1685 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb);
1686 for (unsigned i = 0; i < cInstr; i++)
1687 {
1688 const char *pszInstr = NULL;
1689 DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr);
1690 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i,
1691 pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT,
1692 enmColor);
1693 }
1694 uStartY += cInstr;
1695
1696 if (fError)
1697 {
1698 const char *pszErr = NULL;
1699 DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr);
1700 if (pszErr)
1701 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY,
1702 pDumpBb->cchWidth, pszErr, enmColor,
1703 enmColor);
1704 uStartY++;
1705 }
1706
1707 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1708 uStartY++;
1709 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1710 uStartY++;
1711}
1712
1713
1714/**
1715 * Dumps one branch table using the dumper callback.
1716 *
1717 * @param pDumpBranchTbl The basic block dump state to dump.
1718 * @param hScreen The screen to draw to.
1719 */
1720static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen)
1721{
1722 uint32_t uStartY = pDumpBranchTbl->uStartY;
1723 DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT;
1724
1725 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1726 uStartY++;
1727 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1728 uStartY++;
1729
1730 uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl);
1731 for (unsigned i = 0; i < cSlots; i++)
1732 {
1733 DBGFADDRESS Addr;
1734 char szAddr[128];
1735
1736 RT_ZERO(szAddr);
1737 DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr);
1738
1739 if (Addr.Sel == DBGF_SEL_FLAT)
1740 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr);
1741 else
1742 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off);
1743
1744 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i,
1745 pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT,
1746 enmColor);
1747 }
1748 uStartY += cSlots;
1749
1750 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1751 uStartY++;
1752 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1753 uStartY++;
1754}
1755
1756
1757/**
1758 * Fills in the dump states for the basic blocks and branch tables.
1759 *
1760 * @returns VBox status code.
1761 * @param hFlowIt The control flow graph iterator handle.
1762 * @param hFlowBranchTblIt The control flow graph branch table iterator handle.
1763 * @param paDumpBb The array of basic block dump states.
1764 * @param paDumpBranchTbl The array of branch table dump states.
1765 * @param cBbs Number of basic blocks.
1766 * @param cBranchTbls Number of branch tables.
1767 */
1768static int dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt,
1769 PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl,
1770 uint32_t cBbs, uint32_t cBranchTbls)
1771{
1772 RT_NOREF2(cBbs, cBranchTbls);
1773
1774 /* Calculate the sizes of each basic block first. */
1775 DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt);
1776 uint32_t idx = 0;
1777 while (hFlowBb)
1778 {
1779 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]);
1780 idx++;
1781 hFlowBb = DBGFR3FlowItNext(hFlowIt);
1782 }
1783
1784 if (paDumpBranchTbl)
1785 {
1786 idx = 0;
1787 DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1788 while (hFlowBranchTbl)
1789 {
1790 paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl;
1791 paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */
1792 paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */
1793 idx++;
1794 hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1795 }
1796 }
1797
1798 return VINF_SUCCESS;
1799}
1800
1801/**
1802 * Dumps the given control flow graph to the output.
1803 *
1804 * @returns VBox status code.
1805 * @param hCfg The control flow graph handle.
1806 * @param fUseColor Flag whether the output should be colorized.
1807 * @param pCmdHlp The command helper callback table.
1808 */
1809static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp)
1810{
1811 int rc = VINF_SUCCESS;
1812 DBGFFLOWIT hCfgIt = NULL;
1813 DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL;
1814 uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg);
1815 uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg);
1816 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP));
1817 PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL;
1818
1819 if (cBranchTbls)
1820 paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP));
1821
1822 if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0)))
1823 rc = VERR_NO_MEMORY;
1824 if (RT_SUCCESS(rc))
1825 rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt);
1826 if (RT_SUCCESS(rc) && cBranchTbls > 0)
1827 rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt);
1828
1829 if (RT_SUCCESS(rc))
1830 {
1831 rc = dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl,
1832 cBbs, cBranchTbls);
1833
1834 /* Calculate the ASCII screen dimensions and create one. */
1835 uint32_t cchWidth = 0;
1836 uint32_t cchLeftExtra = 5;
1837 uint32_t cchRightExtra = 5;
1838 uint32_t cchHeight = 0;
1839 for (unsigned i = 0; i < cBbs; i++)
1840 {
1841 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1842 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
1843 cchHeight += pDumpBb->cchHeight;
1844
1845 /* Incomplete blocks don't have a successor. */
1846 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1847 continue;
1848
1849 switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb))
1850 {
1851 case DBGFFLOWBBENDTYPE_EXIT:
1852 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1853 break;
1854 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1855 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1856 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1857 cchLeftExtra++;
1858 else
1859 cchRightExtra++;
1860 break;
1861 case DBGFFLOWBBENDTYPE_UNCOND:
1862 cchHeight += 2; /* For the arrow down to the next basic block. */
1863 break;
1864 case DBGFFLOWBBENDTYPE_COND:
1865 cchHeight += 2; /* For the arrow down to the next basic block. */
1866 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1867 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1868 cchLeftExtra++;
1869 else
1870 cchRightExtra++;
1871 break;
1872 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1873 default:
1874 AssertFailed();
1875 }
1876 }
1877
1878 for (unsigned i = 0; i < cBranchTbls; i++)
1879 {
1880 PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i];
1881 cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth);
1882 cchHeight += pDumpBranchTbl->cchHeight;
1883 }
1884
1885 cchWidth += 2;
1886
1887 DBGCSCREEN hScreen = NULL;
1888 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight);
1889 if (RT_SUCCESS(rc))
1890 {
1891 uint32_t uY = 0;
1892
1893 /* Dump the branch tables first. */
1894 for (unsigned i = 0; i < cBranchTbls; i++)
1895 {
1896 paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2;
1897 paDumpBranchTbl[i].uStartY = uY;
1898 dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen);
1899 uY += paDumpBranchTbl[i].cchHeight;
1900 }
1901
1902 /* Dump the basic blocks and connections to the immediate successor. */
1903 for (unsigned i = 0; i < cBbs; i++)
1904 {
1905 paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2;
1906 paDumpBb[i].uStartY = uY;
1907 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
1908 uY += paDumpBb[i].cchHeight;
1909
1910 /* Incomplete blocks don't have a successor. */
1911 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1912 continue;
1913
1914 switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb))
1915 {
1916 case DBGFFLOWBBENDTYPE_EXIT:
1917 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1918 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1919 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1920 break;
1921 case DBGFFLOWBBENDTYPE_UNCOND:
1922 /* Draw the arrow down to the next block. */
1923 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1924 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
1925 uY++;
1926 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1927 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
1928 uY++;
1929 break;
1930 case DBGFFLOWBBENDTYPE_COND:
1931 /* Draw the arrow down to the next block. */
1932 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1933 '|', DBGCSCREENCOLOR_RED_BRIGHT);
1934 uY++;
1935 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1936 'V', DBGCSCREENCOLOR_RED_BRIGHT);
1937 uY++;
1938 break;
1939 default:
1940 AssertFailed();
1941 }
1942 }
1943
1944 /* Last pass, connect all remaining branches. */
1945 uint32_t uBackConns = 0;
1946 uint32_t uFwdConns = 0;
1947 for (unsigned i = 0; i < cBbs; i++)
1948 {
1949 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1950 DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb);
1951
1952 /* Incomplete blocks don't have a successor. */
1953 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1954 continue;
1955
1956 switch (enmEndType)
1957 {
1958 case DBGFFLOWBBENDTYPE_EXIT:
1959 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1960 case DBGFFLOWBBENDTYPE_UNCOND:
1961 break;
1962 case DBGFFLOWBBENDTYPE_COND:
1963 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1964 {
1965 /* Find the target first to get the coordinates. */
1966 PDBGCFLOWBBDUMP pDumpBbTgt = NULL;
1967 for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++)
1968 {
1969 pDumpBbTgt = &paDumpBb[idxDumpBb];
1970 if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart))
1971 break;
1972 }
1973
1974 DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1975 ? DBGCSCREENCOLOR_YELLOW_BRIGHT
1976 : DBGCSCREENCOLOR_GREEN_BRIGHT;
1977
1978 /*
1979 * Use the right side for targets with higher addresses,
1980 * left when jumping backwards.
1981 */
1982 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1983 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1984 {
1985 /* Going backwards. */
1986 uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1;
1987 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1988 uBackConns++;
1989
1990 /* Draw the arrow pointing to the target block. */
1991 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY,
1992 '>', enmColor);
1993 /* Draw the horizontal line. */
1994 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2,
1995 pDumpBbTgt->uStartY, '-', enmColor);
1996 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1997 enmColor);
1998 /* Draw the vertical line down to the source block. */
1999 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1,
2000 '|', enmColor);
2001 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2002 /* Draw the horizontal connection between the source block and vertical part. */
2003 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1,
2004 uYHorLine, '-', enmColor);
2005
2006 }
2007 else
2008 {
2009 /* Going forward. */
2010 uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1;
2011 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
2012 uFwdConns++;
2013
2014 /* Draw the horizontal line. */
2015 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth,
2016 uXVerLine - 1, uYHorLine, '-', enmColor);
2017 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2018 /* Draw the vertical line down to the target block. */
2019 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1,
2020 '|', enmColor);
2021 /* Draw the horizontal connection between the target block and vertical part. */
2022 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2023 uXVerLine, pDumpBbTgt->uStartY, '-', enmColor);
2024 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
2025 enmColor);
2026 /* Draw the arrow pointing to the target block. */
2027 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2028 pDumpBbTgt->uStartY, '<', enmColor);
2029 }
2030 break;
2031 }
2032 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
2033 default:
2034 AssertFailed();
2035 }
2036 }
2037
2038 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor);
2039 dbgcScreenAsciiDestroy(hScreen);
2040 }
2041 }
2042
2043 if (paDumpBb)
2044 {
2045 for (unsigned i = 0; i < cBbs; i++)
2046 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
2047 RTMemTmpFree(paDumpBb);
2048 }
2049
2050 if (paDumpBranchTbl)
2051 {
2052 for (unsigned i = 0; i < cBranchTbls; i++)
2053 DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl);
2054 RTMemTmpFree(paDumpBranchTbl);
2055 }
2056
2057 if (hCfgIt)
2058 DBGFR3FlowItDestroy(hCfgIt);
2059 if (hFlowBranchTblIt)
2060 DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt);
2061
2062 return rc;
2063}
2064
2065
2066/**
2067 * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.}
2068 */
2069static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2070{
2071 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2072
2073 /*
2074 * Validate input.
2075 */
2076 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2077 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
2078 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2079
2080 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2081 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
2082
2083 /*
2084 * Check the desired mode.
2085 */
2086 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
2087 bool fUseColor = false;
2088 switch (pCmd->pszCmd[4])
2089 {
2090 default: AssertFailed(); RT_FALL_THRU();
2091 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
2092 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
2093 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
2094 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
2095 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
2096 case 'c': fUseColor = true; break;
2097 }
2098
2099 /** @todo should use DBGFADDRESS for everything */
2100
2101 /*
2102 * Find address.
2103 */
2104 if (!cArgs)
2105 {
2106 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2107 {
2108#if defined(VBOX_VMM_TARGET_ARMV8)
2109 AssertReleaseFailed();
2110#else
2111 /** @todo Batch query CS, RIP, CPU mode and flags. */
2112 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2113 if (CPUMIsGuestIn64BitCode(pVCpu))
2114 {
2115 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
2116 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
2117 }
2118 else
2119 {
2120 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
2121 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2122 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2123 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
2124 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
2125 {
2126 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2127 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
2128 }
2129 }
2130#endif
2131
2132 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
2133 }
2134 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
2135 {
2136 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2137 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
2138 }
2139 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
2140 }
2141 else
2142 pDbgc->DisasmPos = paArgs[0];
2143 pDbgc->pLastPos = &pDbgc->DisasmPos;
2144
2145 /*
2146 * Range.
2147 */
2148 switch (pDbgc->DisasmPos.enmRangeType)
2149 {
2150 case DBGCVAR_RANGE_NONE:
2151 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2152 pDbgc->DisasmPos.u64Range = 10;
2153 break;
2154
2155 case DBGCVAR_RANGE_ELEMENTS:
2156 if (pDbgc->DisasmPos.u64Range > 2048)
2157 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
2158 break;
2159
2160 case DBGCVAR_RANGE_BYTES:
2161 if (pDbgc->DisasmPos.u64Range > 65536)
2162 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
2163 break;
2164
2165 default:
2166 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
2167 }
2168
2169 /*
2170 * Convert physical and host addresses to guest addresses.
2171 */
2172 RTDBGAS hDbgAs = pDbgc->hDbgAs;
2173 int rc;
2174 switch (pDbgc->DisasmPos.enmType)
2175 {
2176 case DBGCVAR_TYPE_GC_FLAT:
2177 case DBGCVAR_TYPE_GC_FAR:
2178 break;
2179 case DBGCVAR_TYPE_GC_PHYS:
2180 hDbgAs = DBGF_AS_PHYS;
2181 RT_FALL_THRU();
2182 case DBGCVAR_TYPE_HC_FLAT:
2183 case DBGCVAR_TYPE_HC_PHYS:
2184 {
2185 DBGCVAR VarTmp;
2186 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
2187 if (RT_FAILURE(rc))
2188 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
2189 pDbgc->DisasmPos = VarTmp;
2190 break;
2191 }
2192 default: AssertFailed(); break;
2193 }
2194
2195 DBGFADDRESS CurAddr;
2196 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
2197 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
2198 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
2199 else
2200 {
2201 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
2202 if (RT_FAILURE(rc))
2203 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
2204 }
2205
2206 DBGFFLOW hCfg;
2207 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
2208 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
2209 if (RT_SUCCESS(rc))
2210 {
2211 /* Dump the graph. */
2212 rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp);
2213 DBGFR3FlowRelease(hCfg);
2214 }
2215 else
2216 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
2217
2218 NOREF(pCmd);
2219 return rc;
2220}
2221
2222
2223/**
2224 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
2225 */
2226static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2227{
2228 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2229
2230 /*
2231 * Validate input.
2232 */
2233 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2234 if (cArgs == 1)
2235 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2236 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2237 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
2238 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
2239 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
2240
2241 /*
2242 * Find address.
2243 */
2244 if (!cArgs)
2245 {
2246 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2247 {
2248#if defined(VBOX_VMM_TARGET_ARMV8)
2249 AssertReleaseFailed();
2250#else
2251 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2252 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
2253 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2254 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2255#endif
2256 }
2257 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
2258 }
2259 else
2260 pDbgc->SourcePos = paArgs[0];
2261 pDbgc->pLastPos = &pDbgc->SourcePos;
2262
2263 /*
2264 * Ensure the source address is flat GC.
2265 */
2266 switch (pDbgc->SourcePos.enmType)
2267 {
2268 case DBGCVAR_TYPE_GC_FLAT:
2269 break;
2270 case DBGCVAR_TYPE_GC_PHYS:
2271 case DBGCVAR_TYPE_GC_FAR:
2272 case DBGCVAR_TYPE_HC_FLAT:
2273 case DBGCVAR_TYPE_HC_PHYS:
2274 {
2275 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
2276 if (RT_FAILURE(rc))
2277 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
2278 break;
2279 }
2280 default: AssertFailed(); break;
2281 }
2282
2283 /*
2284 * Range.
2285 */
2286 switch (pDbgc->SourcePos.enmRangeType)
2287 {
2288 case DBGCVAR_RANGE_NONE:
2289 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2290 pDbgc->SourcePos.u64Range = 10;
2291 break;
2292
2293 case DBGCVAR_RANGE_ELEMENTS:
2294 if (pDbgc->SourcePos.u64Range > 2048)
2295 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
2296 break;
2297
2298 case DBGCVAR_RANGE_BYTES:
2299 if (pDbgc->SourcePos.u64Range > 65536)
2300 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2301 break;
2302
2303 default:
2304 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
2305 }
2306
2307 /*
2308 * Do the disassembling.
2309 */
2310 bool fFirst = 1;
2311 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
2312 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
2313 if (iRangeLeft == 0) /* kludge for 'r'. */
2314 iRangeLeft = -1;
2315 for (;;)
2316 {
2317 /*
2318 * Get line info.
2319 */
2320 RTDBGLINE Line;
2321 RTGCINTPTR off;
2322 DBGFADDRESS SourcePosAddr;
2323 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
2324 if (RT_FAILURE(rc))
2325 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
2326 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
2327 if (RT_FAILURE(rc))
2328 return VINF_SUCCESS;
2329
2330 unsigned cLines = 0;
2331 if (memcmp(&Line, &LinePrev, sizeof(Line)))
2332 {
2333 /*
2334 * Print filenamename
2335 */
2336 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
2337 fFirst = true;
2338 if (fFirst)
2339 {
2340 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
2341 if (RT_FAILURE(rc))
2342 return rc;
2343 }
2344
2345 /*
2346 * Try open the file and read the line.
2347 */
2348 FILE *phFile = fopen(Line.szFilename, "r");
2349 if (phFile)
2350 {
2351 /* Skip ahead to the desired line. */
2352 char szLine[4096];
2353 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
2354 if (cBefore > 7)
2355 cBefore = 0;
2356 unsigned cLeft = Line.uLineNo - cBefore;
2357 while (cLeft > 0)
2358 {
2359 szLine[0] = '\0';
2360 if (!fgets(szLine, sizeof(szLine), phFile))
2361 break;
2362 cLeft--;
2363 }
2364 if (!cLeft)
2365 {
2366 /* print the before lines */
2367 for (;;)
2368 {
2369 size_t cch = strlen(szLine);
2370 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
2371 szLine[--cch] = '\0';
2372 if (cBefore-- <= 0)
2373 break;
2374
2375 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
2376 szLine[0] = '\0';
2377 const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc);
2378 cLines++;
2379 }
2380 /* print the actual line */
2381 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
2382 }
2383 fclose(phFile);
2384 if (RT_FAILURE(rc))
2385 return rc;
2386 fFirst = false;
2387 }
2388 else
2389 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
2390
2391 LinePrev = Line;
2392 }
2393
2394
2395 /*
2396 * Advance
2397 */
2398 if (iRangeLeft < 0) /* 'r' */
2399 break;
2400 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
2401 iRangeLeft -= cLines;
2402 else
2403 iRangeLeft -= 1;
2404 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
2405 if (RT_FAILURE(rc))
2406 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
2407 if (iRangeLeft <= 0)
2408 break;
2409 }
2410
2411 NOREF(pCmd);
2412 return 0;
2413}
2414
2415
2416/**
2417 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
2418 */
2419static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2420{
2421 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2422}
2423
2424
2425/**
2426 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
2427 * commands.}
2428 */
2429static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
2430 const char *pszPrefix)
2431{
2432 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2433 int rc;
2434 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
2435 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
2436 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
2437
2438 /*
2439 * Parse the register name and kind.
2440 */
2441 bool const fAllRegs = strcmp(paArgs[0].u.pszString, "all") == 0;
2442 const char *pszReg = paArgs[0].u.pszString;
2443 if (*pszReg == '@')
2444 pszReg++;
2445 VMCPUID idCpu = pDbgc->idCpu;
2446 if (*pszPrefix)
2447 idCpu |= DBGFREG_HYPER_VMCPUID;
2448 if (*pszReg == '.')
