/* $Id: DBGCEmulateCodeView.cpp 48899 2013-10-04 20:02:12Z vboxsync $ */ /** @file * DBGC - Debugger Console, CodeView / WinDbg Emulation. */ /* * Copyright (C) 2006-2013 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_DBGC #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "DBGCInternal.h" /******************************************************************************* * Internal Functions * *******************************************************************************/ static FNDBGCCMD dbgcCmdBrkAccess; static FNDBGCCMD dbgcCmdBrkClear; static FNDBGCCMD dbgcCmdBrkDisable; static FNDBGCCMD dbgcCmdBrkEnable; static FNDBGCCMD dbgcCmdBrkList; static FNDBGCCMD dbgcCmdBrkSet; static FNDBGCCMD dbgcCmdBrkREM; static FNDBGCCMD dbgcCmdDumpMem; static FNDBGCCMD dbgcCmdDumpDT; static FNDBGCCMD dbgcCmdDumpIDT; static FNDBGCCMD dbgcCmdDumpPageDir; static FNDBGCCMD dbgcCmdDumpPageDirBoth; static FNDBGCCMD dbgcCmdDumpPageHierarchy; static FNDBGCCMD dbgcCmdDumpPageTable; static FNDBGCCMD dbgcCmdDumpPageTableBoth; static FNDBGCCMD dbgcCmdDumpTSS; static FNDBGCCMD dbgcCmdEditMem; static FNDBGCCMD dbgcCmdGo; static FNDBGCCMD dbgcCmdListModules; static FNDBGCCMD dbgcCmdListNear; static FNDBGCCMD dbgcCmdListSource; static FNDBGCCMD dbgcCmdMemoryInfo; static FNDBGCCMD dbgcCmdReg; static FNDBGCCMD dbgcCmdRegGuest; static FNDBGCCMD dbgcCmdRegHyper; static FNDBGCCMD dbgcCmdRegTerse; static FNDBGCCMD dbgcCmdSearchMem; static FNDBGCCMD dbgcCmdSearchMemType; static FNDBGCCMD dbgcCmdStack; static FNDBGCCMD dbgcCmdTrace; static FNDBGCCMD dbgcCmdUnassemble; /******************************************************************************* * Global Variables * *******************************************************************************/ /** 'ba' arguments. */ static const DBGCVARDESC g_aArgBrkAcc[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." }, { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." }, { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." }, { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" }, { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" }, }; /** 'bc', 'bd', 'be' arguments. */ static const DBGCVARDESC g_aArgBrks[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." }, { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." }, }; /** 'bp' arguments. */ static const DBGCVARDESC g_aArgBrkSet[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." }, { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" }, { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" }, }; /** 'br' arguments. */ static const DBGCVARDESC g_aArgBrkREM[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." }, { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" }, { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" }, }; /** 'd?' arguments. */ static const DBGCVARDESC g_aArgDumpMem[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory." }, }; /** 'dg', 'dga', 'dl', 'dla' arguments. */ static const DBGCVARDESC g_aArgDumpDT[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." }, { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." }, }; /** 'di', 'dia' arguments. */ static const DBGCVARDESC g_aArgDumpIDT[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." }, }; /** 'dpd*' arguments. */ static const DBGCVARDESC g_aArgDumpPD[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." }, { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." }, }; /** 'dpda' arguments. */ static const DBGCVARDESC g_aArgDumpPDAddr[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." }, }; /** 'dph*' arguments. */ static const DBGCVARDESC g_aArgDumpPH[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." }, { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." }, }; /** 'dpt?' arguments. */ static const DBGCVARDESC g_aArgDumpPT[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." }, }; /** 'dpta' arguments. */ static const DBGCVARDESC g_aArgDumpPTAddr[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." }, }; /** 'dt' arguments. */ static const DBGCVARDESC g_aArgDumpTSS[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." }, { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." } }; /** 'e?' arguments. */ static const DBGCVARDESC g_aArgEditMem[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." }, { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." }, }; /** 'lm' arguments. */ static const DBGCVARDESC g_aArgListMods[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." }, }; /** 'ln' arguments. */ static const DBGCVARDESC g_aArgListNear[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." }, { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." }, }; /** 'ls' arguments. */ static const DBGCVARDESC g_aArgListSource[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." }, }; /** 'm' argument. */ static const DBGCVARDESC g_aArgMemoryInfo[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." }, }; /** 'r' arguments. */ static const DBGCVARDESC g_aArgReg[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." }, { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." }, }; /** 's' arguments. */ static const DBGCVARDESC g_aArgSearchMem[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." }, { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n ", "Maximum number of hits." }, { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." }, { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." }, }; /** 's?' arguments. */ static const DBGCVARDESC g_aArgSearchMemType[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." }, { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." }, }; /** 'u' arguments. */ static const DBGCVARDESC g_aArgUnassemble[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." }, }; /** Command descriptors for the CodeView / WinDbg emulation. * The emulation isn't attempting to be identical, only somewhat similar. */ const DBGCCMD g_aCmdsCodeView[] = { /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */ { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "
[passes [max passes]] [cmds]", "Sets a data access breakpoint." }, { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | [bp# []]", "Deletes a set of breakpoints." }, { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | [bp# []]", "Disables a set of breakpoints." }, { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | [bp# []]", "Enables a set of breakpoints." }, { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." }, { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "
[passes [max passes]] [cmds]", "Sets a breakpoint (int 3)." }, { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "
[passes [max passes]] [cmds]", "Sets a recompiler specific breakpoint." }, { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size." }, { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." }, { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." }, { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." }, { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." }, { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." }, { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." }, { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." }, { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." }, { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." }, { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." }, { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." }, { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." }, { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " }, { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." }, { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " }, { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." }, { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." }, { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." }, { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"", "Dumps page table entries of the default context." }, { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"", "Dumps memory at given address as a page table." }, { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"", "Dumps page table entries of the guest and the hypervisor." }, { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"", "Dumps page table entries of the guest." }, { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"", "Dumps page table entries of the hypervisor." }, { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." }, { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." }, { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." }, { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." }, { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." }, { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." }, /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */ { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, " ", "Write a 1-byte value to memory." }, { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, " ", "Write a 2-byte value to memory." }, { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, " ", "Write a 4-byte value to memory." }, { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, " ", "Write a 8-byte value to memory." }, { "g", 0, 0, NULL, 0, 0, dbgcCmdGo, "", "Continue execution." }, { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." }, { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." }, { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." }, { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." }, { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." }, { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." }, { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." }, { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." }, { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." }, { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "", "Display information about that piece of memory." }, { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set." }, { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set." }, { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." }, { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." }, { "rh", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegHyper, "[reg [[=] newval]]", "Show or set register(s) - hypervisor reg set." }, { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." }, { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] ", "Continue last search." }, { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for an ascii string." }, { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for one or more bytes." }, { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for one or more double words." }, { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for one or more quad words." }, { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for an unicode string." }, { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for one or more words." }, { "t", 0, 0, NULL, 0, 0, dbgcCmdTrace, "", "Instruction trace (step into)." }, { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." }, { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." }, { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." }, { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." }, { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." }, }; /** The number of commands in the CodeView/WinDbg emulation. */ const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView); /** * @interface_method_impl{FNDBCCMD, The 'go' command.