2449 {
2450 pszReg++;
2451 idCpu |= DBGFREG_HYPER_VMCPUID;
2452 }
2453 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
2454 if (cArgs == 1)
2455 {
2456 /*
2457 * Show the register.
2458 *
2459 * If it ends with a '.' or '.*', we'll show any subfields and aliases as
2460 * well. This is a special VBox twist.
2461 */
2462 size_t cchReg = strlen(pszReg);
2463 size_t cchSuffix = 0;
2464 if (cchReg >= 2 && pszReg[cchReg - 1] == '.')
2465 cchSuffix = 1;
2466 else if (cchReg >= 3 && pszReg[cchReg - 1] == '*' && pszReg[cchReg - 2] == '.')
2467 cchSuffix = 2;
2468
2469 char szValue[160];
2470 if (!cchSuffix && !fAllRegs)
2471 {
2472 DBGFREGVALTYPE enmType;
2473 DBGFREGVAL Value;
2474 rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2475 if (RT_FAILURE(rc))
2476 {
2477 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2478 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2479 pszActualPrefix, pszReg);
2480 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2481 pszActualPrefix, pszReg, rc);
2482 }
2483
2484 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
2485 if (RT_SUCCESS(rc))
2486 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
2487 else
2488 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2489 }
2490 else
2491 {
2492 /*
2493 * Register + aliases + subfields OR 'all'.
2494 */
2495 /* Duplicate the register specifier sans suffix. */
2496 char *pszRegBase = RTStrDupN(pszReg, cchReg - cchSuffix);
2497 AssertReturn(pszRegBase, VERR_NO_STR_MEMORY);
2498
2499 /* Make a rough guess on how many entires we need, or query it in the case of 'all'. */
2500 size_t cRegsAlloc = 128;
2501 if (fAllRegs)
2502 DBGFR3RegNmQueryAllCount(pUVM, &cRegsAlloc);
2503 PDBGFREGENTRYNM paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc);
2504 AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY);
2505 size_t cRegs = cRegsAlloc;
2506
2507 /* Query the registers.*/
2508 if (fAllRegs)
2509 rc = DBGFR3RegNmQueryAll(pUVM, paRegs, cRegs);
2510 else
2511 rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase, DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES,
2512 paRegs, &cRegs);
2513 if (rc == VERR_BUFFER_OVERFLOW && !fAllRegs)
2514 {
2515 RTMemTmpFree(paRegs);
2516 cRegsAlloc = cRegs;
2517 paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc);
2518 AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY);
2519 rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase,
2520 DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES, paRegs, &cRegs);
2521 }
2522 if (RT_SUCCESS(rc))
2523 {
2524 /* Find max lengths and sizes for producing pretty columns. */
2525 size_t cchMaxNm = 2;
2526 size_t cchMaxSubFieldNm = 2;
2527 size_t cMaxSubFieldBits = 1;
2528 if (*pszActualPrefix == '\0')
2529 for (uint32_t iReg = 0; iReg < cRegs; iReg++)
2530 {
2531 size_t const cchName = strlen(paRegs[iReg].pszName);
2532 if (cchMaxNm < cchName)
2533 cchMaxNm = cchName;
2534 if (paRegs[iReg].u.s.fSubField)
2535 {
2536 cchMaxSubFieldNm = RT_MAX(cchMaxSubFieldNm, cchName);
2537 cMaxSubFieldBits = RT_MAX(cMaxSubFieldBits, paRegs[iReg].u.s.cBits);
2538 }
2539 }
2540
2541 /* Output the registers. */
2542 size_t cchMaxSubFieldValue = 2 + (cMaxSubFieldBits + 3) / 4;
2543 size_t cMaxSameLine = 80 / (2 + cchMaxSubFieldNm + 1 + cchMaxSubFieldValue);
2544 unsigned iSameLine = 0;
2545 for (uint32_t iReg = 0; iReg < cRegs; iReg++)
2546 {
2547 if ( !paRegs[iReg].u.s.fSubField
2548 || !paRegs[iReg].u.s.cBits)
2549 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &paRegs[iReg].Val,
2550 paRegs[iReg].enmType, true /*fSpecial*/);
2551 else
2552 rc = DBGFR3RegFormatValueEx(szValue, sizeof(szValue), &paRegs[iReg].Val, paRegs[iReg].enmType,
2553 16,
2554 (paRegs[iReg].u.s.cBits + 3) / 4,
2555 0,
2556 (paRegs[iReg].u.s.cBits == 1 ? 0 : RTSTR_F_SPECIAL) | RTSTR_F_WIDTH);
2557 if (RT_SUCCESS(rc))
2558 {
2559 if (!paRegs[iReg].u.s.fSubField)
2560 {
2561 if (iSameLine > 0)
2562 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2563 if (*pszActualPrefix == '\0')
2564 rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s=%s\n", cchMaxNm, paRegs[iReg].pszName, szValue);
2565 else
2566 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, paRegs[iReg].pszName, szValue);
2567 iSameLine = 0;
2568 }
2569 else
2570 {
2571 if (*pszActualPrefix == '\0')
2572 rc = DBGCCmdHlpPrintf(pCmdHlp, " %*s=%s", cchMaxSubFieldNm, paRegs[iReg].pszName, szValue);
2573 else
2574 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s%s=%s", pszActualPrefix, paRegs[iReg].pszName, szValue);
2575 iSameLine++;
2576 if (iSameLine < cMaxSameLine)
2577 {
2578 size_t cchValue = strlen(szValue);
2579 if (cchValue < cchMaxSubFieldValue)
2580 rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s", cchMaxSubFieldValue - cchValue, "");
2581 }
2582 else
2583 {
2584 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2585 iSameLine = 0;
2586 }
2587 }
2588 }
2589 else
2590 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue[Ex] failed for %s: %Rrc.\n",
2591 paRegs[iReg].pszName, rc);
2592 }
2593 if (iSameLine > 0)
2594 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2595 }
2596 else if (fAllRegs)
2597 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryAll failed: %Rrc.\n", rc);
2598 else if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2599 rc = DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2600 pszActualPrefix, pszRegBase);
2601 else
2602 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryEx failed querying '%s%s': %Rrc.\n",
2603 pszActualPrefix, pszRegBase, rc);
2604 RTStrFree(pszRegBase);
2605 RTMemTmpFree(paRegs);
2606 }
2607 }
2608 else
2609 {
2610 /*
2611 * We're about to modify the register.
2612 *
2613 * First we need to query the register type (see below).
2614 */
2615 DBGFREGVALTYPE enmType;
2616 DBGFREGVAL Value;
2617 rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2618 if (RT_FAILURE(rc))
2619 {
2620 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2621 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2622 pszActualPrefix, pszReg);
2623 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2624 pszActualPrefix, pszReg, rc);
2625 }
2626
2627 DBGCVAR NewValueTmp;
2628 PCDBGCVAR pNewValue;
2629 if (cArgs == 3)
2630 {
2631 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2632 if (strcmp(paArgs[1].u.pszString, "="))
2633 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
2634 pNewValue = &paArgs[2];
2635 }
2636 else
2637 {
2638 /* Not possible to convince the parser to support both codeview and
2639 windbg syntax and make the equal sign optional. Try help it. */
2640 /** @todo make DBGCCmdHlpConvert do more with strings. */
2641 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
2642 if (RT_FAILURE(rc))
2643 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
2644 pNewValue = &NewValueTmp;
2645 }
2646
2647 /*
2648 * Modify the register.
2649 */
2650 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
2651 if (enmType != DBGFREGVALTYPE_DTR)
2652 {
2653 enmType = DBGFREGVALTYPE_U64;
2654 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
2655 }
2656 else
2657 {
2658 enmType = DBGFREGVALTYPE_DTR;
2659 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
2660 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
2661 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
2662 }
2663 if (RT_SUCCESS(rc))
2664 {
2665 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
2666 if (RT_FAILURE(rc))
2667 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
2668 pszActualPrefix, pszReg, rc);
2669 if (rc != VINF_SUCCESS)
2670 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
2671 }
2672 else
2673 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2674 }
2675 return rc;
2676}
2677
2678
2679/**
2680 * @callback_method_impl{FNDBGCCMD,
2681 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
2682 */
2683static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2684{
2685 /*
2686 * Show all registers our selves.
2687 */
2688 if (cArgs == 0)
2689 {
2690 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2691 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
2692 || ( strcmp(pCmd->pszCmd, "rg32") != 0
2693 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
2694 return DBGCCmdHlpRegPrintf(pCmdHlp, pDbgc->idCpu, f64BitMode, pDbgc->fRegTerse);
2695 }
2696 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
2697}
2698
2699
2700/**
2701 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
2702 */
2703static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2704{
2705 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2706
2707 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2708 pDbgc->fRegTerse = !pDbgc->fRegTerse;
2709 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
2710}
2711
2712
2713/**
2714 * @callback_method_impl{FNDBGCCMD, The 'pr' and 'tr' commands.}
2715 */
2716static DECLCALLBACK(int) dbgcCmdStepTraceToggle(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2717{
2718 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2719 Assert(cArgs == 0); NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2720
2721 /* Note! windbg accepts 'r' as a flag to 'p', 'pa', 'pc', 'pt', 't',
2722 'ta', 'tc' and 'tt'. We've simplified it. */
2723 pDbgc->fStepTraceRegs = !pDbgc->fStepTraceRegs;
2724 return VINF_SUCCESS;
2725}
2726
2727
2728/**
2729 * @callback_method_impl{FNDBGCCMD, The 'p'\, 'pc'\, 'pt'\, 't'\, 'tc'\, and 'tt' commands.}
2730 */
2731static DECLCALLBACK(int) dbgcCmdStepTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2732{
2733 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2734 if (cArgs != 0)
2735 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2736 "Sorry, but the '%s' command does not currently implement any arguments.\n", pCmd->pszCmd);
2737
2738 /* The 'count' has to be implemented by DBGC, whereas the
2739 filtering is taken care of by DBGF. */
2740
2741 /*
2742 * Convert the command to DBGF_STEP_F_XXX and other API input.
2743 */
2744 //DBGFADDRESS StackPop;
2745 PDBGFADDRESS pStackPop = NULL;
2746 RTGCPTR cbStackPop = 0;
2747 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : _64K;
2748 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2749 if (pCmd->pszCmd[1] == 'c')
2750 fFlags |= DBGF_STEP_F_STOP_ON_CALL;
2751 else if (pCmd->pszCmd[1] == 't')
2752 fFlags |= DBGF_STEP_F_STOP_ON_RET;
2753 else if (pCmd->pszCmd[0] != 'p')
2754 cMaxSteps = 1;
2755 else
2756 {
2757 /** @todo consider passing RSP + 1 in for 'p' and something else sensible for
2758 * the 'pt' command. */
2759 }
2760
2761 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, NULL, pStackPop, cbStackPop, cMaxSteps);
2762 if (RT_SUCCESS(rc))
2763 pDbgc->fReady = false;
2764 else
2765 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2766
2767 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2768 return rc;
2769}
2770
2771
2772/**
2773 * @callback_method_impl{FNDBGCCMD, The 'pa' and 'ta' commands.}
2774 */
2775static DECLCALLBACK(int) dbgcCmdStepTraceTo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2776{
2777 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2778 if (cArgs != 1)
2779 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2780 "Sorry, but the '%s' command only implements a single argument at present.\n", pCmd->pszCmd);
2781 DBGFADDRESS Address;
2782 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
2783 if (RT_FAILURE(rc))
2784 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[0]);
2785
2786 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : 1;
2787 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2788 rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, &Address, NULL, 0, cMaxSteps);
2789 if (RT_SUCCESS(rc))
2790 pDbgc->fReady = false;
2791 else
2792 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2793 return rc;
2794}
2795
2796
2797/**
2798 * Helper that tries to resolve a far address to a symbol and formats it.
2799 *
2800 * @returns Pointer to symbol string on success, NULL if not resolved.
2801 * Free using RTStrFree.
2802 * @param pCmdHlp The command helper structure.
2803 * @param hAs The address space to use. NIL_RTDBGAS means no symbol resolving.
2804 * @param sel The selector part of the address.
2805 * @param off The offset part of the address.
2806 * @param pszPrefix How to prefix the symbol string.
2807 * @param pszSuffix How to suffix the symbol string.
2808 */
2809static char *dbgcCmdHlpFarAddrToSymbol(PDBGCCMDHLP pCmdHlp, RTDBGAS hAs, RTSEL sel, uint64_t off,
2810 const char *pszPrefix, const char *pszSuffix)
2811{
2812 char *pszRet = NULL;
2813 if (hAs != NIL_RTDBGAS)
2814 {
2815 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2816 DBGFADDRESS Addr;
2817 int rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, sel, off);
2818 if (RT_SUCCESS(rc))
2819 {
2820 RTGCINTPTR offDispSym = 0;
2821 PRTDBGSYMBOL pSymbol = DBGFR3AsSymbolByAddrA(pDbgc->pUVM, hAs, &Addr,
2822 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL
2823 | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
2824 &offDispSym, NULL);
2825 if (pSymbol)
2826 {
2827 if (offDispSym == 0)
2828 pszRet = RTStrAPrintf2("%s%s%s", pszPrefix, pSymbol->szName, pszSuffix);
2829 else if (offDispSym > 0)
2830 pszRet = RTStrAPrintf2("%s%s+%llx%s", pszPrefix, pSymbol->szName, (int64_t)offDispSym, pszSuffix);
2831 else
2832 pszRet = RTStrAPrintf2("%s%s-%llx%s", pszPrefix, pSymbol->szName, -(int64_t)offDispSym, pszSuffix);
2833 RTDbgSymbolFree(pSymbol);
2834 }
2835 }
2836 }
2837 return pszRet;
2838}
2839
2840
2841/**
2842 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
2843 */
2844static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2845{
2846 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2847
2848 /*
2849 * Figure which context we're called for and start walking that stack.
2850 */
2851 int rc;
2852 PCDBGFSTACKFRAME pFirstFrame;
2853 bool const fGuest = true;
2854 bool const fVerbose = pCmd->pszCmd[1] == 'v'
2855 || (pCmd->pszCmd[1] != '\0' && pCmd->pszCmd[2] == 'v');
2856 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
2857 if (RT_FAILURE(rc))
2858 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
2859
2860 /*
2861 * Print the frames.
2862 */
2863 char szTmp[1024];
2864 uint32_t fBitFlags = 0;
2865 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
2866 pFrame;
2867 pFrame = DBGFR3StackWalkNext(pFrame))
2868 {
2869 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
2870 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
2871 {
2872 if (fCurBitFlags != fBitFlags)
2873 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2874 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2875 pFrame->iFrame,
2876 pFrame->AddrFrame.Sel,
2877 (uint16_t)pFrame->AddrFrame.off,
2878 pFrame->AddrReturnFrame.Sel,
2879 (uint16_t)pFrame->AddrReturnFrame.off,
2880 (uint32_t)pFrame->AddrReturnPC.Sel,
2881 (uint32_t)pFrame->AddrReturnPC.off,
2882 pFrame->Args.au32[0],
2883 pFrame->Args.au32[1],
2884 pFrame->Args.au32[2],
2885 pFrame->Args.au32[3]);
2886 }
2887 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
2888 {
2889 if (fCurBitFlags != fBitFlags)
2890 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2891 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2892 pFrame->iFrame,
2893 (uint32_t)pFrame->AddrFrame.off,
2894 (uint32_t)pFrame->AddrReturnFrame.off,
2895 (uint32_t)pFrame->AddrReturnPC.Sel,
2896 (uint32_t)pFrame->AddrReturnPC.off,
2897 pFrame->Args.au32[0],
2898 pFrame->Args.au32[1],
2899 pFrame->Args.au32[2],
2900 pFrame->Args.au32[3]);
2901 }
2902 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
2903 {
2904 if (fCurBitFlags != fBitFlags)
2905 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
2906 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %016RX64 %04RX16:%016RX64 %016RX64",
2907 pFrame->iFrame,
2908 (uint64_t)pFrame->AddrFrame.off,
2909 pFrame->AddrReturnFrame.Sel,
2910 (uint64_t)pFrame->AddrReturnFrame.off,
2911 (uint64_t)pFrame->AddrReturnPC.off);
2912 }
2913 if (RT_FAILURE(rc))
2914 break;
2915 if (!pFrame->pSymPC)
2916 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
2917 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
2918 ? " %RTsel:%016RGv"
2919 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
2920 ? " %RTsel:%08RGv"
2921 : " %RTsel:%04RGv"
2922 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
2923 else
2924 {
2925 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
2926 if (offDisp > 0)
2927 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
2928 else if (offDisp < 0)
2929 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
2930 else
2931 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
2932 }
2933 if (RT_SUCCESS(rc) && pFrame->pLinePC)
2934 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
2935 if (RT_SUCCESS(rc))
2936 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2937
2938 if (fVerbose && RT_SUCCESS(rc))
2939 {
2940 /*
2941 * Display verbose frame info.
2942 */
2943 const char *pszRetType = "invalid";
2944 switch (pFrame->enmReturnType)
2945 {
2946 case RTDBGRETURNTYPE_NEAR16: pszRetType = "retn/16"; break;
2947 case RTDBGRETURNTYPE_NEAR32: pszRetType = "retn/32"; break;
2948 case RTDBGRETURNTYPE_NEAR64: pszRetType = "retn/64"; break;
2949 case RTDBGRETURNTYPE_FAR16: pszRetType = "retf/16"; break;
2950 case RTDBGRETURNTYPE_FAR32: pszRetType = "retf/32"; break;
2951 case RTDBGRETURNTYPE_FAR64: pszRetType = "retf/64"; break;
2952 case RTDBGRETURNTYPE_IRET16: pszRetType = "iret-16"; break;
2953 case RTDBGRETURNTYPE_IRET32: pszRetType = "iret/32s"; break;
2954 case RTDBGRETURNTYPE_IRET32_PRIV: pszRetType = "iret/32p"; break;
2955 case RTDBGRETURNTYPE_IRET32_V86: pszRetType = "iret/v86"; break;
2956 case RTDBGRETURNTYPE_IRET64: pszRetType = "iret/64"; break;
2957
2958 case RTDBGRETURNTYPE_END:
2959 case RTDBGRETURNTYPE_INVALID:
2960 case RTDBGRETURNTYPE_32BIT_HACK:
2961 break;
2962 }
2963 size_t cchLine = DBGCCmdHlpPrintfLen(pCmdHlp, " %s", pszRetType);
2964 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_UNWIND_INFO)
2965 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-unwind-info");
2966 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_ODD_EVEN)
2967 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-odd-even");
2968 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_REAL_V86)
2969 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " real-v86");
2970 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_MAX_DEPTH)
2971 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " max-depth");
2972 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_TRAP_FRAME)
2973 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " trap-frame");
2974
2975 if (pFrame->cSureRegs > 0)
2976 {
2977 cchLine = 1024; /* force new line */
2978 for (uint32_t i = 0; i < pFrame->cSureRegs; i++)
2979 {
2980 if (cchLine > 80)
2981 {
2982 DBGCCmdHlpPrintf(pCmdHlp, "\n ");
2983 cchLine = 2;
2984 }
2985
2986 szTmp[0] = '\0';
2987 DBGFR3RegFormatValue(szTmp, sizeof(szTmp), &pFrame->paSureRegs[i].Value,
2988 pFrame->paSureRegs[i].enmType, false);
2989 const char *pszName = pFrame->paSureRegs[i].enmReg != DBGFREG_END
2990 ? DBGFR3RegCpuName(pUVM, pFrame->paSureRegs[i].enmReg, pFrame->paSureRegs[i].enmType)
2991 : pFrame->paSureRegs[i].pszName;
2992 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " %s=%s", pszName, szTmp);
2993 }
2994 }
2995
2996 if (RT_SUCCESS(rc))
2997 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2998 }
2999
3000 if (RT_FAILURE(rc))
3001 break;
3002
3003 fBitFlags = fCurBitFlags;
3004 }
3005
3006 DBGFR3StackWalkEnd(pFirstFrame);
3007
3008 NOREF(paArgs); NOREF(cArgs);
3009 return rc;
3010}
3011
3012
3013/**
3014 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3015 *
3016 * @returns pfnPrintf status code.
3017 * @param pCmdHlp The DBGC command helpers.
3018 * @param pDesc The descriptor to display.
3019 * @param iEntry The descriptor entry number.
3020 * @param fHyper Whether the selector belongs to the hypervisor or not.
3021 * @param hAs Address space to use when resolving symbols.
3022 * @param pfDblEntry Where to indicate whether the entry is two entries wide.
3023 * Optional.
3024 */
3025static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs,
3026 bool *pfDblEntry)
3027{
3028 /* GUEST64 */
3029 int rc;
3030
3031 const char *pszHyper = fHyper ? " HYPER" : "";
3032 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3033 if (pDesc->Gen.u1DescType)
3034 {
3035 static const char * const s_apszTypes[] =
3036 {
3037 "DataRO", /* 0 Read-Only */
3038 "DataRO", /* 1 Read-Only - Accessed */
3039 "DataRW", /* 2 Read/Write */
3040 "DataRW", /* 3 Read/Write - Accessed */
3041 "DownRO", /* 4 Expand-down, Read-Only */
3042 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3043 "DownRW", /* 6 Expand-down, Read/Write */
3044 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3045 "CodeEO", /* 8 Execute-Only */
3046 "CodeEO", /* 9 Execute-Only - Accessed */
3047 "CodeER", /* A Execute/Readable */
3048 "CodeER", /* B Execute/Readable - Accessed */
3049 "ConfE0", /* C Conforming, Execute-Only */
3050 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3051 "ConfER", /* E Conforming, Execute/Readable */
3052 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3053 };
3054 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3055 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3056 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3057 uint32_t u32Base = X86DESC_BASE(pDesc);
3058 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
3059
3060 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3061 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3062 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3063 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3064 }
3065 else
3066 {
3067 static const char * const s_apszTypes[] =
3068 {
3069 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3070 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
3071 "LDT ", /* 2 0010 LDT */
3072 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
3073 "Ill-4 ", /* 4 0100 16-bit Call Gate */
3074 "Ill-5 ", /* 5 0101 Task Gate */
3075 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
3076 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
3077 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3078 "Tss64A", /* 9 1001 Available 32-bit TSS */
3079 "Ill-A ", /* A 1010 Reserved (Illegal) */
3080 "Tss64B", /* B 1011 Busy 32-bit TSS */
3081 "Call64", /* C 1100 32-bit Call Gate */
3082 "Ill-D ", /* D 1101 Reserved (Illegal) */
3083 "Int64 ", /* E 1110 32-bit Interrupt Gate */
3084 "Trap64" /* F 1111 32-bit Trap Gate */
3085 };
3086 switch (pDesc->Gen.u4Type)
3087 {
3088 /* raw */
3089 case X86_SEL_TYPE_SYS_UNDEFINED:
3090 case X86_SEL_TYPE_SYS_UNDEFINED2:
3091 case X86_SEL_TYPE_SYS_UNDEFINED4:
3092 case X86_SEL_TYPE_SYS_UNDEFINED3:
3093 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3094 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3095 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3096 case X86_SEL_TYPE_SYS_286_INT_GATE:
3097 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3098 case X86_SEL_TYPE_SYS_TASK_GATE:
3099 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3100 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3101 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3102 break;
3103
3104 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3105 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3106 case X86_SEL_TYPE_SYS_LDT:
3107 {
3108 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3109 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3110 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
3111
3112 uint64_t u64Base = X86DESC64_BASE(pDesc);
3113 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
3114
3115 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
3116 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
3117 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
3118 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3119 pszHyper);
3120 if (pfDblEntry)
3121 *pfDblEntry = true;
3122 break;
3123 }
3124
3125 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3126 {
3127 unsigned cParams = pDesc->au8[4] & 0x1f;
3128 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3129 RTSEL sel = pDesc->au16[1];
3130 uint64_t off = pDesc->au16[0]
3131 | ((uint64_t)pDesc->au16[3] << 16)
3132 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
3133 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3134 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s%s\n",
3135 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3136 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3137 RTStrFree(pszSymbol);
3138 if (pfDblEntry)
3139 *pfDblEntry = true;
3140 break;
3141 }
3142
3143 case X86_SEL_TYPE_SYS_386_INT_GATE:
3144 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3145 {
3146 RTSEL sel = pDesc->Gate.u16Sel;
3147 uint64_t off = pDesc->Gate.u16OffsetLow
3148 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
3149 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
3150 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3151 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s%s\n",
3152 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
3153 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper, pszSymbol ? pszSymbol : "");
3154 RTStrFree(pszSymbol);
3155 if (pfDblEntry)
3156 *pfDblEntry = true;
3157 break;
3158 }
3159
3160 /* impossible, just it's necessary to keep gcc happy. */
3161 default:
3162 return VINF_SUCCESS;
3163 }
3164 }
3165 return VINF_SUCCESS;
3166}
3167
3168
3169/**
3170 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3171 *
3172 * @returns pfnPrintf status code.
3173 * @param pCmdHlp The DBGC command helpers.
3174 * @param pDesc The descriptor to display.
3175 * @param iEntry The descriptor entry number.
3176 * @param fHyper Whether the selector belongs to the hypervisor or not.
3177 * @param hAs Address space to use when resolving symbols.
3178 */
3179static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs)
3180{
3181 int rc;
3182
3183 const char *pszHyper = fHyper ? " HYPER" : "";
3184 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3185 if (pDesc->Gen.u1DescType)
3186 {
3187 static const char * const s_apszTypes[] =
3188 {
3189 "DataRO", /* 0 Read-Only */
3190 "DataRO", /* 1 Read-Only - Accessed */
3191 "DataRW", /* 2 Read/Write */
3192 "DataRW", /* 3 Read/Write - Accessed */
3193 "DownRO", /* 4 Expand-down, Read-Only */
3194 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3195 "DownRW", /* 6 Expand-down, Read/Write */
3196 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3197 "CodeEO", /* 8 Execute-Only */
3198 "CodeEO", /* 9 Execute-Only - Accessed */
3199 "CodeER", /* A Execute/Readable */
3200 "CodeER", /* B Execute/Readable - Accessed */
3201 "ConfE0", /* C Conforming, Execute-Only */
3202 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3203 "ConfER", /* E Conforming, Execute/Readable */
3204 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3205 };
3206 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3207 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3208 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3209 uint32_t u32Base = pDesc->Gen.u16BaseLow
3210 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3211 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3212 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3213 if (pDesc->Gen.u1Granularity)
3214 cbLimit <<= PAGE_SHIFT;
3215
3216 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3217 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3218 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3219 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3220 }
3221 else
3222 {
3223 static const char * const s_apszTypes[] =
3224 {
3225 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3226 "Tss16A", /* 1 0001 Available 16-bit TSS */
3227 "LDT ", /* 2 0010 LDT */
3228 "Tss16B", /* 3 0011 Busy 16-bit TSS */
3229 "Call16", /* 4 0100 16-bit Call Gate */
3230 "TaskG ", /* 5 0101 Task Gate */
3231 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
3232 "Trap16", /* 7 0111 16-bit Trap Gate */
3233 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3234 "Tss32A", /* 9 1001 Available 32-bit TSS */
3235 "Ill-A ", /* A 1010 Reserved (Illegal) */
3236 "Tss32B", /* B 1011 Busy 32-bit TSS */
3237 "Call32", /* C 1100 32-bit Call Gate */
3238 "Ill-D ", /* D 1101 Reserved (Illegal) */
3239 "Int32 ", /* E 1110 32-bit Interrupt Gate */
3240 "Trap32" /* F 1111 32-bit Trap Gate */
3241 };
3242 switch (pDesc->Gen.u4Type)
3243 {
3244 /* raw */
3245 case X86_SEL_TYPE_SYS_UNDEFINED:
3246 case X86_SEL_TYPE_SYS_UNDEFINED2:
3247 case X86_SEL_TYPE_SYS_UNDEFINED4:
3248 case X86_SEL_TYPE_SYS_UNDEFINED3:
3249 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3250 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3251 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3252 break;
3253
3254 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3255 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3256 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3257 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3258 case X86_SEL_TYPE_SYS_LDT:
3259 {
3260 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3261 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3262 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3263 uint32_t u32Base = pDesc->Gen.u16BaseLow
3264 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3265 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3266 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3267 if (pDesc->Gen.u1Granularity)
3268 cbLimit <<= PAGE_SHIFT;
3269
3270 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
3271 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3272 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
3273 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3274 pszHyper);
3275 break;
3276 }
3277
3278 case X86_SEL_TYPE_SYS_TASK_GATE:
3279 {
3280 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
3281 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
3282 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3283 break;
3284 }
3285
3286 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3287 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3288 {
3289 unsigned cParams = pDesc->au8[4] & 0x1f;
3290 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3291 RTSEL sel = pDesc->au16[1];
3292 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3293 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3294 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s%s\n",
3295 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3296 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3297 RTStrFree(pszSymbol);
3298 break;
3299 }
3300
3301 case X86_SEL_TYPE_SYS_286_INT_GATE:
3302 case X86_SEL_TYPE_SYS_386_INT_GATE:
3303 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3304 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3305 {
3306 RTSEL sel = pDesc->au16[1];
3307 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3308 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3309 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s%s\n",
3310 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3311 pDesc->Gen.u2Dpl, pszPresent, pszHyper, pszSymbol ? pszSymbol : "");
3312 RTStrFree(pszSymbol);
3313 break;
3314 }
3315
3316 /* impossible, just it's necessary to keep gcc happy. */
3317 default:
3318 return VINF_SUCCESS;
3319 }
3320 }
3321 return rc;
3322}
3323
3324
3325/**
3326 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
3327 */
3328static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3329{
3330 /*
3331 * Validate input.
3332 */
3333 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3334
3335 /*
3336 * Get the CPU mode, check which command variation this is
3337 * and fix a default parameter if needed.
3338 */
3339 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3340 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
3341 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
3342 bool fGdt = pCmd->pszCmd[1] == 'g';
3343 bool fAll = pCmd->pszCmd[2] == 'a';
3344 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
3345
3346 DBGCVAR Var;
3347 if (!cArgs)
3348 {
3349 cArgs = 1;
3350 paArgs = &Var;
3351 Var.enmType = DBGCVAR_TYPE_NUMBER;
3352 Var.u.u64Number = fGdt ? 0 : 4;
3353 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3354 Var.u64Range = 1024;
3355 }
3356
3357 /*
3358 * Process the arguments.
3359 */
3360 for (unsigned i = 0; i < cArgs; i++)
3361 {
3362 /*
3363 * Retrieve the selector value from the argument.
3364 * The parser may confuse pointers and numbers if more than one
3365 * argument is given, that that into account.
3366 */
3367 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
3368 uint64_t u64;
3369 unsigned cSels = 1;
3370 switch (paArgs[i].enmType)
3371 {
3372 case DBGCVAR_TYPE_NUMBER:
3373 u64 = paArgs[i].u.u64Number;
3374 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
3375 cSels = RT_MIN(paArgs[i].u64Range, 1024);
3376 break;
3377 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
3378 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
3379 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
3380 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
3381 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
3382 default: u64 = _64K; break;
3383 }
3384 if (u64 < _64K)
3385 {
3386 unsigned Sel = (RTSEL)u64;
3387
3388 /*
3389 * Dump the specified range.
3390 */
3391 bool fSingle = cSels == 1;
3392 while ( cSels-- > 0
3393 && Sel < _64K)
3394 {
3395 DBGFSELINFO SelInfo;
3396 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3397 if (RT_SUCCESS(rc))
3398 {
3399 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
3400 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
3401 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
3402 else if ( fAll
3403 || fSingle
3404 || SelInfo.u.Raw.Gen.u1Present)
3405 {
3406 if (enmMode == CPUMMODE_PROTECTED)
3407 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel,
3408 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL);
3409 else
3410 {
3411 bool fDblSkip = false;
3412 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel,
3413 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL, &fDblSkip);
3414 if (fDblSkip)
3415 Sel += 4;
3416 }
3417 }
3418 }
3419 else
3420 {
3421 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
3422 if (!fAll)
3423 return rc;
3424 }
3425 if (RT_FAILURE(rc))
3426 return rc;
3427
3428 /* next */
3429 Sel += 8;
3430 }
3431 }
3432 else
3433 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
3434 }
3435
3436 return VINF_SUCCESS;
3437}
3438
3439
3440/**
3441 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
3442 */
3443static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3444{
3445 /*
3446 * Validate input.
3447 */
3448 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3449
3450 /*
3451 * Establish some stuff like the current IDTR and CPU mode,
3452 * and fix a default parameter.
3453 */
3454 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3455 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
3456 uint16_t cbLimit = 0;
3457 uint64_t GCFlat = 0;
3458 int rc = DBGFR3RegCpuQueryXdtr(pDbgc->pUVM, pDbgc->idCpu, DBGFREG_IDTR, &GCFlat, &cbLimit);
3459 if (RT_FAILURE(rc))
3460 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3RegCpuQueryXdtr/DBGFREG_IDTR");
3461 unsigned cbEntry;
3462 switch (enmMode)
3463 {
3464 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
3465 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
3466 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
3467 default:
3468 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
3469 }
3470
3471 bool fAll = pCmd->pszCmd[2] == 'a';
3472 DBGCVAR Var;
3473 if (!cArgs)
3474 {
3475 cArgs = 1;
3476 paArgs = &Var;
3477 Var.enmType = DBGCVAR_TYPE_NUMBER;
3478 Var.u.u64Number = 0;
3479 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3480 Var.u64Range = 256;
3481 }
3482
3483 /*
3484 * Process the arguments.
3485 */
3486 for (unsigned i = 0; i < cArgs; i++)
3487 {
3488 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
3489 if (paArgs[i].u.u64Number < 256)
3490 {
3491 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
3492 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
3493 ? paArgs[i].u64Range
3494 : 1;
3495 bool fSingle = cInts == 1;
3496 while ( cInts-- > 0
3497 && iInt < 256)
3498 {
3499 /*
3500 * Try read it.
3501 */
3502 union
3503 {
3504 RTFAR16 Real;
3505 X86DESC Prot;
3506 X86DESC64 Long;
3507 } u;
3508 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
3509 {
3510 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
3511 if (!fAll && !fSingle)
3512 return VINF_SUCCESS;
3513 }
3514 DBGCVAR AddrVar;
3515 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
3516 AddrVar.u.GCFlat = GCFlat + iInt * cbEntry;
3517 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
3518 rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
3519 if (RT_FAILURE(rc))
3520 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
3521
3522 /*
3523 * Display it.
3524 */
3525 switch (enmMode)
3526 {
3527 case CPUMMODE_REAL:
3528 {
3529 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, DBGF_AS_GLOBAL, u.Real.sel, u.Real.off, " (", ")");
3530 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16%s\n", (unsigned)iInt, u.Real, pszSymbol ? pszSymbol : "");
3531 RTStrFree(pszSymbol);
3532 break;
3533 }
3534 case CPUMMODE_PROTECTED:
3535 if (fAll || fSingle || u.Prot.Gen.u1Present)
3536 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false, DBGF_AS_GLOBAL);
3537 break;
3538 case CPUMMODE_LONG:
3539 if (fAll || fSingle || u.Long.Gen.u1Present)
3540 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, DBGF_AS_GLOBAL, NULL);
3541 break;
3542 default: break; /* to shut up gcc */
3543 }
3544 if (RT_FAILURE(rc))
3545 return rc;
3546
3547 /* next */
3548 iInt++;
3549 }
3550 }
3551 else
3552 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
3553 }
3554
3555 return VINF_SUCCESS;
3556}
3557
3558
3559/**
3560 * @callback_method_impl{FNDBGCCMD,
3561 * The 'da'\, 'dq'\, 'dqs'\, 'dd'\, 'dds'\, 'dw'\, 'db'\, 'dp'\, 'dps'\,
3562 * and 'du' commands.}
3563 */
3564static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3565{
3566 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3567
3568 /*
3569 * Validate input.
3570 */
3571 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3572 if (cArgs == 1)
3573 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3574 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3575
3576#define DBGC_DUMP_MEM_F_ASCII RT_BIT_32(31)
3577#define DBGC_DUMP_MEM_F_UNICODE RT_BIT_32(30)
3578#define DBGC_DUMP_MEM_F_FAR RT_BIT_32(29)
3579#define DBGC_DUMP_MEM_F_SYMBOLS RT_BIT_32(28)
3580#define DBGC_DUMP_MEM_F_SIZE UINT32_C(0x0000ffff)
3581
3582 /*
3583 * Figure out the element size.
3584 */
3585 unsigned cbElement;
3586 bool fAscii = false;
3587 bool fUnicode = false;
3588 bool fFar = false;
3589 bool fSymbols = pCmd->pszCmd[1] && pCmd->pszCmd[2] == 's';
3590 switch (pCmd->pszCmd[1])
3591 {
3592 default:
3593 case 'b': cbElement = 1; break;
3594 case 'w': cbElement = 2; break;
3595 case 'd': cbElement = 4; break;
3596 case 'q': cbElement = 8; break;
3597 case 'a':
3598 cbElement = 1;
3599 fAscii = true;
3600 break;
3601 case 'F':
3602 cbElement = 4;
3603 fFar = true;
3604 break;
3605 case 'p':
3606 cbElement = DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu) ? 8 : 4;
3607 break;
3608 case 'u':
3609 cbElement = 2;
3610 fUnicode = true;
3611 break;
3612 case '\0':
3613 fAscii = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_ASCII);
3614 fSymbols = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SYMBOLS);
3615 fUnicode = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_UNICODE);
3616 fFar = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_FAR);
3617 cbElement = pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SIZE;
3618 if (!cbElement)
3619 cbElement = 1;
3620 break;
3621 }
3622 uint32_t const cbDumpElement = cbElement
3623 | (fSymbols ? DBGC_DUMP_MEM_F_SYMBOLS : 0)
3624 | (fFar ? DBGC_DUMP_MEM_F_FAR : 0)
3625 | (fUnicode ? DBGC_DUMP_MEM_F_UNICODE : 0)
3626 | (fAscii ? DBGC_DUMP_MEM_F_ASCII : 0);
3627 pDbgc->cbDumpElement = cbDumpElement;
3628
3629 /*
3630 * Find address.
3631 */
3632 if (!cArgs)
3633 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
3634 else
3635 pDbgc->DumpPos = paArgs[0];
3636
3637 /*
3638 * Range.