} */ static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Check if the VM is halted or not before trying to resume it. */ if (!DBGFR3IsHalted(pUVM)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running"); int rc = DBGFR3Resume(pUVM); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume"); NOREF(paArgs); NOREF(cArgs); return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'ba' command.} */ static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Interpret access type. */ if ( !strchr("xrwi", paArgs[0].u.pszString[0]) || paArgs[0].u.pszString[1]) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'", paArgs[0].u.pszString, pCmd->pszCmd); uint8_t fType = 0; switch (paArgs[0].u.pszString[0]) { case 'x': fType = X86_DR7_RW_EO; break; case 'r': fType = X86_DR7_RW_RW; break; case 'w': fType = X86_DR7_RW_WO; break; case 'i': fType = X86_DR7_RW_IO; break; } /* * Validate size. */ if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!", paArgs[1].u.u64Number, pCmd->pszCmd); switch (paArgs[1].u.u64Number) { case 1: case 2: case 4: break; /*case 8: - later*/ default: return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!", paArgs[1].u.u64Number, pCmd->pszCmd); } uint8_t cb = (uint8_t)paArgs[1].u.u64Number; /* * Convert the pointer to a DBGF address. */ DBGFADDRESS Address; int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]); /* * Pick out the optional arguments. */ uint64_t iHitTrigger = 0; uint64_t iHitDisable = ~0; const char *pszCmds = NULL; unsigned iArg = 3; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitTrigger = paArgs[iArg].u.u64Number; iArg++; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitDisable = paArgs[iArg].u.u64Number; iArg++; } } if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING) { pszCmds = paArgs[iArg].u.pszString; iArg++; } /* * Try set the breakpoint. */ uint32_t iBp; rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp); if (RT_SUCCESS(rc)) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); rc = dbgcBpAdd(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr); if (rc == VERR_DBGC_BP_EXISTS) { rc = dbgcBpUpdate(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr); } int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp); AssertRC(rc2); } return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr); } /** * @interface_method_impl{FNDBCCMD, The 'bc' command.} */ static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Enumerate the arguments. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc = VINF_SUCCESS; for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number; if (iBp == paArgs[iArg].u.u64Number) { int rc2 = DBGFR3BpClear(pUVM, iBp); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp); if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND) dbgcBpDelete(pDbgc, iBp); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGCBP pBp = pDbgc->pFirstBp; while (pBp) { uint32_t iBp = pBp->iBp; pBp = pBp->pNext; int rc2 = DBGFR3BpClear(pUVM, iBp); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp); if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND) dbgcBpDelete(pDbgc, iBp); } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * @interface_method_impl{FNDBCCMD, The 'bd' command.} */ static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Enumerate the arguments. */ int rc = VINF_SUCCESS; for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number; if (iBp == paArgs[iArg].u.u64Number) { rc = DBGFR3BpDisable(pUVM, iBp); if (RT_FAILURE(rc)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext) { int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp); } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * @interface_method_impl{FNDBCCMD, The 'be' command.} */ static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Enumerate the arguments. */ int rc = VINF_SUCCESS; for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number; if (iBp == paArgs[iArg].u.u64Number) { rc = DBGFR3BpEnable(pUVM, iBp); if (RT_FAILURE(rc)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext) { int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp); } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * Breakpoint enumeration callback function. * * @returns VBox status code. Any failure will stop the enumeration. * @param pUVM The user mode VM handle. * @param pvUser The user argument. * @param pBp Pointer to the breakpoint information. (readonly) */ static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, PCDBGFBP pBp) { PDBGC pDbgc = (PDBGC)pvUser; PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, pBp->iBp); /* * BP type and size. */ char chType; char cb = 1; switch (pBp->enmType) { case DBGFBPTYPE_INT3: chType = 'p'; break; case DBGFBPTYPE_REG: switch (pBp->u.Reg.fType) { case X86_DR7_RW_EO: chType = 'x'; break; case X86_DR7_RW_WO: chType = 'w'; break; case X86_DR7_RW_IO: chType = 'i'; break; case X86_DR7_RW_RW: chType = 'r'; break; default: chType = '?'; break; } cb = pBp->u.Reg.cb; break; case DBGFBPTYPE_REM: chType = 'r'; break; default: chType = '?'; break; } DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c %d %c %RGv %04RX64 (%04RX64 to ", pBp->iBp, pBp->fEnabled ? 