3639 */
3640 switch (pDbgc->DumpPos.enmRangeType)
3641 {
3642 case DBGCVAR_RANGE_NONE:
3643 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3644 pDbgc->DumpPos.u64Range = 0x60;
3645 break;
3646
3647 case DBGCVAR_RANGE_ELEMENTS:
3648 if (pDbgc->DumpPos.u64Range > 2048)
3649 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
3650 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3651 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
3652 break;
3653
3654 case DBGCVAR_RANGE_BYTES:
3655 if (pDbgc->DumpPos.u64Range > 65536)
3656 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
3657 break;
3658
3659 default:
3660 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
3661 }
3662
3663 pDbgc->pLastPos = &pDbgc->DumpPos;
3664
3665 /*
3666 * Do the dumping.
3667 */
3668 int cbLeft = (int)pDbgc->DumpPos.u64Range;
3669 uint8_t u16Prev = '\0';
3670 for (;;)
3671 {
3672 /*
3673 * Read memory.
3674 */
3675 char achBuffer[16];
3676 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
3677 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
3678 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
3679 if (RT_FAILURE(rc))
3680 {
3681 if (u16Prev && u16Prev != '\n')
3682 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3683 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
3684 }
3685
3686 /*
3687 * Display it.
3688 */
3689 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
3690 if (!fAscii && !fUnicode)
3691 {
3692 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
3693 unsigned i;
3694 for (i = 0; i < cb; i += cbElement)
3695 {
3696 const char *pszSpace = " ";
3697 if (cbElement <= 2 && i == 8)
3698 pszSpace = "-";
3699 switch (cbElement)
3700 {
3701 case 1:
3702 DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]);
3703 break;
3704 case 2:
3705 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]);
3706 break;
3707 case 4:
3708 if (!fFar)
3709 DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]);
3710 else
3711 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x:%04x:",
3712 pszSpace, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3713 break;
3714 case 8:
3715 DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]);
3716 break;
3717 }
3718
3719 if (fSymbols)
3720 {
3721 /* Try lookup symbol for the above address. */
3722 DBGFADDRESS Addr;
3723 rc = VINF_SUCCESS;
3724 if (cbElement == 8)
3725 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint64_t *)&achBuffer[i]);
3726 else if (!fFar)
3727 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint32_t *)&achBuffer[i]);
3728 else
3729 rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr,
3730 *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3731 if (RT_SUCCESS(rc))
3732 {
3733 RTINTPTR offDisp;
3734 RTDBGSYMBOL Symbol;
3735 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, &Addr,
3736 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
3737 &offDisp, &Symbol, NULL);
3738 if (RT_SUCCESS(rc))
3739 {
3740 if (!offDisp)
3741 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", Symbol.szName);
3742 else if (offDisp > 0)
3743 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s + %RGv", Symbol.szName, offDisp);
3744 else
3745 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s - %RGv", Symbol.szName, -offDisp);
3746 if (Symbol.cb > 0)
3747 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)", Symbol.cb);
3748 }
3749 }
3750
3751 /* Next line prefix. */
3752 unsigned iNext = i + cbElement;
3753 if (iNext < cb)
3754 {
3755 DBGCVAR TmpPos = pDbgc->DumpPos;
3756 DBGCCmdHlpEval(pCmdHlp, &TmpPos, "(%Dv) + %x", &pDbgc->DumpPos, iNext);
3757 DBGCCmdHlpPrintf(pCmdHlp, "\n%DV:", &pDbgc->DumpPos);
3758 }
3759 }
3760 }
3761
3762 /* Chars column. */
3763 if (cbElement == 1)
3764 {
3765 while (i++ < sizeof(achBuffer))
3766 DBGCCmdHlpPrintf(pCmdHlp, " ");
3767 DBGCCmdHlpPrintf(pCmdHlp, " ");
3768 for (i = 0; i < cb; i += cbElement)
3769 {
3770 uint8_t u8 = *(uint8_t *)&achBuffer[i];
3771 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
3772 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3773 else
3774 DBGCCmdHlpPrintf(pCmdHlp, ".");
3775 }
3776 }
3777 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3778 }
3779 else
3780 {
3781 /*
3782 * We print up to the first zero and stop there.
3783 * Only printables + '\t' and '\n' are printed.
3784 */
3785 if (!u16Prev)
3786 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
3787 uint16_t u16 = '\0';
3788 unsigned i;
3789 for (i = 0; i < cb; i += cbElement)
3790 {
3791 u16Prev = u16;
3792 if (cbElement == 1)
3793 u16 = *(uint8_t *)&achBuffer[i];
3794 else
3795 u16 = *(uint16_t *)&achBuffer[i];
3796 if ( u16 < 127
3797 && ( (RT_C_IS_PRINT(u16) && u16 >= 32)
3798 || u16 == '\t'
3799 || u16 == '\n'))
3800 DBGCCmdHlpPrintf(pCmdHlp, "%c", (int)u16);
3801 else if (!u16)
3802 break;
3803 else
3804 DBGCCmdHlpPrintf(pCmdHlp, "\\x%0*x", cbElement * 2, u16);
3805 }
3806 if (u16 == '\0')
3807 cb = cbLeft = i + 1;
3808 if (cbLeft - cb <= 0 && u16Prev != '\n')
3809 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3810 }
3811
3812 /*
3813 * Advance
3814 */
3815 cbLeft -= (int)cb;
3816 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
3817 if (RT_FAILURE(rc))
3818 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
3819 if (cbLeft <= 0)
3820 break;
3821 }
3822
3823 NOREF(pCmd);
3824 return VINF_SUCCESS;
3825}
3826
3827
3828/**
3829 * Best guess at which paging mode currently applies to the guest
3830 * paging structures.
3831 *
3832 * This have to come up with a decent answer even when the guest
3833 * is in non-paged protected mode or real mode.
3834 *
3835 * @returns cr3.
3836 * @param pDbgc The DBGC instance.
3837 * @param pfPAE Where to store the page address extension indicator.
3838 * @param pfLME Where to store the long mode enabled indicator.
3839 * @param pfPSE Where to store the page size extension indicator.
3840 * @param pfPGE Where to store the page global enabled indicator.
3841 * @param pfNXE Where to store the no-execution enabled indicator.
3842 */
3843static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3844{
3845#if defined(VBOX_VMM_TARGET_ARMV8)
3846 AssertReleaseFailed();
3847 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3848 return ~(RTGCPHYS)0;
3849#else
3850 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3851 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
3852 *pfPSE = !!(cr4 & X86_CR4_PSE);
3853 *pfPGE = !!(cr4 & X86_CR4_PGE);
3854 if (cr4 & X86_CR4_PAE)
3855 {
3856 *pfPSE = true;
3857 *pfPAE = true;
3858 }
3859 else
3860 *pfPAE = false;
3861
3862 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
3863 *pfNXE = false; /* GUEST64 GUESTNX */
3864 return CPUMGetGuestCR3(pVCpu);
3865#endif
3866}
3867
3868
3869/**
3870 * Determine the shadow paging mode.
3871 *
3872 * @returns cr3.
3873 * @param pDbgc The DBGC instance.
3874 * @param pfPAE Where to store the page address extension indicator.
3875 * @param pfLME Where to store the long mode enabled indicator.
3876 * @param pfPSE Where to store the page size extension indicator.
3877 * @param pfPGE Where to store the page global enabled indicator.
3878 * @param pfNXE Where to store the no-execution enabled indicator.
3879 */
3880static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3881{
3882#if defined(VBOX_VMM_TARGET_ARMV8)
3883 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3884 AssertReleaseFailed();
3885 return ~(RTHCPHYS)0;
3886#else
3887 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3888
3889 *pfPSE = true;
3890 *pfPGE = false;
3891 switch (PGMGetShadowMode(pVCpu))
3892 {
3893 default:
3894 case PGMMODE_32_BIT:
3895 *pfPAE = *pfLME = *pfNXE = false;
3896 break;
3897 case PGMMODE_PAE:
3898 *pfLME = *pfNXE = false;
3899 *pfPAE = true;
3900 break;
3901 case PGMMODE_PAE_NX:
3902 *pfLME = false;
3903 *pfPAE = *pfNXE = true;
3904 break;
3905 case PGMMODE_AMD64:
3906 *pfNXE = false;
3907 *pfPAE = *pfLME = true;
3908 break;
3909 case PGMMODE_AMD64_NX:
3910 *pfPAE = *pfLME = *pfNXE = true;
3911 break;
3912 }
3913 return PGMGetHyperCR3(pVCpu);
3914#endif
3915}
3916
3917
3918/**
3919 * @callback_method_impl{FNDBGCCMD,
3920 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
3921 */
3922static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3923{
3924 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3925
3926 /*
3927 * Validate input.
3928 */
3929 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3930 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
3931 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3932 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
3933 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3934 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3935 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3936
3937 /*
3938 * Guest or shadow page directories? Get the paging parameters.
3939 */
3940 bool fGuest = pCmd->pszCmd[3] != 'h';
3941 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3942 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3943
3944 bool fPAE, fLME, fPSE, fPGE, fNXE;
3945 uint64_t cr3 = fGuest
3946 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3947 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3948 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3949
3950 /*
3951 * Setup default argument if none was specified.
3952 * Fix address / index confusion.
3953 */
3954 DBGCVAR VarDefault;
3955 if (!cArgs)
3956 {
3957 if (pCmd->pszCmd[3] == 'a')
3958 {
3959 if (fLME || fPAE)
3960 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
3961 if (fGuest)
3962 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
3963 else
3964 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
3965 }
3966 else
3967 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
3968 paArgs = &VarDefault;
3969 cArgs = 1;
3970 }
3971 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3972 {
3973 /* If it's a number (not an address), it's an index, so convert it to an address. */
3974 Assert(pCmd->pszCmd[3] != 'a');
3975 VarDefault = paArgs[0];
3976 if (fPAE)
3977 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
3978 if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry)
3979 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1);
3980 VarDefault.u.u64Number <<= X86_PD_SHIFT;
3981 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
3982 paArgs = &VarDefault;
3983 }
3984
3985 /*
3986 * Locate the PDE to start displaying at.
3987 *
3988 * The 'dpda' command takes the address of a PDE, while the others are guest
3989 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
3990 * while the others require us to do all the tedious walking thru the paging
3991 * hierarchy to find the intended PDE.
3992 */
3993 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
3994 DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
3995 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
3996 unsigned cEntries; /* The number of entries to display. */
3997 unsigned cEntriesMax; /* The max number of entries to display. */
3998 int rc;
3999 if (pCmd->pszCmd[3] == 'a')
4000 {
4001 VarPDEAddr = paArgs[0];
4002 switch (VarPDEAddr.enmRangeType)
4003 {
4004 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
4005 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
4006 default: cEntries = 10; break;
4007 }
4008 cEntriesMax = PAGE_SIZE / cbEntry;
4009 }
4010 else
4011 {
4012 /*
4013 * Determine the range.
4014 */
4015 switch (paArgs[0].enmRangeType)
4016 {
4017 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
4018 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4019 default: cEntries = 10; break;
4020 }
4021
4022 /*
4023 * Normalize the input address, it must be a flat GC address.
4024 */
4025 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4026 if (RT_FAILURE(rc))
4027 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4028 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4029 {
4030 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4031 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4032 }
4033 if (fPAE)
4034 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
4035 else
4036 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
4037
4038 /*
4039 * Do the paging walk until we get to the page directory.
4040 */
4041 DBGCVAR VarCur;
4042 if (fGuest)
4043 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4044 else
4045 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4046 if (fLME)
4047 {
4048 /* Page Map Level 4 Lookup. */
4049 /* Check if it's a valid address first? */
4050 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4051 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4052 X86PML4E Pml4e;
4053 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4054 if (RT_FAILURE(rc))
4055 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4056 if (!Pml4e.n.u1Present)
4057 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4058
4059 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4060 Assert(fPAE);
4061 }
4062 if (fPAE)
4063 {
4064 /* Page directory pointer table. */
4065 X86PDPE Pdpe;
4066 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4067 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4068 if (RT_FAILURE(rc))
4069 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4070 if (!Pdpe.n.u1Present)
4071 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4072
4073 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4074 VarPDEAddr = VarCur;
4075 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4076 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
4077 }
4078 else
4079 {
4080 /* 32-bit legacy - CR3 == page directory. */
4081 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
4082 VarPDEAddr = VarCur;
4083 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
4084 }
4085 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
4086 }
4087
4088 /* adjust cEntries */
4089 cEntries = RT_MAX(1, cEntries);
4090 cEntries = RT_MIN(cEntries, cEntriesMax);
4091
4092 /*
4093 * The display loop.
4094 */
4095 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
4096 &VarPDEAddr, iEntry);
4097 do
4098 {
4099 /*
4100 * Read.
4101 */
4102 X86PDEPAE Pde;
4103 Pde.u = 0;
4104 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
4105 if (RT_FAILURE(rc))
4106 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
4107
4108 /*
4109 * Display.
4110 */
4111 if (iEntry != ~0U)
4112 {
4113 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4114 iEntry++;
4115 }
4116 if (fPSE && Pde.b.u1Size)
4117 DBGCCmdHlpPrintf(pCmdHlp,
4118 fPAE
4119 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4120 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4121 Pde.u,
4122 Pde.u & X86_PDE_PAE_PG_MASK,
4123 Pde.b.u1Present ? "p " : "np",
4124 Pde.b.u1Write ? "w" : "r",
4125 Pde.b.u1User ? "u" : "s",
4126 Pde.b.u1Accessed ? "a " : "na",
4127 Pde.b.u1Dirty ? "d " : "nd",
4128 Pde.b.u3Available,
4129 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
4130 Pde.b.u1WriteThru ? "pwt" : " ",
4131 Pde.b.u1CacheDisable ? "pcd" : " ",
4132 Pde.b.u1PAT ? "pat" : "",
4133 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4134 else
4135 DBGCCmdHlpPrintf(pCmdHlp,
4136 fPAE
4137 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
4138 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
4139 Pde.u,
4140 Pde.u & X86_PDE_PAE_PG_MASK,
4141 Pde.n.u1Present ? "p " : "np",
4142 Pde.n.u1Write ? "w" : "r",
4143 Pde.n.u1User ? "u" : "s",
4144 Pde.n.u1Accessed ? "a " : "na",
4145 Pde.u & RT_BIT(6) ? "6 " : " ",
4146 Pde.n.u3Available,
4147 Pde.u & RT_BIT(8) ? "8" : " ",
4148 Pde.n.u1WriteThru ? "pwt" : " ",
4149 Pde.n.u1CacheDisable ? "pcd" : " ",
4150 Pde.u & RT_BIT(7) ? "7" : "",
4151 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4152 if (Pde.u & UINT64_C(0x7fff000000000000))
4153 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
4154 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4155 if (RT_FAILURE(rc))
4156 return rc;
4157
4158 /*
4159 * Advance.
4160 */
4161 VarPDEAddr.u.u64Number += cbEntry;
4162 if (iEntry != ~0U)
4163 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
4164 } while (cEntries-- > 0);
4165
4166 return VINF_SUCCESS;
4167}
4168
4169
4170/**
4171 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
4172 */
4173static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4174{
4175 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4176 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
4177 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
4178 if (RT_FAILURE(rc1))
4179 return rc1;
4180 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4181 return rc2;
4182}
4183
4184
4185/**
4186 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
4187 */
4188static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4189{
4190 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4191 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4192
4193 /*
4194 * Figure the context and base flags.
4195 */
4196 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
4197 if (pCmd->pszCmd[0] == 'm')
4198 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
4199 else if (pCmd->pszCmd[3] == '\0')
4200 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4201 else if (pCmd->pszCmd[3] == 'g')
4202 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4203 else if (pCmd->pszCmd[3] == 'h')
4204 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
4205 else
4206 AssertFailed();
4207
4208 if (pDbgc->cPagingHierarchyDumps == 0)
4209 fFlags |= DBGFPGDMP_FLAGS_HEADER;
4210 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
4211
4212 /*
4213 * Get the range.
4214 */
4215 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
4216 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
4217 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
4218 if (RT_FAILURE(rc))
4219 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
4220
4221 uint64_t cbRange;
4222 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange);
4223 if (RT_FAILURE(rc))
4224 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
4225
4226 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
4227 if (cbRange >= GCPtrLast)
4228 GCPtrLast = RTGCPTR_MAX;
4229 else if (!cbRange)
4230 GCPtrLast = GCPtrFirst;
4231 else
4232 GCPtrLast = GCPtrFirst + cbRange - 1;
4233
4234 /*
4235 * Do we have a CR3?
4236 */
4237 uint64_t cr3 = 0;
4238 if (cArgs > 1)
4239 {
4240 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
4241 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
4242 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
4243 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
4244 cr3 = paArgs[1].u.u64Number;
4245 }
4246 else
4247 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
4248
4249 /*
4250 * Do we have a mode?
4251 */
4252 if (cArgs > 2)
4253 {
4254 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
4255 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
4256 static const struct MODETOFLAGS
4257 {
4258 const char *pszName;
4259 uint32_t fFlags;
4260 } s_aModeToFlags[] =
4261 {
4262 { "ept", DBGFPGDMP_FLAGS_EPT },
4263 { "legacy", 0 },
4264 { "legacy-np", DBGFPGDMP_FLAGS_NP },
4265 { "pse", DBGFPGDMP_FLAGS_PSE },
4266 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
4267 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
4268 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
4269 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
4270 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
4271 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
4272 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
4273 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
4274 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
4275 };
4276 int i = RT_ELEMENTS(s_aModeToFlags);
4277 while (i-- > 0)
4278 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
4279 {
4280 fFlags |= s_aModeToFlags[i].fFlags;
4281 break;
4282 }
4283 if (i < 0)
4284 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
4285 }
4286 else
4287 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
4288
4289 /*
4290 * Call the worker.
4291 */
4292 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
4293 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
4294 if (RT_FAILURE(rc))
4295 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
4296 return VINF_SUCCESS;
4297}
4298
4299
4300
4301/**
4302 * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.}
4303 */
4304static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4305{
4306 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4307
4308 /*
4309 * Validate input.
4310 */
4311 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
4312 if (pCmd->pszCmd[3] == 'a')
4313 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
4314 else
4315 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
4316 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
4317 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4318
4319 /*
4320 * Guest or shadow page tables? Get the paging parameters.
4321 */
4322 bool fGuest = pCmd->pszCmd[3] != 'h';
4323 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
4324 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
4325
4326 bool fPAE, fLME, fPSE, fPGE, fNXE;
4327 uint64_t cr3 = fGuest
4328 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
4329 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
4330 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
4331
4332 /*
4333 * Locate the PTE to start displaying at.
4334 *
4335 * The 'dpta' command takes the address of a PTE, while the others are guest
4336 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
4337 * while the others require us to do all the tedious walking thru the paging
4338 * hierarchy to find the intended PTE.
4339 */
4340 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
4341 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
4342 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
4343 unsigned cEntries; /* The number of entries to display. */
4344 unsigned cEntriesMax; /* The max number of entries to display. */
4345 int rc;
4346 if (pCmd->pszCmd[3] == 'a')
4347 {
4348 VarPTEAddr = paArgs[0];
4349 switch (VarPTEAddr.enmRangeType)
4350 {
4351 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
4352 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
4353 default: cEntries = 10; break;
4354 }
4355 cEntriesMax = PAGE_SIZE / cbEntry;
4356 }
4357 else
4358 {
4359 /*
4360 * Determine the range.