'e' : 'd', (int)cb, chType, pBp->GCPtr, pBp->cHits, pBp->iHitTrigger); if (pBp->iHitDisable == ~(uint64_t)0) DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "~0) "); else DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%04RX64)", pBp->iHitDisable); /* * Try resolve the address. */ RTDBGSYMBOL Sym; RTINTPTR off; DBGFADDRESS Addr; int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->GCPtr), RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &off, &Sym, NULL); if (RT_SUCCESS(rc)) { if (!off) DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName); else if (off > 0) DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off); else DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off); } /* * The commands. */ if (pDbgcBp) { if (pDbgcBp->cchCmd) DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd); else DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n"); } else DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n"); return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'bl' command.} */ static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0); NOREF(paArgs); /* * Enumerate the breakpoints. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum"); return rc; } /** * @interface_method_impl{FNDBCCMD, The 'bp' command.} */ static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Convert the pointer to a DBGF address. */ DBGFADDRESS Address; int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]); /* * Pick out the optional arguments. */ uint64_t iHitTrigger = 0; uint64_t iHitDisable = ~0; const char *pszCmds = NULL; unsigned iArg = 1; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitTrigger = paArgs[iArg].u.u64Number; iArg++; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitDisable = paArgs[iArg].u.u64Number; iArg++; } } if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING) { pszCmds = paArgs[iArg].u.pszString; iArg++; } /* * Try set the breakpoint. */ uint32_t iBp; rc = DBGFR3BpSet(pUVM, &Address, iHitTrigger, iHitDisable, &iBp); if (RT_SUCCESS(rc)) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); rc = dbgcBpAdd(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr); if (rc == VERR_DBGC_BP_EXISTS) { rc = dbgcBpUpdate(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr); } int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp); AssertRC(rc2); } return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr); } /** * @interface_method_impl{FNDBCCMD, The 'br' command.} */ static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Convert the pointer to a DBGF address. */ DBGFADDRESS Address; int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]); /* * Pick out the optional arguments. */ uint64_t iHitTrigger = 0; uint64_t iHitDisable = ~0; const char *pszCmds = NULL; unsigned iArg = 1; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitTrigger = paArgs[iArg].u.u64Number; iArg++; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitDisable = paArgs[iArg].u.u64Number; iArg++; } } if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING) { pszCmds = paArgs[iArg].u.pszString; iArg++; } /* * Try set the breakpoint. */ uint32_t iBp; rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp); if (RT_SUCCESS(rc)) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); rc = dbgcBpAdd(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr); if (rc == VERR_DBGC_BP_EXISTS) { rc = dbgcBpUpdate(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr); } int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp); AssertRC(rc2); } return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr); } /** * Helps the unassmble ('u') command display symbols it starts at and passes. * * @param pUVM The user mode VM handle. * @param pCmdHlp The command helpers for printing via. * @param hDbgAs The address space to look up addresses in. * @param pAddress The current address. * @param pcbCallAgain Where to return the distance to the next check (in * instruction bytes). */ static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress, PRTUINTPTR pcbCallAgain) { RTDBGSYMBOL Symbol; RTGCINTPTR offDispSym; int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDispSym, &Symbol, NULL); if (RT_FAILURE(rc) || offDispSym > _1G) rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL, &offDispSym, &Symbol, NULL); if (RT_SUCCESS(rc) && offDispSym < _1G) { if (!offDispSym) { DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName); *pcbCallAgain = Symbol.cb; } else if (offDispSym > 0) { DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym); *pcbCallAgain = Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1; } else { DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym); *pcbCallAgain = (RTGCUINTPTR)-offDispSym + Symbol.cb; } } else *pcbCallAgain = UINT32_MAX; } /** * @interface_method_impl{FNDBCCMD, The 'u' command.} */ static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType)); if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling"); /* * Check the desired mode. */ unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED; switch (pCmd->pszCmd[1]) { default: AssertFailed(); case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break; case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break; case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break; case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break; case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break; } /** @todo should use DBGFADDRESS for everything */ /* * Find address. */ if (!cArgs) { if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType)) { /** @todo Batch query CS, RIP, CPU mode and flags. */ PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu); if ( pDbgc->fRegCtxGuest && CPUMIsGuestIn64BitCode(pVCpu)) { pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT; pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu); } else { pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR; pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu); pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu); if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fRegCtxGuest && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM)) { fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK; fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; } } if (pDbgc->fRegCtxGuest) fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST; else fFlags |= DBGF_DISAS_FLAGS_CURRENT_HYPER | DBGF_DISAS_FLAGS_HYPER; } else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm) { fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK; fFlags |= pDbgc->fDisasm & (DBGF_DISAS_FLAGS_MODE_MASK | DBGF_DISAS_FLAGS_HYPER); } pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE; } else pDbgc->DisasmPos = paArgs[0]; pDbgc->pLastPos = &pDbgc->DisasmPos; /* * Range. */ switch (pDbgc->DisasmPos.enmRangeType) { case DBGCVAR_RANGE_NONE: pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS; pDbgc->DisasmPos.u64Range = 10; break; case DBGCVAR_RANGE_ELEMENTS: if (pDbgc->DisasmPos.u64Range > 2048) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines"); break; case DBGCVAR_RANGE_BYTES: if (pDbgc->DisasmPos.u64Range > 65536) return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB"); break; default: return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType); } /* * Convert physical and host addresses to guest addresses. */ RTDBGAS hDbgAs = pDbgc->hDbgAs; int rc; switch (pDbgc->DisasmPos.enmType) { case DBGCVAR_TYPE_GC_FLAT: case DBGCVAR_TYPE_GC_FAR: break; case DBGCVAR_TYPE_GC_PHYS: hDbgAs = DBGF_AS_PHYS; case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: { DBGCVAR VarTmp; rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos); pDbgc->DisasmPos = VarTmp; break; } default: AssertFailed(); break; } DBGFADDRESS CurAddr; if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR) DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off); else { rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos); } if (CurAddr.fFlags & DBGFADDRESS_FLAGS_HMA) fFlags |= DBGF_DISAS_FLAGS_HYPER; /* This crap is due to not using DBGFADDRESS as DBGFR3Disas* input. */ pDbgc->fDisasm = fFlags; /* * Figure out where we are and display it. Also calculate when we need to * check for a new symbol if possible. */ RTGCUINTPTR cbCheckSymbol; dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol); /* * Do the disassembling. */ unsigned cTries = 32; int iRangeLeft = (int)pDbgc->DisasmPos.u64Range; if (iRangeLeft == 0) /* kludge for 'r'. */ iRangeLeft = -1; for (;;) { /* * Disassemble the instruction. */ char szDis[256]; uint32_t cbInstr = 1; if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT) rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags, &szDis[0], sizeof(szDis), &cbInstr); else rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags, &szDis[0], sizeof(szDis), &cbInstr); if (RT_SUCCESS(rc)) { /* print it */ rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]); if (RT_FAILURE(rc)) return rc; } else { /* bitch. */ int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n"); if (RT_FAILURE(rc2)) return rc2; if (cTries-- > 0) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up"); cbInstr = 1; } /* advance */ if (iRangeLeft < 0) /* 'r' */ break; if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS) iRangeLeft--; else iRangeLeft -= cbInstr; rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr); if (iRangeLeft <= 0) break; fFlags &= ~(DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_CURRENT_HYPER); /* Print next symbol? */ if (cbCheckSymbol <= cbInstr) { if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR) DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off); else rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr); if (RT_SUCCESS(rc)) dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol); else cbCheckSymbol = UINT32_MAX; } else cbCheckSymbol -= cbInstr; } NOREF(pCmd); return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'ls' command.