4361 */
4362 switch (paArgs[0].enmRangeType)
4363 {
4364 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
4365 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4366 default: cEntries = 10; break;
4367 }
4368
4369 /*
4370 * Normalize the input address, it must be a flat GC address.
4371 */
4372 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4373 if (RT_FAILURE(rc))
4374 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4375 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4376 {
4377 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4378 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4379 }
4380 VarGCPtr.u.GCFlat &= ~(RTGCPTR)PAGE_OFFSET_MASK;
4381
4382 /*
4383 * Do the paging walk until we get to the page table.
4384 */
4385 DBGCVAR VarCur;
4386 if (fGuest)
4387 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4388 else
4389 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4390 if (fLME)
4391 {
4392 /* Page Map Level 4 Lookup. */
4393 /* Check if it's a valid address first? */
4394 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4395 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4396 X86PML4E Pml4e;
4397 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4398 if (RT_FAILURE(rc))
4399 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4400 if (!Pml4e.n.u1Present)
4401 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4402
4403 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4404 Assert(fPAE);
4405 }
4406 if (fPAE)
4407 {
4408 /* Page directory pointer table. */
4409 X86PDPE Pdpe;
4410 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4411 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4412 if (RT_FAILURE(rc))
4413 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4414 if (!Pdpe.n.u1Present)
4415 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4416
4417 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4418
4419 /* Page directory (PAE). */
4420 X86PDEPAE Pde;
4421 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
4422 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4423 if (RT_FAILURE(rc))
4424 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4425 if (!Pde.n.u1Present)
4426 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4427 if (fPSE && Pde.n.u1Size)
4428 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4429
4430 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
4431 VarPTEAddr = VarCur;
4432 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
4433 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
4434 }
4435 else
4436 {
4437 /* Page directory (legacy). */
4438 X86PDE Pde;
4439 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
4440 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4441 if (RT_FAILURE(rc))
4442 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4443 if (!Pde.n.u1Present)
4444 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4445 if (fPSE && Pde.n.u1Size)
4446 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4447
4448 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
4449 VarPTEAddr = VarCur;
4450 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
4451 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
4452 }
4453 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
4454 }
4455
4456 /* adjust cEntries */
4457 cEntries = RT_MAX(1, cEntries);
4458 cEntries = RT_MIN(cEntries, cEntriesMax);
4459
4460 /*
4461 * The display loop.
4462 */
4463 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
4464 &VarPTEAddr, &VarGCPtr, iEntry);
4465 do
4466 {
4467 /*
4468 * Read.
4469 */
4470 X86PTEPAE Pte;
4471 Pte.u = 0;
4472 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
4473 if (RT_FAILURE(rc))
4474 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
4475
4476 /*
4477 * Display.
4478 */
4479 if (iEntry != ~0U)
4480 {
4481 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4482 iEntry++;
4483 }
4484 DBGCCmdHlpPrintf(pCmdHlp,
4485 fPAE
4486 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4487 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4488 Pte.u,
4489 Pte.u & X86_PTE_PAE_PG_MASK,
4490 Pte.n.u1Present ? "p " : "np",
4491 Pte.n.u1Write ? "w" : "r",
4492 Pte.n.u1User ? "u" : "s",
4493 Pte.n.u1Accessed ? "a " : "na",
4494 Pte.n.u1Dirty ? "d " : "nd",
4495 Pte.n.u3Available,
4496 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
4497 Pte.n.u1WriteThru ? "pwt" : " ",
4498 Pte.n.u1CacheDisable ? "pcd" : " ",
4499 Pte.n.u1PAT ? "pat" : " ",
4500 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
4501 );
4502 if (Pte.u & UINT64_C(0x7fff000000000000))
4503 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
4504 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4505 if (RT_FAILURE(rc))
4506 return rc;
4507
4508 /*
4509 * Advance.
4510 */
4511 VarPTEAddr.u.u64Number += cbEntry;
4512 if (iEntry != ~0U)
4513 VarGCPtr.u.GCFlat += PAGE_SIZE;
4514 } while (cEntries-- > 0);
4515
4516 return VINF_SUCCESS;
4517}
4518
4519
4520/**
4521 * @callback_method_impl{FNDBGCCMD, The 'dptb' command.}
4522 */
4523static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4524{
4525 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4526 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
4527 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
4528 if (RT_FAILURE(rc1))
4529 return rc1;
4530 NOREF(pCmd); NOREF(cArgs);
4531 return rc2;
4532}
4533
4534
4535/**
4536 * @callback_method_impl{FNDBGCCMD, The 'dt' command.}
4537 */
4538static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4539{
4540 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4541 int rc;
4542
4543 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4544 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
4545 if (cArgs == 1)
4546 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
4547 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
4548
4549 /*
4550 * Check if the command indicates the type.
4551 */
4552 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
4553 if (!strcmp(pCmd->pszCmd, "dt16"))
4554 enmTssType = kTss16;
4555 else if (!strcmp(pCmd->pszCmd, "dt32"))
4556 enmTssType = kTss32;
4557 else if (!strcmp(pCmd->pszCmd, "dt64"))
4558 enmTssType = kTss64;
4559
4560 /*
4561 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
4562 */
4563 uint32_t SelTss = UINT32_MAX;
4564 DBGCVAR VarTssAddr;
4565 if (cArgs == 0)
4566 {
4567 /** @todo consider querying the hidden bits instead (missing API). */
4568 uint16_t SelTR;
4569 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
4570 if (RT_FAILURE(rc))
4571 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
4572 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
4573 SelTss = SelTR;
4574 }
4575 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
4576 {
4577 if (paArgs[0].u.u64Number < 0xffff)
4578 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
4579 else
4580 {
4581 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
4582 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
4583 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
4584 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
4585 {
4586 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
4587 VarTssAddr.u64Range = paArgs[0].u64Range;
4588 }
4589 }
4590 }
4591 else
4592 VarTssAddr = paArgs[0];
4593
4594 /*
4595 * Deal with TSS:ign by means of the GDT.
4596 */
4597 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
4598 {
4599 SelTss = VarTssAddr.u.GCFar.sel;
4600 DBGFSELINFO SelInfo;
4601 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
4602 if (RT_FAILURE(rc))
4603 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
4604 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
4605
4606 if (SelInfo.u.Raw.Gen.u1DescType)
4607 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
4608
4609 switch (SelInfo.u.Raw.Gen.u4Type)
4610 {
4611 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4612 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4613 if (enmTssType == kTssToBeDetermined)
4614 enmTssType = kTss16;
4615 break;
4616
4617 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
4618 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4619 if (enmTssType == kTssToBeDetermined)
4620 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
4621 break;
4622
4623 default:
4624 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
4625 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
4626 }
4627
4628 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
4629 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
4630 }
4631
4632 /*
4633 * Determine the TSS type if none is currently given.
4634 */
4635 if (enmTssType == kTssToBeDetermined)
4636 {
4637 if ( VarTssAddr.u64Range > 0
4638 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
4639 enmTssType = kTss16;
4640 else
4641 {
4642 uint64_t uEfer;
4643 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
4644 if ( RT_FAILURE(rc)
4645 || !(uEfer & MSR_K6_EFER_LMA) )
4646 enmTssType = kTss32;
4647 else
4648 enmTssType = kTss64;
4649 }
4650 }
4651
4652 /*
4653 * Figure the min/max sizes.
4654 * ASSUMES max TSS size is 64 KB.
4655 */
4656 uint32_t cbTssMin;
4657 uint32_t cbTssMax;
4658 switch (enmTssType)
4659 {
4660 case kTss16:
4661 cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1;
4662 break;
4663 case kTss32:
4664 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4665 cbTssMax = _64K;
4666 break;
4667 case kTss64:
4668 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4669 cbTssMax = _64K;
4670 break;
4671 default:
4672 AssertFailedReturn(VERR_INTERNAL_ERROR);
4673 }
4674 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
4675 if (cbTss == 0)
4676 cbTss = cbTssMin;
4677 else if (cbTss < cbTssMin)
4678 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
4679 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
4680 else if (cbTss > cbTssMax)
4681 cbTss = cbTssMax;
4682 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
4683
4684 /*
4685 * Read the TSS into a temporary buffer.
4686 */
4687 uint8_t abBuf[_64K];
4688 size_t cbTssRead;
4689 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
4690 if (RT_FAILURE(rc))
4691 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
4692 if (cbTssRead < cbTssMin)
4693 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
4694 cbTssRead, cbTssMin);
4695 if (cbTssRead < cbTss)
4696 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
4697
4698
4699 /*
4700 * Format the TSS.
4701 */
4702 uint16_t offIoBitmap;
4703 switch (enmTssType)
4704 {
4705 case kTss16:
4706 {
4707 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
4708 if (SelTss != UINT32_MAX)
4709 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
4710 else
4711 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
4712 DBGCCmdHlpPrintf(pCmdHlp,
4713 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
4714 "ip=%04x sp=%04x bp=%04x\n"
4715 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
4716 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
4717 "prev=%04x ldtr=%04x\n"
4718 ,
4719 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
4720 pTss->ip, pTss->sp, pTss->bp,
4721 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
4722 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
4723 pTss->selPrev, pTss->selLdt);
4724 if (pTss->cs != 0)
4725 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
4726 offIoBitmap = 0;
4727 break;
4728 }
4729
4730 case kTss32:
4731 {
4732 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
4733 if (SelTss != UINT32_MAX)
4734 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4735 else
4736 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4737 DBGCCmdHlpPrintf(pCmdHlp,
4738 "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
4739 "eip=%08x esp=%08x ebp=%08x\n"
4740 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4741 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
4742 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
4743 ,
4744 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
4745 pTss->eip, pTss->esp, pTss->ebp,
4746 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
4747 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
4748 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
4749 if (pTss->cs != 0)
4750 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
4751 offIoBitmap = pTss->offIoBitmap;
4752 break;
4753 }
4754
4755 case kTss64:
4756 {
4757 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
4758 if (SelTss != UINT32_MAX)
4759 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4760 else
4761 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4762 DBGCCmdHlpPrintf(pCmdHlp,
4763 "rsp0=%016RX64 rsp1=%016RX64 rsp2=%016RX64\n"
4764 "ist1=%016RX64 ist2=%016RX64\n"
4765 "ist3=%016RX64 ist4=%016RX64\n"
4766 "ist5=%016RX64 ist6=%016RX64\n"
4767 "ist7=%016RX64 iomap=%04x\n"
4768 ,
4769 pTss->rsp0, pTss->rsp1, pTss->rsp2,
4770 pTss->ist1, pTss->ist2,
4771 pTss->ist3, pTss->ist4,
4772 pTss->ist5, pTss->ist6,
4773 pTss->ist7, pTss->offIoBitmap);
4774 offIoBitmap = pTss->offIoBitmap;
4775 break;
4776 }
4777
4778 default:
4779 AssertFailedReturn(VERR_INTERNAL_ERROR);
4780 }
4781
4782 /*
4783 * Dump the interrupt redirection bitmap.
4784 */
4785 if (enmTssType != kTss16)
4786 {
4787 if ( offIoBitmap > cbTssMin
4788 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
4789 {
4790 if (offIoBitmap - cbTssMin >= 32)
4791 {
4792 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
4793 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
4794 uint32_t iStart = 0;
4795 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
4796 for (uint32_t i = 0; i < 256; i++)
4797 {
4798 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
4799 if (fThis != fPrev)
4800 {
4801 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
4802 fPrev = fThis;
4803 iStart = i;
4804 }
4805 }
4806 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
4807 }
4808 else
4809 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
4810 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
4811 }
4812 else if (offIoBitmap > 0)
4813 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4814 else
4815 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
4816 }
4817
4818 /*
4819 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x68
4820 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
4821 * Note that there is always one padding byte that is not technically part of the bitmap
4822 * and "must have all bits set". It's not clear what happens when it doesn't. All ports
4823 * not covered by the bitmap are considered to be not accessible.
4824 */
4825 if (enmTssType != kTss16)
4826 {
4827 if (offIoBitmap < cbTss && offIoBitmap >= 0x68)
4828 {
4829 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
4830 DBGCVAR VarAddr;
4831 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
4832 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
4833
4834 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
4835 uint32_t iStart = 0;
4836 bool fPrev = ASMBitTest(pbIoBitmap, 0);
4837 uint32_t cLine = 0;
4838 for (uint32_t i = 1; i < _64K; i++)
4839 {
4840 bool fThis = i < cPorts ? ASMBitTest(pbIoBitmap, i) : true;
4841 if (fThis != fPrev)
4842 {
4843 cLine++;
4844 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
4845 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
4846 fPrev = fThis;
4847 iStart = i;
4848 }
4849 }
4850 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
4851 }
4852 else if (offIoBitmap > 0)
4853 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4854 else
4855 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
4856 }
4857
4858 return VINF_SUCCESS;
4859}
4860
4861
4862/**
4863 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dti' command dumper callback.}
4864 */
4865static DECLCALLBACK(int) dbgcCmdDumpTypeInfoCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4866 const char *pszType, uint32_t fTypeFlags,
4867 uint32_t cElements, void *pvUser)
4868{
4869 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4870
4871 /* Pad with spaces to match the level. */
4872 for (uint32_t i = 0; i < iLvl; i++)
4873 DBGCCmdHlpPrintf(pCmdHlp, " ");
4874
4875 size_t cbWritten = 0;
4876 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4877 while (cbWritten < 32)
4878 {
4879 /* Fill with spaces to get proper aligning. */
4880 DBGCCmdHlpPrintf(pCmdHlp, " ");
4881 cbWritten++;
4882 }
4883
4884 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4885 if (fTypeFlags & DBGFTYPEREGMEMBER_F_ARRAY)
4886 DBGCCmdHlpPrintf(pCmdHlp, "[%u] ", cElements);
4887 if (fTypeFlags & DBGFTYPEREGMEMBER_F_POINTER)
4888 DBGCCmdHlpPrintf(pCmdHlp, "Ptr ");
4889 DBGCCmdHlpPrintf(pCmdHlp, "%s\n", pszType);
4890
4891 return VINF_SUCCESS;
4892}
4893
4894
4895/**
4896 * @callback_method_impl{FNDBGCCMD, The 'dti' command.}
4897 */
4898static DECLCALLBACK(int) dbgcCmdDumpTypeInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4899{
4900 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4901 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
4902 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4903 if (cArgs == 2)
4904 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[1].enmType == DBGCVAR_TYPE_NUMBER);
4905
4906 uint32_t cLvlMax = cArgs == 2 ? (uint32_t)paArgs[1].u.u64Number : UINT32_MAX;
4907 return DBGFR3TypeDumpEx(pUVM, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4908 dbgcCmdDumpTypeInfoCallback, pCmdHlp);
4909}
4910
4911
4912static void dbgcCmdDumpTypedValCallbackBuiltin(PDBGCCMDHLP pCmdHlp, DBGFTYPEBUILTIN enmType, size_t cbType,
4913 PDBGFTYPEVALBUF pValBuf)
4914{
4915 switch (enmType)
4916 {
4917 case DBGFTYPEBUILTIN_UINT8:
4918 DBGCCmdHlpPrintf(pCmdHlp, "%RU8", pValBuf->u8);
4919 break;
4920 case DBGFTYPEBUILTIN_INT8:
4921 DBGCCmdHlpPrintf(pCmdHlp, "%RI8", pValBuf->i8);
4922 break;
4923 case DBGFTYPEBUILTIN_UINT16:
4924 DBGCCmdHlpPrintf(pCmdHlp, "%RU16", pValBuf->u16);
4925 break;
4926 case DBGFTYPEBUILTIN_INT16:
4927 DBGCCmdHlpPrintf(pCmdHlp, "%RI16", pValBuf->i16);
4928 break;
4929 case DBGFTYPEBUILTIN_UINT32:
4930 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->u32);
4931 break;
4932 case DBGFTYPEBUILTIN_INT32:
4933 DBGCCmdHlpPrintf(pCmdHlp, "%RI32", pValBuf->i32);
4934 break;
4935 case DBGFTYPEBUILTIN_UINT64:
4936 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->u64);
4937 break;
4938 case DBGFTYPEBUILTIN_INT64:
4939 DBGCCmdHlpPrintf(pCmdHlp, "%RI64", pValBuf->i64);
4940 break;
4941 case DBGFTYPEBUILTIN_PTR32:
4942 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4943 break;
4944 case DBGFTYPEBUILTIN_PTR64:
4945 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4946 break;
4947 case DBGFTYPEBUILTIN_PTR:
4948 if (cbType == sizeof(uint32_t))
4949 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4950 else if (cbType == sizeof(uint64_t))
4951 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4952 else
4953 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported pointer width %u>", cbType);
4954 break;
4955 case DBGFTYPEBUILTIN_SIZE:
4956 if (cbType == sizeof(uint32_t))
4957 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->size);
4958 else if (cbType == sizeof(uint64_t))
4959 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->size);
4960 else
4961 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported size width %u>", cbType);
4962 break;
4963 case DBGFTYPEBUILTIN_FLOAT32:
4964 case DBGFTYPEBUILTIN_FLOAT64:
4965 case DBGFTYPEBUILTIN_COMPOUND:
4966 default:
4967 AssertMsgFailed(("Invalid built-in type: %d\n", enmType));
4968 }
4969}
4970
4971/**
4972 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dtv' command dumper callback.}
4973 */
4974static DECLCALLBACK(int) dbgcCmdDumpTypedValCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4975 DBGFTYPEBUILTIN enmType, size_t cbType,
4976 PDBGFTYPEVALBUF pValBuf, uint32_t cValBufs,
4977 void *pvUser)
4978{
4979 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4980
4981 /* Pad with spaces to match the level. */
4982 for (uint32_t i = 0; i < iLvl; i++)
4983 DBGCCmdHlpPrintf(pCmdHlp, " ");
4984
4985 size_t cbWritten = 0;
4986 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4987 while (cbWritten < 32)
4988 {
4989 /* Fill with spaces to get proper aligning. */
4990 DBGCCmdHlpPrintf(pCmdHlp, " ");
4991 cbWritten++;
4992 }
4993
4994 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4995 if (cValBufs > 1)
4996 DBGCCmdHlpPrintf(pCmdHlp, "[%u] [ ", cValBufs);
4997
4998 for (uint32_t i = 0; i < cValBufs; i++)
4999 {
5000 dbgcCmdDumpTypedValCallbackBuiltin(pCmdHlp, enmType, cbType, pValBuf);
5001 if (i < cValBufs - 1)
5002 DBGCCmdHlpPrintf(pCmdHlp, " , ");
5003 pValBuf++;
5004 }
5005
5006 if (cValBufs > 1)
5007 DBGCCmdHlpPrintf(pCmdHlp, " ]");
5008 DBGCCmdHlpPrintf(pCmdHlp, "\n");
5009
5010 return VINF_SUCCESS;
5011}
5012
5013
5014/**
5015 * @callback_method_impl{FNDBGCCMD, The 'dtv' command.}
5016 */
5017static DECLCALLBACK(int) dbgcCmdDumpTypedVal(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5018{
5019 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5020 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 2 || cArgs == 3);
5021 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
5022 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISGCPOINTER(paArgs[1].enmType));
5023 if (cArgs == 3)
5024 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[2].enmType == DBGCVAR_TYPE_NUMBER);
5025
5026 /*
5027 * Make DBGF address and fix the range.
5028 */
5029 DBGFADDRESS Address;
5030 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[1], &Address);
5031 if (RT_FAILURE(rc))
5032 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[1]);
5033
5034 uint32_t cLvlMax = cArgs == 3 ? (uint32_t)paArgs[2].u.u64Number : UINT32_MAX;
5035 return DBGFR3TypeValDumpEx(pUVM, &Address, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
5036 dbgcCmdDumpTypedValCallback, pCmdHlp);
5037}
5038
5039/**
5040 * @callback_method_impl{FNDBGCCMD, The 'm' command.}
5041 */
5042static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5043{
5044 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
5045 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5046 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
5047}
5048
5049
5050/**
5051 * Converts one or more variables into a byte buffer for a
5052 * given unit size.
5053 *
5054 * @returns VBox status codes:
5055 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
5056 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
5057 * @retval VINF_SUCCESS on success.
5058 *
5059 * @param pCmdHlp The command helper callback table.
5060 * @param pvBuf The buffer to convert into.
5061 * @param pcbBuf The buffer size on input. The size of the result on output.
5062 * @param cbUnit The unit size to apply when converting.
5063 * The high bit is used to indicate unicode string.
5064 * @param paVars The array of variables to convert.
5065 * @param cVars The number of variables.
5066 */
5067int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
5068{
5069 union
5070 {
5071 uint8_t *pu8;
5072 uint16_t *pu16;
5073 uint32_t *pu32;
5074 uint64_t *pu64;
5075 } u, uEnd;
5076 u.pu8 = (uint8_t *)pvBuf;
5077 uEnd.pu8 = u.pu8 + *pcbBuf;
5078
5079 unsigned i;
5080 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
5081 {
5082 switch (paVars[i].enmType)
5083 {
5084 case DBGCVAR_TYPE_GC_FAR:
5085 case DBGCVAR_TYPE_GC_FLAT:
5086 case DBGCVAR_TYPE_GC_PHYS:
5087 case DBGCVAR_TYPE_HC_FLAT:
5088 case DBGCVAR_TYPE_HC_PHYS:
5089 case DBGCVAR_TYPE_NUMBER:
5090 {
5091 uint64_t u64 = paVars[i].u.u64Number;
5092 switch (cbUnit & 0x1f)
5093 {
5094 case 1:
5095 do
5096 {
5097 *u.pu8++ = u64;
5098 u64 >>= 8;
5099 } while (u64);
5100 break;
5101 case 2:
5102 do
5103 {
5104 *u.pu16++ = u64;
5105 u64 >>= 16;
5106 } while (u64);
5107 break;
5108 case 4:
5109 *u.pu32++ = u64;
5110 u64 >>= 32;
5111 if (u64)
5112 *u.pu32++ = u64;
5113 break;
5114 case 8:
5115 *u.pu64++ = u64;
5116 break;
5117 }
5118 break;
5119 }
5120
5121 case DBGCVAR_TYPE_STRING:
5122 case DBGCVAR_TYPE_SYMBOL:
5123 {
5124 const char *psz = paVars[i].u.pszString;
5125 size_t cbString = strlen(psz);
5126 if (cbUnit & RT_BIT_32(31))
5127 {
5128 /* Explode char to unit. */
5129 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
5130 {
5131 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5132 return VERR_TOO_MUCH_DATA;
5133 }
5134 while (*psz)
5135 {
5136 switch (cbUnit & 0x1f)
5137 {
5138 case 1: *u.pu8++ = *psz; break;
5139 case 2: *u.pu16++ = *psz; break;
5140 case 4: *u.pu32++ = *psz; break;
5141 case 8: *u.pu64++ = *psz; break;
5142 }
5143 psz++;
5144 }
5145 }
5146 else
5147 {
5148 /* Raw copy with zero padding if the size isn't aligned. */
5149 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
5150 {
5151 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5152 return VERR_TOO_MUCH_DATA;
5153 }
5154
5155 size_t cbCopy = cbString & ~(cbUnit - 1);
5156 memcpy(u.pu8, psz, cbCopy);
5157 u.pu8 += cbCopy;
5158 psz += cbCopy;
5159
5160 size_t cbReminder = cbString & (cbUnit - 1);
5161 if (cbReminder)
5162 {
5163 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
5164 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
5165 u.pu8 += cbUnit;
5166 }
5167 }
5168 break;
5169 }
5170
5171 default:
5172 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5173 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
5174 "i=%d enmType=%d\n", i, paVars[i].enmType);
5175 return VERR_INTERNAL_ERROR;
5176 }
5177 }
5178 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5179 if (i != cVars)
5180 {
5181 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5182 return VERR_TOO_MUCH_DATA;
5183 }
5184 return VINF_SUCCESS;
5185}
5186
5187
5188/**
5189 * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.}
5190 */
5191static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5192{
5193 /*
5194 * Validate input.
5195 */
5196 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
5197 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
5198 for (unsigned iArg = 1; iArg < cArgs; iArg++)
5199 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
5200 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5201
5202 /*
5203 * Figure out the element size.
5204 */
5205 unsigned cbElement;
5206 switch (pCmd->pszCmd[1])
5207 {
5208 default:
5209 case 'b': cbElement = 1; break;
5210 case 'w': cbElement = 2; break;
5211 case 'd': cbElement = 4; break;
5212 case 'q': cbElement = 8; break;
5213 }
5214
5215 /*
5216 * Do setting.
5217 */
5218 DBGCVAR Addr = paArgs[0];
5219 for (unsigned iArg = 1;;)
5220 {
5221 size_t cbWritten;
5222 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
5223 if (RT_FAILURE(rc))
5224 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
5225 if (cbWritten != cbElement)
5226 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
5227
5228 /* advance. */
5229 iArg++;
5230 if (iArg >= cArgs)
5231 break;
5232 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
5233 if (RT_FAILURE(rc))
5234 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
5235 }
5236
5237 return VINF_SUCCESS;
5238}
5239
5240
5241/**
5242 * Executes the search.
5243 *
5244 * @returns VBox status code.
5245 * @param pCmdHlp The command helpers.
5246 * @param pUVM The user mode VM handle.
5247 * @param pAddress The address to start searching from. (undefined on output)
5248 * @param cbRange The address range to search. Must not wrap.
5249 * @param pabBytes The byte pattern to search for.
5250 * @param cbBytes The size of the pattern.
5251 * @param cbUnit The search unit.
5252 * @param cMaxHits The max number of hits.
5253 * @param pResult Where to store the result if it's a function invocation.
5254 */
5255static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
5256 const uint8_t *pabBytes, uint32_t cbBytes,
5257 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
5258{
5259 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5260
5261 /*
5262 * Do the search.
5263 */
5264 uint64_t cHits = 0;
5265 for (;;)
5266 {
5267 /* search */
5268 DBGFADDRESS HitAddress;
5269 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
5270 if (RT_FAILURE(rc))
5271 {
5272 if (rc != VERR_DBGF_MEM_NOT_FOUND)
5273 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
5274
5275 /* update the current address so we can save it (later). */
5276 pAddress->off += cbRange;
5277 pAddress->FlatPtr += cbRange;
5278 cbRange = 0;
5279 break;
5280 }
5281
5282 /* report result */
5283 DBGCVAR VarCur;
5284 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
5285 if (RT_FAILURE(rc))
5286 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
5287 if (!pResult)
5288 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
5289 else
5290 DBGCVAR_ASSIGN(pResult, &VarCur);
5291
5292 /* advance */
5293 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
5294 *pAddress = HitAddress;
5295 pAddress->FlatPtr += cbBytes;
5296 pAddress->off += cbBytes;
5297 if (cbRange <= cbBytes)
5298 {
5299 cbRange = 0;
5300 break;
5301 }
5302 cbRange -= cbBytes;
5303
5304 if (++cHits >= cMaxHits)
5305 {
5306 /// @todo save the search.
5307 break;
5308 }
5309 }
5310
5311 /*
5312 * Save the search so we can resume it...
5313 */
5314 if (pDbgc->abSearch != pabBytes)
5315 {
5316 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
5317 pDbgc->cbSearch = cbBytes;
5318 pDbgc->cbSearchUnit = cbUnit;
5319 }
5320 pDbgc->cMaxSearchHits = cMaxHits;
5321 pDbgc->SearchAddr = *pAddress;
5322 pDbgc->cbSearchRange = cbRange;
5323
5324 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
5325}
5326
5327
5328/**
5329 * Resumes the previous search.
5330 *
5331 * @returns VBox status code.
5332 * @param pCmdHlp Pointer to the command helper functions.
5333 * @param pUVM The user mode VM handle.
5334 * @param pResult Where to store the result of a function invocation.
5335 */
5336static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
5337{
5338 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5339
5340 /*
5341 * Make sure there is a previous command.
5342 */
5343 if (!pDbgc->cbSearch)
5344 {
5345 DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
5346 return VERR_DBGC_COMMAND_FAILED;
5347 }
5348
5349 /*
5350 * Make range and address adjustments.
5351 */
5352 DBGFADDRESS Address = pDbgc->SearchAddr;
5353 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
5354 {
5355 Address.FlatPtr -= Address.off;
5356 Address.off = 0;
5357 }
5358
5359 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
5360 if (!cbRange)
5361 cbRange = ~(RTGCUINTPTR)0;
5362 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
5363 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
5364
5365 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
5366 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
5367}
5368
5369
5370/**
5371 * Search memory, worker for the 's' and 's?' functions.
5372 *
5373 * @returns VBox status code.
5374 * @param pCmdHlp Pointer to the command helper functions.
5375 * @param pUVM The user mode VM handle.
5376 * @param pAddress Where to start searching. If no range, search till end of address space.
5377 * @param cMaxHits The maximum number of hits.
5378 * @param chType The search type.
5379 * @param paPatArgs The pattern variable array.
5380 * @param cPatArgs Number of pattern variables.
5381 * @param pResult Where to store the result of a function invocation.
5382 */
5383static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
5384 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
5385{
5386 if (pResult)
5387 DBGCVAR_INIT_GC_FLAT(pResult, 0);
5388
5389 /*
5390 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
5391 */
5392 uint32_t cbUnit;
5393 switch (chType)
5394 {
5395 case 'a':
5396 case 'b': cbUnit = 1; break;
5397 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
5398 case 'w': cbUnit = 2; break;
5399 case 'd': cbUnit = 4; break;
5400 case 'q': cbUnit = 8; break;
5401 default:
5402 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
5403 }
5404 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
5405 uint32_t cbBytes = sizeof(abBytes);
5406 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
5407 if (RT_FAILURE(rc))
5408 return VERR_DBGC_COMMAND_FAILED;
5409
5410 /*
5411 * Make DBGF address and fix the range.
5412 */
5413 DBGFADDRESS Address;
5414 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
5415 if (RT_FAILURE(rc))
5416 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
5417
5418 RTGCUINTPTR cbRange;
5419 switch (pAddress->enmRangeType)
5420 {
5421 case DBGCVAR_RANGE_BYTES:
5422 cbRange = pAddress->u64Range;
5423 if (cbRange != pAddress->u64Range)
5424 cbRange = ~(RTGCUINTPTR)0;
5425 break;
5426
5427 case DBGCVAR_RANGE_ELEMENTS:
5428 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
5429 if ( cbRange != pAddress->u64Range * cbUnit
5430 || cbRange < pAddress->u64Range)
5431 cbRange = ~(RTGCUINTPTR)0;
5432 break;
5433
5434 default:
5435 cbRange = ~(RTGCUINTPTR)0;
5436 break;
5437 }
5438 if (Address.FlatPtr + cbRange < Address.FlatPtr)
5439 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
5440
5441 /*
5442 * Ok, do it.
5443 */
5444 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
5445}
5446
5447
5448/**
5449 * @callback_method_impl{FNDBGCCMD, The 's' command.}
5450 */
5451static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5452{
5453 RT_NOREF2(pCmd, paArgs);
5454
5455 /* check that the parser did what it's supposed to do. */
5456 //if ( cArgs <= 2
5457 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
5458 // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
5459
5460 /*
5461 * Repeat previous search?
5462 */
5463 if (cArgs == 0)
5464 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
5465
5466 /*
5467 * Parse arguments.
5468 */
5469
5470 return -1;
5471}
5472
5473
5474/**
5475 * @callback_method_impl{FNDBGCCMD, The 's?' command.}
5476 */
5477static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5478{
5479 /* check that the parser did what it's supposed to do. */
5480 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
5481 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
5482}
5483
5484
5485/**
5486 * Matching function for interrupts event names.
5487 *
5488 * This parses the interrupt number and length.
5489 *
5490 * @returns True if match, false if not.
5491 * @param pPattern The user specified pattern to match.
5492 * @param pszEvtName The event name.
5493 * @param pCmdHlp Command helpers for warning about malformed stuff.
5494 * @param piFirst Where to return start interrupt number on success.
5495 * @param pcInts Where to return the number of interrupts on success.
5496 */
5497static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp,
5498 uint8_t *piFirst, uint16_t *pcInts)
5499{
5500 /*
5501 * Ignore trailing hex digits when comparing with the event base name.
5502 */
5503 const char *pszPattern = pPattern->u.pszString;
5504 const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX);
5505 while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern
5506 && RT_C_IS_XDIGIT(pszEnd[-1]))
5507 pszEnd -= 1;
5508 if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX))
5509 {
5510 /*
5511 * Parse the index and length.
5512 */
5513 if (!*pszEnd)
5514 *piFirst = 0;
5515 else
5516 {
5517 int rc = RTStrToUInt8Full(pszEnd, 16, piFirst);
5518 if (rc != VINF_SUCCESS)
5519 {
5520 if (RT_FAILURE(rc))
5521 *piFirst = 0;
5522 DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst);
5523 }
5524 }
5525
5526 if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE)
5527 *pcInts = 1;
5528 else
5529 *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1);
5530 return true;
5531 }
5532 return false;
5533}
5534
5535
5536/**
5537 * Updates a DBGC event config.
5538 *
5539 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
5540 * @param ppEvtCfg The event configuration entry to update.
5541 * @param pszCmd The new command. Leave command alone if NULL.
5542 * @param enmEvtState The new event state.
5543 * @param fChangeCmdOnly Whether to only update the command.
5544 */
5545static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly)
5546{
5547 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5548
5549 /*
5550 * If we've got a command string, update the command too.
5551 */
5552 if (pszCmd)
5553 {
5554 size_t cchCmd = strlen(pszCmd);
5555 if ( !cchCmd
5556 && ( !fChangeCmdOnly
5557 ? enmEvtState == kDbgcEvtState_Disabled
5558 : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled))
5559 {
5560 /* NULL entry is fine if no command and disabled. */
5561 RTMemFree(pEvtCfg);
5562 *ppEvtCfg = NULL;
5563 }
5564 else
5565 {
5566 if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd)
5567 {
5568 RTMemFree(pEvtCfg);
5569 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_UOFFSETOF_DYN(DBGCEVTCFG, szCmd[cchCmd + 1]));
5570 if (!pEvtCfg)
5571 return VERR_NO_MEMORY;
5572 }
5573 pEvtCfg->enmState = enmEvtState;
5574 pEvtCfg->cchCmd = cchCmd;
5575 memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1);
5576 }
5577 }
5578 /*
5579 * Update existing or enable new. If NULL and not enabled, we can keep it that way.
5580 */
5581 else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled)
5582 {
5583 if (!pEvtCfg)
5584 {
5585 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG));
5586 if (!pEvtCfg)
5587 return VERR_NO_MEMORY;
5588 pEvtCfg->cchCmd = 0;
5589 pEvtCfg->szCmd[0] = '\0';
5590 }
5591 pEvtCfg->enmState = enmEvtState;
5592 }
5593
5594 return VINF_SUCCESS;
5595}
5596
5597
5598/**
5599 * Record one settings change for a plain event.
5600 *
5601 * @returns The new @a cIntCfgs value.
5602 * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END
5603 * entries.
5604 * @param cEventCfgs The current number of entries in @a paEventCfgs.
5605 * @param enmType The event to change the settings for.
5606 * @param enmEvtState The new event state.
5607 * @param iSxEvt Index into the g_aDbgcSxEvents array.
5608 *
5609 * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and
5610 * abUnused[2] are used for iSxEvt.
5611 */
5612static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType,
5613 DBGCEVTSTATE enmEvtState, uint16_t iSxEvt)
5614{
5615 uint32_t iCfg;
5616 for (iCfg = 0; iCfg < cEventCfgs; iCfg++)
5617 if (paEventCfgs[iCfg].enmType == enmType)
5618 break;
5619 if (iCfg == cEventCfgs)
5620 {
5621 Assert(cEventCfgs < DBGFEVENT_END);
5622 paEventCfgs[iCfg].enmType = enmType;
5623 cEventCfgs++;
5624 }
5625 paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled;
5626 paEventCfgs[iCfg].abUnused[0] = enmEvtState;
5627 paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt;
5628 paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8);
5629 return cEventCfgs;
5630}
5631
5632
5633/**
5634 * Record one or more interrupt event config changes.
5635 *
5636 * @returns The new @a cIntCfgs value.
5637 * @param paIntCfgs Interrupt confiruation array. Must have 256 entries.
5638 * @param cIntCfgs The current number of entries in @a paIntCfgs.
5639 * @param iInt The interrupt number to start with.
5640 * @param cInts The number of interrupts to change.
5641 * @param pszName The settings name (hwint/swint).
5642 * @param enmEvtState The new event state.
5643 * @param bIntOp The new DBGF interrupt state.
5644 */
5645static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts,
5646 const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp)
5647{
5648 bool const fHwInt = *pszName == 'h';
5649
5650 bIntOp |= (uint8_t)enmEvtState << 4;
5651 uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5652 uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5653
5654 while (cInts > 0)
5655 {
5656 uint32_t iCfg;
5657 for (iCfg = 0; iCfg < cIntCfgs; iCfg++)
5658 if (paIntCfgs[iCfg].iInterrupt == iInt)
5659 break;
5660 if (iCfg == cIntCfgs)
5661 break;
5662 if (fHwInt)
5663 paIntCfgs[iCfg].enmHardState = bHardState;
5664 else
5665 paIntCfgs[iCfg].enmSoftState = bSoftState;
5666 iInt++;
5667 cInts--;
5668 }
5669
5670 while (cInts > 0)
5671 {
5672 Assert(cIntCfgs < 256);
5673 paIntCfgs[cIntCfgs].iInterrupt = iInt;
5674 paIntCfgs[cIntCfgs].enmHardState = bHardState;
5675 paIntCfgs[cIntCfgs].enmSoftState = bSoftState;
5676 cIntCfgs++;
5677 iInt++;
5678 cInts--;
5679 }
5680
5681 return cIntCfgs;
5682}
5683
5684
5685/**
5686 * Applies event settings changes to DBGC and DBGF.
5687 *
5688 * @returns VBox status code (fully bitched)
5689 * @param pCmdHlp The command helpers.
5690 * @param pUVM The user mode VM handle.
5691 * @param paIntCfgs Interrupt configuration array. We use the upper 4
5692 * bits of the settings for the DBGCEVTSTATE. This
5693 * will be cleared.
5694 * @param cIntCfgs Number of interrupt configuration changes.
5695 * @param paEventCfgs The generic event configuration array. We use the
5696 * abUnused[0] member for the DBGCEVTSTATE, and
5697 * abUnused[2:1] for the g_aDbgcSxEvents index.