} */ static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1); if (cArgs == 1) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing..."); if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM"); /* * Find address. */ if (!cArgs) { if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType)) { PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu); pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR; pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu); pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu); } pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE; } else pDbgc->SourcePos = paArgs[0]; pDbgc->pLastPos = &pDbgc->SourcePos; /* * Ensure the source address is flat GC. */ switch (pDbgc->SourcePos.enmType) { case DBGCVAR_TYPE_GC_FLAT: break; case DBGCVAR_TYPE_GC_PHYS: case DBGCVAR_TYPE_GC_FAR: case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: { int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos); if (RT_FAILURE(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc); break; } default: AssertFailed(); break; } /* * Range. */ switch (pDbgc->SourcePos.enmRangeType) { case DBGCVAR_RANGE_NONE: pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS; pDbgc->SourcePos.u64Range = 10; break; case DBGCVAR_RANGE_ELEMENTS: if (pDbgc->SourcePos.u64Range > 2048) return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n"); break; case DBGCVAR_RANGE_BYTES: if (pDbgc->SourcePos.u64Range > 65536) return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n"); break; default: return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType); } /* * Do the disassembling. */ bool fFirst = 1; RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" }; int iRangeLeft = (int)pDbgc->SourcePos.u64Range; if (iRangeLeft == 0) /* kludge for 'r'. */ iRangeLeft = -1; for (;;) { /* * Get line info. */ RTDBGLINE Line; RTGCINTPTR off; DBGFADDRESS SourcePosAddr; int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos); rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL); if (RT_FAILURE(rc)) return VINF_SUCCESS; unsigned cLines = 0; if (memcmp(&Line, &LinePrev, sizeof(Line))) { /* * Print filenamename */ if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename)) fFirst = true; if (fFirst) { rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo); if (RT_FAILURE(rc)) return rc; } /* * Try open the file and read the line. */ FILE *phFile = fopen(Line.szFilename, "r"); if (phFile) { /* Skip ahead to the desired line. */ char szLine[4096]; unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1; if (cBefore > 7) cBefore = 0; unsigned cLeft = Line.uLineNo - cBefore; while (cLeft > 0) { szLine[0] = '\0'; if (!fgets(szLine, sizeof(szLine), phFile)) break; cLeft--; } if (!cLeft) { /* print the before lines */ for (;;) { size_t cch = strlen(szLine); while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) ) szLine[--cch] = '\0'; if (cBefore-- <= 0) break; rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine); szLine[0] = '\0'; fgets(szLine, sizeof(szLine), phFile); cLines++; } /* print the actual line */ rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine); } fclose(phFile); if (RT_FAILURE(rc)) return rc; fFirst = false; } else return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename); LinePrev = Line; } /* * Advance */ if (iRangeLeft < 0) /* 'r' */ break; if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS) iRangeLeft -= cLines; else iRangeLeft -= 1; rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1); if (iRangeLeft <= 0) break; } NOREF(pCmd); return 0; } /** * @interface_method_impl{FNDBCCMD, The 'r' command.} */ static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); if (!pDbgc->fRegCtxGuest) return dbgcCmdRegHyper(pCmd, pCmdHlp, pUVM, paArgs, cArgs); return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs); } /** * @interface_method_impl{FNDBCCMD, Common worker for the dbgcCmdReg*() * commands.} */ static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs, const char *pszPrefix) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL); /* * Parse the register name and kind. */ const char *pszReg = paArgs[0].u.pszString; if (*pszReg == '@') pszReg++; VMCPUID idCpu = pDbgc->idCpu; if (*pszPrefix) idCpu |= DBGFREG_HYPER_VMCPUID; if (*pszReg == '.') { pszReg++; idCpu |= DBGFREG_HYPER_VMCPUID; } const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : ""; /* * Query the register type & value (the setter needs the type). */ DBGFREGVALTYPE enmType; DBGFREGVAL Value; int rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType); if (RT_FAILURE(rc)) { if (rc == VERR_DBGF_REGISTER_NOT_FOUND) return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n", pszActualPrefix, pszReg); return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n", pszActualPrefix, pszReg, rc); } if (cArgs == 1) { /* * Show the register. */ char szValue[160]; rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/); if (RT_SUCCESS(rc)) rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue); else rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc); } else { DBGCVAR NewValueTmp; PCDBGCVAR pNewValue; if (cArgs == 3) { DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING); if (strcmp(paArgs[1].u.pszString, "=")) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='."); pNewValue = &paArgs[2]; } else { /* Not possible to convince the parser to support both codeview and windbg syntax and make the equal sign optional. Try help it. */ /** @todo make DBGCCmdHlpConvert do more with strings. */ rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol."); pNewValue = &NewValueTmp; } /* * Modify the register. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER); if (enmType != DBGFREGVALTYPE_DTR) { enmType = DBGFREGVALTYPE_U64; rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64); } else { enmType = DBGFREGVALTYPE_DTR; rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base); if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE) Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range; } if (RT_SUCCESS(rc)) { rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType); if (RT_FAILURE(rc)) rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n", pszActualPrefix, pszReg, rc); if (rc != VINF_SUCCESS) DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc); } else rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc); } return rc; } /** * @interface_method_impl{FNDBCCMD, * The 'rg', 'rg64' and 'rg32' commands, worker for 'r'.} */ static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Show all registers our selves. */ if (cArgs == 0) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64") || ( strcmp(pCmd->pszCmd, "rg32") != 0 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu)); char szDisAndRegs[8192]; int rc; if (pDbgc->fRegTerse) { if (f64BitMode) rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs), "u %016VR{rip} L 0\n" "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n" "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n" "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n" "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n" "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n" "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} rflags=%08VR{rflags}\n"); else rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs), "u %04VR{cs}:%08VR{eip} L 0\n" "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n" "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n" "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} eflags=%08VR{eflags}\n"); } else { if (f64BitMode) rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs), "u %016VR{rip} L 0\n" "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n" "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n" "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n" "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n" "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n" "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n" "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n" "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n" "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n" "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n" "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n" "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n" "dr6=%016VR{dr6} dr7=%016VR{dr7}\n" "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n" "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n" "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n" " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n" " efer=%016VR{efer}\n" " pat=%016VR{pat}\n" " sf_mask=%016VR{sf_mask}\n" "krnl_gs_base=%016VR{krnl_gs_base}\n" " lstar=%016VR{lstar}\n" " star=%016VR{star} cstar=%016VR{cstar}\n" "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n" ); else rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs), "u %04VR{cs}:%08VR{eip} L 0\n" "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n" "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n" "cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} dr0=%08VR{dr0} dr1=%08VR{dr1}\n" "ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} dr2=%08VR{dr2} dr3=%08VR{dr3}\n" "es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} dr6=%08VR{dr6} dr7=%08VR{dr7}\n" "fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr0=%08VR{cr0} cr2=%08VR{cr2}\n" "gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr3=%08VR{cr3} cr4=%08VR{cr4}\n" "ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}} cr8=%08VR{cr8}\n" "gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} idtr=%08VR{idtr_base}:%04VR{idtr_lim} eflags=%08VR{eflags}\n" "ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n" "tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n" "sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n" "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n" ); } if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed"); char *pszRegs = strchr(szDisAndRegs, '\n'); *pszRegs++ = '\0'; rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs); /* * Disassemble one instruction at cs:[r|e]ip. */ if (!f64BitMode && strstr(pszRegs, " vm ")) /* a big ugly... */ return pCmdHlp->pfnExec(pCmdHlp, "uv86 %s", szDisAndRegs + 2); return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs); } return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, ""); } /** * @interface_method_impl{FNDBCCMD, The 'rh' command.} */ static DECLCALLBACK(int) dbgcCmdRegHyper(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Show all registers our selves. */ if (cArgs == 0) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); char szDisAndRegs[8192]; int rc; if (pDbgc->fRegTerse) rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs), "u %VR{cs}:%VR{eip} L 0\n" ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n" ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n" ".cs=%04VR{cs} .ds=%04VR{ds} .es=%04VR{es} .fs=%04VR{fs} .gs=%04VR{gs} .ss=%04VR{ss} .eflags=%08VR{eflags}\n"); else rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs), "u %04VR{cs}:%08VR{eip} L 0\n" ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n" ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n" ".cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} .dr0=%08VR{dr0} .dr1=%08VR{dr1}\n" ".ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} .dr2=%08VR{dr2} .dr