5698 * @param cEventCfgs The number of generic event settings changes.
5699 * @param pszCmd The commands to associate with the changed events.
5700 * If this is NULL, don't touch the command.
5701 * @param fChangeCmdOnly Whether to only change the commands (sx-).
5702 */
5703static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs,
5704 PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly)
5705{
5706 int rc;
5707
5708 /*
5709 * Apply changes to DBGC. This can only fail with out of memory error.
5710 */
5711 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5712 if (cIntCfgs)
5713 for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++)
5714 {
5715 DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4);
5716 paIntCfgs[iCfg].enmHardState &= 0xf;
5717 if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5718 {
5719 rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5720 if (RT_FAILURE(rc))
5721 return rc;
5722 }
5723
5724 enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4);
5725 paIntCfgs[iCfg].enmSoftState &= 0xf;
5726 if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5727 {
5728 rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5729 if (RT_FAILURE(rc))
5730 return rc;
5731 }
5732 }
5733
5734 if (cEventCfgs)
5735 {
5736 for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++)
5737 {
5738 Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs));
5739 uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]);
5740 Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents));
5741 rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly);
5742 if (RT_FAILURE(rc))
5743 return rc;
5744 }
5745 }
5746
5747 /*
5748 * Apply changes to DBGF.
5749 */
5750 if (!fChangeCmdOnly)
5751 {
5752 if (cIntCfgs)
5753 {
5754 rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs);
5755 if (RT_FAILURE(rc))
5756 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc);
5757 }
5758 if (cEventCfgs)
5759 {
5760 rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs);
5761 if (RT_FAILURE(rc))
5762 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc);
5763 }
5764 }
5765
5766 return VINF_SUCCESS;
5767}
5768
5769
5770/**
5771 * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.}
5772 */
5773static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5774{
5775 /*
5776 * Figure out which command this is.
5777 */
5778 uint8_t bIntOp;
5779 DBGCEVTSTATE enmEvtState;
5780 bool fChangeCmdOnly;
5781 switch (pCmd->pszCmd[2])
5782 {
5783 case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break;
5784 case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break;
5785 case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break;
5786 case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break;
5787 default:
5788 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd);
5789 }
5790
5791 /*
5792 * Command option.
5793 */
5794 unsigned iArg = 0;
5795 const char *pszCmd = NULL;
5796 if ( cArgs >= iArg + 2
5797 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5798 && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING
5799 && strcmp(paArgs[iArg].u.pszString, "-c") == 0)
5800 {
5801 pszCmd = paArgs[iArg + 1].u.pszString;
5802 iArg += 2;
5803 }
5804 if (fChangeCmdOnly && !pszCmd)
5805 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n");
5806
5807 /*
5808 * The remaining arguments are event specifiers to which the operation should be applied.
5809 */
5810 uint32_t cIntCfgs = 0;
5811 DBGFINTERRUPTCONFIG aIntCfgs[256];
5812 uint32_t cEventCfgs = 0;
5813 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5814
5815 for (; iArg < cArgs; iArg++)
5816 {
5817 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5818 || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL);
5819 uint32_t cHits = 0;
5820 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5821 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5822 {
5823 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5824 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5825 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5826 {
5827 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5828 enmEvtState, iEvt);
5829 cHits++;
5830 }
5831 }
5832 else
5833 {
5834 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5835 uint8_t iInt;
5836 uint16_t cInts;
5837 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5838 {
5839 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5840 enmEvtState, bIntOp);
5841 cHits++;
5842 }
5843 }
5844 if (!cHits)
5845 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5846 }
5847
5848 /*
5849 * Apply the changes.
5850 */
5851 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly);
5852}
5853
5854
5855/**
5856 * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.}
5857 */
5858static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5859{
5860 RT_NOREF1(pCmd);
5861 uint32_t cEventCfgs = 0;
5862 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5863 uint32_t cIntCfgs = 0;
5864 DBGFINTERRUPTCONFIG aIntCfgs[256];
5865
5866 if (cArgs == 0)
5867 {
5868 /*
5869 * All events.
5870 */
5871 for (uint32_t iInt = 0; iInt < 256; iInt++)
5872 {
5873 aIntCfgs[iInt].iInterrupt = iInt;
5874 aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5875 aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5876 }
5877 cIntCfgs = 256;
5878
5879 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5880 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5881 {
5882 aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType;
5883 aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled;
5884 aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault;
5885 aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt;
5886 aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8);
5887 cEventCfgs++;
5888 }
5889 else
5890 {
5891 uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5892 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED)
5893 | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4);
5894 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5895 for (uint32_t iInt = 0; iInt < 256; iInt++)
5896 aIntCfgs[iInt].enmHardState = bState;
5897 else
5898 for (uint32_t iInt = 0; iInt < 256; iInt++)
5899 aIntCfgs[iInt].enmSoftState = bState;
5900 }
5901 }
5902 else
5903 {
5904 /*
5905 * Selected events.
5906 */
5907 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5908 {
5909 unsigned cHits = 0;
5910 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5911 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5912 {
5913 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5914 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5915 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5916 {
5917 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5918 g_aDbgcSxEvents[iEvt].enmDefault, iEvt);
5919 cHits++;
5920 }
5921 }
5922 else
5923 {
5924 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5925 uint8_t iInt;
5926 uint16_t cInts;
5927 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5928 {
5929 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5930 g_aDbgcSxEvents[iEvt].enmDefault,
5931 g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5932 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED);
5933 cHits++;
5934 }
5935 }
5936 if (!cHits)
5937 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5938 }
5939 }
5940
5941 /*
5942 * Apply the reset changes.
5943 */
5944 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false);
5945}
5946
5947
5948/**
5949 * Used during DBGC initialization to configure events with defaults.
5950 *
5951 * @param pDbgc The DBGC instance.
5952 */
5953void dbgcEventInit(PDBGC pDbgc)
5954{
5955 if (pDbgc->pUVM)
5956 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5957}
5958
5959
5960/**
5961 * Used during DBGC termination to disable all events.
5962 *
5963 * @param pDbgc The DBGC instance.
5964 */
5965void dbgcEventTerm(PDBGC pDbgc)
5966{
5967/** @todo need to do more than just reset later. */
5968 if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING)
5969 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5970}
5971
5972
5973static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg)
5974{
5975 RT_NOREF1(enmDefault);
5976 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5977
5978 const char *pszState;
5979 switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled)
5980 {
5981 case kDbgcEvtState_Disabled: pszState = "ignore"; break;
5982 case kDbgcEvtState_Enabled: pszState = "enabled"; break;
5983 case kDbgcEvtState_Notify: pszState = "notify"; break;
5984 default:
5985 AssertFailed();
5986 pszState = "invalid";
5987 break;
5988 }
5989
5990 if (pEvtCfg && pEvtCfg->cchCmd > 0)
5991 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd);
5992 else
5993 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState);
5994}
5995
5996
5997static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault,
5998 PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs)
5999{
6000 do
6001 {
6002 PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg];
6003 if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0)
6004 pFirstCfg = NULL;
6005
6006 unsigned const iFirstCfg = iCfg;
6007 iCfg++;
6008 while (iCfg < cCfgs)
6009 {
6010 PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg];
6011 if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0)
6012 pCurCfg = NULL;
6013 if (pCurCfg != pFirstCfg)
6014 {
6015 if (!pCurCfg || !pFirstCfg)
6016 break;
6017 if (pCurCfg->enmState != pFirstCfg->enmState)
6018 break;
6019 if (pCurCfg->cchCmd != pFirstCfg->cchCmd)
6020 break;
6021 if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0)
6022 break;
6023 }
6024 iCfg++;
6025 }
6026
6027 char szName[16];
6028 unsigned cEntries = iCfg - iFirstCfg;
6029 if (cEntries == 1)
6030 RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg);
6031 else
6032 RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries);
6033 dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]);
6034
6035 cCfgs -= cEntries;
6036 } while (cCfgs > 0);
6037}
6038
6039
6040/**
6041 * @callback_method_impl{FNDBGCCMD, The 'sx' commands.}
6042 */
6043static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6044{
6045 RT_NOREF2(pCmd, pUVM);
6046 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6047
6048 if (cArgs == 0)
6049 {
6050 /*
6051 * All events.
6052 */
6053 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
6054 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
6055 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6056 &pDbgc->apEventCfgs[iEvt]);
6057 else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
6058 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6059 pDbgc->apHardInts, 0, 256);
6060 else
6061 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6062 pDbgc->apSoftInts, 0, 256);
6063 }
6064 else
6065 {
6066 /*
6067 * Selected events.
6068 */
6069 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
6070 {
6071 unsigned cHits = 0;
6072 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
6073 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
6074 {
6075 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
6076 || ( g_aDbgcSxEvents[iEvt].pszAltNm
6077 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
6078 {
6079 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6080 &pDbgc->apEventCfgs[iEvt]);
6081 cHits++;
6082 }
6083 }
6084 else
6085 {
6086 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
6087 uint8_t iInt;
6088 uint16_t cInts;
6089 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
6090 {
6091 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
6092 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6093 pDbgc->apHardInts, iInt, cInts);
6094 else
6095 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6096 pDbgc->apSoftInts, iInt, cInts);
6097 cHits++;
6098 }
6099 }
6100 if (cHits == 0)
6101 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
6102 }
6103 }
6104
6105 return VINF_SUCCESS;
6106}
6107
6108
6109
6110/**
6111 * List near symbol.
6112 *
6113 * @returns VBox status code.
6114 * @param pCmdHlp Pointer to command helper functions.
6115 * @param pUVM The user mode VM handle.
6116 * @param pArg Pointer to the address or symbol to lookup.
6117 */
6118static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
6119{
6120 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6121
6122 RTDBGSYMBOL Symbol;
6123 int rc;
6124 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
6125 {
6126 /*
6127 * Lookup the symbol address.
6128 */
6129 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
6130 if (RT_FAILURE(rc))
6131 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
6132
6133 rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
6134 }
6135 else
6136 {
6137 /*
6138 * Convert it to a flat GC address and lookup that address.
6139 */
6140 DBGCVAR AddrVar;
6141 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
6142 if (RT_FAILURE(rc))
6143 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
6144
6145 RTINTPTR offDisp;
6146 DBGFADDRESS Addr;
6147 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
6148 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
6149 &offDisp, &Symbol, NULL);
6150 if (RT_FAILURE(rc))
6151 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
6152
6153 if (!offDisp)
6154 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
6155 else if (offDisp > 0)
6156 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
6157 else
6158 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
6159 if (Symbol.cb > 0)
6160 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
6161 else
6162 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
6163 }
6164
6165 return rc;
6166}
6167
6168
6169/**
6170 * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.}
6171 */
6172static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6173{
6174 if (!cArgs)
6175 {
6176 /*
6177 * Current cs:eip symbol.
6178 */
6179 DBGCVAR AddrVar;
6180 const char *pszFmtExpr = "%%(cs:eip)";
6181 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
6182 if (RT_FAILURE(rc))
6183 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
6184 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
6185 }
6186
6187/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
6188 /*
6189 * Iterate arguments.
6190 */
6191 for (unsigned iArg = 0; iArg < cArgs; iArg++)
6192 {
6193 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
6194 if (RT_FAILURE(rc))
6195 return rc;
6196 }
6197
6198 NOREF(pCmd);
6199 return VINF_SUCCESS;
6200}
6201
6202
6203/**
6204 * Matches the module patters against a module name.
6205 *
6206 * @returns true if matching, otherwise false.
6207 * @param pszName The module name.
6208 * @param paArgs The module pattern argument list.
6209 * @param cArgs Number of arguments.
6210 */
6211static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
6212{
6213 for (uint32_t i = 0; i < cArgs; i++)
6214 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
6215 return true;
6216 return false;
6217}
6218
6219
6220/**
6221 * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.}
6222 */
6223static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6224{
6225 bool const fMappings = pCmd->pszCmd[2] == 'o';
6226 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
6227 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6228
6229 /*
6230 * Iterate the modules in the current address space and print info about
6231 * those matching the input.
6232 */
6233 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6234 for (uint32_t iAs = 0;; iAs++)
6235 {
6236 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6237 uint32_t cMods = RTDbgAsModuleCount(hAs);
6238 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6239 {
6240 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6241 if (hMod != NIL_RTDBGMOD)
6242 {
6243 bool const fDeferred = RTDbgModIsDeferred(hMod);
6244 bool const fExports = RTDbgModIsExports(hMod);
6245 uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
6246 const char * const pszName = RTDbgModName(hMod);
6247 const char * const pszImgFile = RTDbgModImageFile(hMod);
6248 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
6249 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
6250 if ( cArgs == 0
6251 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
6252 {
6253 /*
6254 * Find the mapping with the lower address, preferring a full
6255 * image mapping, for the main line.
6256 */
6257 RTDBGASMAPINFO aMappings[128];
6258 uint32_t cMappings = RT_ELEMENTS(aMappings);
6259 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6260 if (RT_SUCCESS(rc))
6261 {
6262 bool fFull = false;
6263 RTUINTPTR uMin = RTUINTPTR_MAX;
6264 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6265 if ( aMappings[iMap].Address < uMin
6266 && ( !fFull
6267 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
6268 uMin = aMappings[iMap].Address;
6269 if (!fVerbose || !pszImgFile)
6270 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
6271 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6272 else
6273 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
6274 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6275 if (fVerbose && pszImgFileUsed)
6276 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
6277 if (fVerbose && pszDbgFile)
6278 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
6279 if (fVerbose)
6280 {
6281 char szTmp[64];
6282 RTTIMESPEC TimeSpec;
6283 int64_t secTs = 0;
6284 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_TIMESTAMP_SECONDS, &secTs, sizeof(secTs), NULL)))
6285 DBGCCmdHlpPrintf(pCmdHlp, " Timestamp: %08RX64 %s\n", secTs,
6286 RTTimeSpecToString(RTTimeSpecSetSeconds(&TimeSpec, secTs), szTmp, sizeof(szTmp)));
6287 RTUUID Uuid;
6288 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_UUID, &Uuid, sizeof(Uuid), NULL)))
6289 DBGCCmdHlpPrintf(pCmdHlp, " UUID: %RTuuid\n", &Uuid);
6290 }
6291
6292 if (fMappings)
6293 {
6294 /* sort by address first - not very efficient. */
6295 for (uint32_t i = 0; i + 1 < cMappings; i++)
6296 for (uint32_t j = i + 1; j < cMappings; j++)
6297 if (aMappings[j].Address < aMappings[i].Address)
6298 {
6299 RTDBGASMAPINFO Tmp = aMappings[j];
6300 aMappings[j] = aMappings[i];
6301 aMappings[i] = Tmp;
6302 }
6303
6304 /* print */
6305 if ( cMappings == 1
6306 && aMappings[0].iSeg == NIL_RTDBGSEGIDX
6307 && !fDeferred)
6308 {
6309 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
6310 {
6311 RTDBGSEGMENT SegInfo;
6312 rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
6313 if (RT_SUCCESS(rc))
6314 {
6315 if (SegInfo.uRva != RTUINTPTR_MAX)
6316 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6317 (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
6318 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6319 else
6320 DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
6321 sizeof(RTGCUINTPTR)*2, "noload",
6322 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6323 }
6324 else
6325 DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
6326 }
6327 }
6328 else
6329 {
6330 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6331 if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
6332 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
6333 (RTGCUINTPTR)aMappings[iMap].Address,
6334 (RTGCUINTPTR)RTDbgModImageSize(hMod));
6335 else if (!fDeferred)
6336 {
6337 RTDBGSEGMENT SegInfo;
6338 rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
6339 if (RT_FAILURE(rc))
6340 {
6341 RT_ZERO(SegInfo);
6342 strcpy(SegInfo.szName, "error");
6343 }
6344 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6345 (RTGCUINTPTR)aMappings[iMap].Address,
6346 (RTGCUINTPTR)SegInfo.cb,
6347 aMappings[iMap].iSeg, SegInfo.szName);
6348 }
6349 else
6350 DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
6351 (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
6352 }
6353 }
6354 }
6355 else
6356 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
6357 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
6358 /** @todo missing address space API for enumerating the mappings. */
6359 }
6360 RTDbgModRelease(hMod);
6361 }
6362 }
6363 RTDbgAsRelease(hAs);
6364
6365 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6366 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6367 break;
6368 AssertBreak(iAs == 0);
6369 hAsCurAlias = DBGF_AS_GLOBAL;
6370 }
6371
6372 NOREF(pCmd);
6373 return VINF_SUCCESS;
6374}
6375
6376
6377
6378/**
6379 * @callback_method_impl{FNDBGCCMD, The 'x' (examine symbols) command.}
6380 */
6381static DECLCALLBACK(int) dbgcCmdListSymbols(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6382{
6383 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6384 AssertReturn(paArgs[0].enmType == DBGCVAR_TYPE_STRING, VERR_DBGC_PARSE_BUG);
6385
6386 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6387
6388 /*
6389 * Allowed is either a single * to match everything or the Module!Symbol style
6390 * which requiresa ! to separate module and symbol.
6391 */
6392 bool fDumpAll = strcmp(paArgs[0].u.pszString, "*") == 0;
6393 const char *pszModule = NULL;
6394 size_t cchModule = 0;
6395 const char *pszSymbol = NULL;
6396 if (!fDumpAll)
6397 {
6398 const char *pszDelimiter = strchr(paArgs[0].u.pszString, '!');
6399 if (!pszDelimiter)
6400 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid search string '%s' for '%s'. Valid are either '*' or the form <Module>!<Symbol> where the <Module> and <Symbol> can contain wildcards",
6401 paArgs[0].u.pszString, pCmd->pszCmd);
6402
6403 pszModule = paArgs[0].u.pszString;
6404 cchModule = pszDelimiter - pszModule;
6405 pszSymbol = pszDelimiter + 1;
6406 }
6407
6408 /*
6409 * Iterate the modules in the current address space and print info about
6410 * those matching the input.
6411 */
6412 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6413 for (uint32_t iAs = 0;; iAs++)
6414 {
6415 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6416 uint32_t cMods = RTDbgAsModuleCount(hAs);
6417 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6418 {
6419 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6420 if (hMod != NIL_RTDBGMOD)
6421 {
6422 const char *pszModName = RTDbgModName(hMod);
6423 if ( fDumpAll
6424 || RTStrSimplePatternNMatch(pszModule, cchModule, pszModName, strlen(pszModName)))
6425 {
6426 RTDBGASMAPINFO aMappings[128];
6427 uint32_t cMappings = RT_ELEMENTS(aMappings);
6428 RTUINTPTR uMapping = 0;
6429
6430 /* Get the minimum mapping address of the module so we can print absolute values for the symbol later on. */
6431 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6432 if (RT_SUCCESS(rc))
6433 {
6434 uMapping = RTUINTPTR_MAX;
6435 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6436 if (aMappings[iMap].Address < uMapping)
6437 uMapping = aMappings[iMap].Address;
6438 }
6439
6440 /* Go through the symbols and print any matches. */
6441 uint32_t cSyms = RTDbgModSymbolCount(hMod);
6442 for (uint32_t iSym = 0; iSym < cSyms; iSym++)
6443 {
6444 RTDBGSYMBOL SymInfo;
6445 rc = RTDbgModSymbolByOrdinal(hMod, iSym, &SymInfo);
6446 if ( RT_SUCCESS(rc)
6447 && ( fDumpAll
6448 || RTStrSimplePatternMatch(pszSymbol, &SymInfo.szName[0])))
6449 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %s!%s\n", uMapping + RTDbgModSegmentRva(hMod, SymInfo.iSeg) + (RTGCUINTPTR)SymInfo.Value, pszModName, &SymInfo.szName[0]);
6450 }
6451 }
6452 RTDbgModRelease(hMod);
6453 }
6454 }
6455 RTDbgAsRelease(hAs);
6456
6457 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6458 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6459 break;
6460 AssertBreak(iAs == 0);
6461 hAsCurAlias = DBGF_AS_GLOBAL;
6462 }
6463
6464 RT_NOREF(pCmd);
6465 return VINF_SUCCESS;
6466}
6467
6468
6469/**
6470 * @callback_method_impl{FNDBGCCMD, The 'tflowc' (clear trace flow) command.}
6471 */
6472static DECLCALLBACK(int) dbgcCmdTraceFlowClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6473{
6474 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6475
6476 /*
6477 * Enumerate the arguments.
6478 */
6479 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6480 int rc = VINF_SUCCESS;
6481 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6482 {
6483 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6484 {
6485 /* one */
6486 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6487 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6488 {
6489 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6490 if (pFlowTrace)
6491 {
6492 rc = DBGFR3FlowTraceModRelease(pFlowTrace->hTraceFlowMod);
6493 if (RT_FAILURE(rc))
6494 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModRelease failed for flow trace module %#x", iFlowTraceMod);
6495 rc = DBGFR3FlowRelease(pFlowTrace->hFlow);
6496 if (RT_FAILURE(rc))
6497 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowRelease failed for flow trace module %#x", iFlowTraceMod);
6498 dbgcFlowTraceModDelete(pDbgc, iFlowTraceMod);
6499 }
6500 else
6501 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6502 }
6503 else
6504 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6505 }
6506 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6507 {
6508 /* all */
6509 PDBGCTFLOW pIt, pItNext;
6510 RTListForEachSafe(&pDbgc->LstTraceFlowMods, pIt, pItNext, DBGCTFLOW, NdTraceFlow)
6511 {
6512 int rc2 = DBGFR3FlowTraceModRelease(pIt->hTraceFlowMod);
6513 if (RT_FAILURE(rc2))
6514 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", pIt->iTraceFlowMod);
6515 dbgcFlowTraceModDelete(pDbgc, pIt->iTraceFlowMod);
6516 }
6517 }
6518 else
6519 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6520 }
6521 return rc;
6522}
6523
6524
6525/**
6526 * @callback_method_impl{FNDBGCCMD, The 'tflowd' (disable trace flow) command.}
6527 */
6528static DECLCALLBACK(int) dbgcCmdTraceFlowDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6529{
6530 /*
6531 * Enumerate the arguments.
6532 */
6533 RT_NOREF1(pUVM);
6534 int rc = VINF_SUCCESS;
6535 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6536 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6537 {
6538 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6539 {
6540 /* one */
6541 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6542 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6543 {
6544 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6545 if (pFlowTrace)
6546 {
6547 rc = DBGFR3FlowTraceModDisable(pFlowTrace->hTraceFlowMod);
6548 if (RT_FAILURE(rc))
6549 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", iFlowTraceMod);
6550 }
6551 else
6552 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6553 }
6554 else
6555 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
6556 }
6557 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6558 {
6559 /* all */
6560 PDBGCTFLOW pIt;
6561 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6562 {
6563 int rc2 = DBGFR3FlowTraceModDisable(pIt->hTraceFlowMod);
6564 if (RT_FAILURE(rc2))
6565 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x",
6566 pIt->iTraceFlowMod);
6567 }
6568 }
6569 else
6570 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6571 }
6572 return rc;
6573}
6574
6575
6576/**
6577 * @callback_method_impl{FNDBGCCMD, The 'tflowe' (enable trace flow) command.}
6578 */
6579static DECLCALLBACK(int) dbgcCmdTraceFlowEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6580{
6581 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6582
6583 /*
6584 * Validate input.
6585 */
6586 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6587 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 2);
6588 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
6589
6590 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6591 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
6592
6593 /*
6594 * Check the desired mode.
6595 */
6596 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED | DBGF_DISAS_FLAGS_DEFAULT_MODE;
6597
6598 /** @todo should use DBGFADDRESS for everything */
6599
6600 /*
6601 * Find address.
6602 */
6603 if (!cArgs)
6604 {
6605 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6606 {
6607#if defined(VBOX_VMM_TARGET_ARMV8)
6608 AssertReleaseFailed();
6609#else
6610 /** @todo Batch query CS, RIP, CPU mode and flags. */
6611 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
6612 if (CPUMIsGuestIn64BitCode(pVCpu))
6613 {
6614 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
6615 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
6616 }
6617 else
6618 {
6619 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
6620 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
6621 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
6622 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
6623 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
6624 {
6625 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6626 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
6627 }
6628 }
6629#endif
6630
6631 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
6632 }
6633 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
6634 {
6635 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6636 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
6637 }
6638 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
6639 }
6640 else
6641 pDbgc->DisasmPos = paArgs[0];
6642 pDbgc->pLastPos = &pDbgc->DisasmPos;
6643
6644 /*
6645 * Convert physical and host addresses to guest addresses.
6646 */
6647 RTDBGAS hDbgAs = pDbgc->hDbgAs;
6648 int rc;
6649 switch (pDbgc->DisasmPos.enmType)
6650 {
6651 case DBGCVAR_TYPE_GC_FLAT:
6652 case DBGCVAR_TYPE_GC_FAR:
6653 break;
6654 case DBGCVAR_TYPE_GC_PHYS:
6655 hDbgAs = DBGF_AS_PHYS;
6656 /* fall thru */
6657 case DBGCVAR_TYPE_HC_FLAT:
6658 case DBGCVAR_TYPE_HC_PHYS:
6659 {
6660 DBGCVAR VarTmp;
6661 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
6662 if (RT_FAILURE(rc))
6663 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
6664 pDbgc->DisasmPos = VarTmp;
6665 break;
6666 }
6667 default: AssertFailed(); break;
6668 }
6669
6670 DBGFADDRESS CurAddr;
6671 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
6672 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
6673 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
6674 else
6675 {
6676 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
6677 if (RT_FAILURE(rc))
6678 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
6679 }
6680
6681 DBGFFLOW hCfg;
6682 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
6683 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
6684 if (RT_SUCCESS(rc))
6685 {
6686 /* Create a probe. */
6687 DBGFFLOWTRACEPROBE hFlowTraceProbe = NULL;
6688 DBGFFLOWTRACEPROBE hFlowTraceProbeExit = NULL;
6689 DBGFFLOWTRACEPROBEENTRY Entry;
6690 DBGFFLOWTRACEMOD hFlowTraceMod = NULL;
6691 uint32_t iTraceModId = 0;
6692
6693 RT_ZERO(Entry);
6694 Entry.enmType = DBGFFLOWTRACEPROBEENTRYTYPE_DEBUGGER;
6695
6696 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbe);
6697 if (RT_SUCCESS(rc))
6698 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbeExit);
6699 if (RT_SUCCESS(rc))
6700 rc = DBGFR3FlowTraceProbeEntriesAdd(hFlowTraceProbeExit, &Entry, 1 /*cEntries*/);
6701 if (RT_SUCCESS(rc))
6702 rc = DBGFR3FlowTraceModCreateFromFlowGraph(pUVM, VMCPUID_ANY, hCfg, NULL,
6703 hFlowTraceProbe, hFlowTraceProbe,
6704 hFlowTraceProbeExit, &hFlowTraceMod);
6705 if (RT_SUCCESS(rc))
6706 rc = dbgcFlowTraceModAdd(pDbgc, hFlowTraceMod, hCfg, &iTraceModId);
6707 if (RT_SUCCESS(rc))
6708 rc = DBGFR3FlowTraceModEnable(hFlowTraceMod, 0, 0);
6709 if (RT_SUCCESS(rc))
6710 DBGCCmdHlpPrintf(pCmdHlp, "Enabled execution flow tracing %u at %RGv\n",
6711 iTraceModId, CurAddr.FlatPtr);
6712
6713 if (hFlowTraceProbe)
6714 DBGFR3FlowTraceProbeRelease(hFlowTraceProbe);
6715 if (hFlowTraceProbeExit)
6716 DBGFR3FlowTraceProbeRelease(hFlowTraceProbeExit);
6717 }
6718 else
6719 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
6720
6721 NOREF(pCmd);
6722 return rc;
6723}
6724
6725
6726/**
6727 * Enumerates and prints all records contained in the given flow tarce module.
6728 *
6729 * @returns VBox status code.
6730 * @param pCmd The command.
6731 * @param pCmdHlp The command helpers.
6732 * @param hFlowTraceMod The flow trace module to print.
6733 * @param hFlow The control flow graph assoicated with the given module.
6734 * @param iFlowTraceMod The flow trace module identifier.
6735 */
6736static int dbgcCmdTraceFlowPrintOne(PDBGCCMDHLP pCmdHlp, PCDBGCCMD pCmd, DBGFFLOWTRACEMOD hFlowTraceMod,
6737 DBGFFLOW hFlow, uint32_t iFlowTraceMod)
6738{
6739 RT_NOREF(hFlow);
6740
6741 DBGFFLOWTRACEREPORT hFlowTraceReport;
6742 int rc = DBGFR3FlowTraceModQueryReport(hFlowTraceMod, &hFlowTraceReport);
6743 if (RT_SUCCESS(rc))
6744 {
6745 uint32_t cRecords = DBGFR3FlowTraceReportGetRecordCount(hFlowTraceReport);
6746 DBGCCmdHlpPrintf(pCmdHlp, "Report for flow trace module %#x (%u records):\n",
6747 iFlowTraceMod, cRecords);
6748
6749 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cRecords * sizeof(DBGCFLOWBBDUMP));
6750 if (RT_LIKELY(paDumpBb))
6751 {
6752 /* Query the basic block referenced for each record and calculate the size. */
6753 for (uint32_t i = 0; i < cRecords && RT_SUCCESS(rc); i++)
6754 {
6755 DBGFFLOWTRACERECORD hRec = NULL;
6756 rc = DBGFR3FlowTraceReportQueryRecord(hFlowTraceReport, i, &hRec);
6757 if (RT_SUCCESS(rc))
6758 {
6759 DBGFADDRESS Addr;
6760 DBGFR3FlowTraceRecordGetAddr(hRec, &Addr);
6761
6762 DBGFFLOWBB hFlowBb = NULL;
6763 rc = DBGFR3FlowQueryBbByAddress(hFlow, &Addr, &hFlowBb);
6764 if (RT_SUCCESS(rc))
6765 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[i]);
6766
6767 DBGFR3FlowTraceRecordRelease(hRec);
6768 }
6769 }
6770
6771 if (RT_SUCCESS(rc))
6772 {
6773 /* Calculate the ASCII screen dimensions and create one. */
6774 uint32_t cchWidth = 0;
6775 uint32_t cchHeight = 0;
6776 for (unsigned i = 0; i < cRecords; i++)
6777 {
6778 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
6779 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
6780 cchHeight += pDumpBb->cchHeight;
6781
6782 /* Incomplete blocks don't have a successor. */
6783 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6784 continue;
6785
6786 cchHeight += 2; /* For the arrow down to the next basic block. */
6787 }
6788
6789
6790 DBGCSCREEN hScreen = NULL;
6791 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth, cchHeight);
6792 if (RT_SUCCESS(rc))
6793 {
6794 uint32_t uY = 0;
6795
6796 /* Dump the basic blocks and connections to the immediate successor. */
6797 for (unsigned i = 0; i < cRecords; i++)
6798 {
6799 paDumpBb[i].uStartX = (cchWidth - paDumpBb[i].cchWidth) / 2;
6800 paDumpBb[i].uStartY = uY;
6801 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
6802 uY += paDumpBb[i].cchHeight;
6803
6804 /* Incomplete blocks don't have a successor. */
6805 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6806 continue;
6807
6808 if (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb) != DBGFFLOWBBENDTYPE_EXIT)
6809 {
6810 /* Draw the arrow down to the next block. */
6811 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6812 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
6813 uY++;
6814 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6815 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
6816 uY++;
6817 }
6818 }
6819
6820 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, false /*fUseColor*/);
6821 dbgcScreenAsciiDestroy(hScreen);
6822 }
6823 else
6824 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to create virtual screen for flow trace module %#x", iFlowTraceMod);
6825 }
6826 else
6827 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query all records of flow trace module %#x", iFlowTraceMod);
6828
6829 for (unsigned i = 0; i < cRecords; i++)
6830 {
6831 if (paDumpBb[i].hFlowBb)
6832 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
6833 }
6834
6835 RTMemTmpFree(paDumpBb);
6836 }
6837 else
6838 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to allocate memory for %u records", cRecords);
6839
6840 DBGFR3FlowTraceReportRelease(hFlowTraceReport);
6841 }
6842 else
6843 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query report for flow trace module %#x", iFlowTraceMod);
6844
6845 return rc;
6846}
6847
6848
6849/**
6850 * @callback_method_impl{FNDBGCCMD, The 'tflowp' (print trace flow) command.}
6851 */
6852static DECLCALLBACK(int) dbgcCmdTraceFlowPrint(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6853{
6854 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6855
6856 /*
6857 * Enumerate the arguments.
6858 */
6859 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6860 int rc = VINF_SUCCESS;
6861 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6862 {
6863 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6864 {
6865 /* one */
6866 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6867 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6868 {
6869 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6870 if (pFlowTrace)
6871 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pFlowTrace->hTraceFlowMod,
6872 pFlowTrace->hFlow, pFlowTrace->iTraceFlowMod);
6873 else
6874 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6875 }
6876 else
6877 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6878 }
6879 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6880 {
6881 /* all */
6882 PDBGCTFLOW pIt;
6883 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6884 {
6885 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pIt->hTraceFlowMod,
6886 pIt->hFlow, pIt->iTraceFlowMod);
6887 if (RT_FAILURE(rc))
6888 break;
6889 }
6890 }
6891 else
6892 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6893 }
6894 return rc;
6895}
6896
6897
6898/**
6899 * @callback_method_impl{FNDBGCCMD, The 'tflowr' (reset trace flow) command.}
6900 */
6901static DECLCALLBACK(int) dbgcCmdTraceFlowReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6902{
6903 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6904
6905 /*
6906 * Enumerate the arguments.
6907 */
6908 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6909 int rc = VINF_SUCCESS;
6910 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6911 {
6912 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6913 {
6914 /* one */
6915 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6916 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6917 {
6918 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6919 if (pFlowTrace)
6920 {
6921 rc = DBGFR3FlowTraceModClear(pFlowTrace->hTraceFlowMod);
6922 if (RT_FAILURE(rc))
6923 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", iFlowTraceMod);
6924 }
6925 else
6926 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6927 }
6928 else
6929 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6930 }
6931 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6932 {
6933 /* all */
6934 PDBGCTFLOW pIt;
6935 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6936 {
6937 rc = DBGFR3FlowTraceModClear(pIt->hTraceFlowMod);
6938 if (RT_FAILURE(rc))
6939 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", pIt->iTraceFlowMod);
6940 }
6941 }
6942 else
6943 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6944 }
6945 return rc;
6946}
6947
6948
6949
6950/**
6951 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.}
6952 */
6953static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6954 PDBGCVAR pResult)
6955{
6956 RT_NOREF1(pUVM);
6957 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6958 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6959 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6960
6961 uint8_t b;
6962 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
6963 if (RT_FAILURE(rc))
6964 return rc;
6965 DBGCVAR_INIT_NUMBER(pResult, b);
6966
6967 NOREF(pFunc);
6968 return VINF_SUCCESS;
6969}
6970
6971
6972/**
6973 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.}
6974 */
6975static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6976 PDBGCVAR pResult)
6977{
6978 RT_NOREF1(pUVM);
6979 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6980 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6981 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6982
6983 uint16_t u16;
6984 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
6985 if (RT_FAILURE(rc))
6986 return rc;
6987 DBGCVAR_INIT_NUMBER(pResult, u16);
6988
6989 NOREF(pFunc);
6990 return VINF_SUCCESS;
6991}
6992
6993
6994/**
6995 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.}
6996 */
6997static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6998 PDBGCVAR pResult)
6999{
7000 RT_NOREF1(pUVM);
7001 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7002 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7003 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7004
7005 uint32_t u32;
7006 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
7007 if (RT_FAILURE(rc))
7008 return rc;
7009 DBGCVAR_INIT_NUMBER(pResult, u32);
7010
7011 NOREF(pFunc);
7012 return VINF_SUCCESS;
7013}
7014
7015
7016/**
7017 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.}
7018 */
7019static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7020 PDBGCVAR pResult)
7021{
7022 RT_NOREF1(pUVM);
7023 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7024 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7025 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7026
7027 uint64_t u64;
7028 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
7029 if (RT_FAILURE(rc))
7030 return rc;
7031 DBGCVAR_INIT_NUMBER(pResult, u64);
7032
7033 NOREF(pFunc);
7034 return VINF_SUCCESS;
7035}
7036
7037
7038/**
7039 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.}
7040 */
7041static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7042 PDBGCVAR pResult)
7043{
7044 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7045 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7046 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7047
7048 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
7049 if (enmMode == CPUMMODE_LONG)
7050 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
7051 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
7052}
7053
7054
7055/**
7056 * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.}
7057 */
7058static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7059 PDBGCVAR pResult)
7060{
7061 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7062
7063 uint16_t uHi;
7064 switch (paArgs[0].enmType)
7065 {
7066 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
7067 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
7068 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
7069 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
7070 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
7071 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
7072 default:
7073 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
7074 }
7075 DBGCVAR_INIT_NUMBER(pResult, uHi);
7076 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
7077
7078 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7079 return VINF_SUCCESS;
7080}
7081
7082
7083/**
7084 * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.}
7085 */
7086static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7087 PDBGCVAR pResult)
7088{
7089 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7090
7091 uint16_t uLow;
7092 switch (paArgs[0].enmType)
7093 {
7094 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
7095 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
7096 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
7097 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
7098 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
7099 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
7100 default:
7101 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
7102 }
7103 DBGCVAR_INIT_NUMBER(pResult, uLow);
7104 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
7105
7106 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7107 return VINF_SUCCESS;
7108}
7109
7110
7111/**
7112 * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.}
7113 */
7114static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7115 PDBGCVAR pResult)
7116{
7117 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7118 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7119 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
7120}
7121
7122
7123/** Generic pointer argument wo/ range. */
7124static const DBGCVARDESC g_aArgPointerWoRange[] =
7125{
7126 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
7127 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
7128};
7129
7130/** Generic pointer or number argument. */
7131static const DBGCVARDESC g_aArgPointerNumber[] =
7132{
7133 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
7134 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
7135};
7136
7137
7138
7139/** Function descriptors for the CodeView / WinDbg emulation.
7140 * The emulation isn't attempting to be identical, only somewhat similar.
7141 */
7142const DBGCFUNC g_aFuncsCodeView[] =
7143{
7144 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
7145 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
7146 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
7147 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
7148 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
7149 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
7150 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
7151 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
7152};
7153
7154/** The number of functions in the CodeView/WinDbg emulation. */
7155const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
7156
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette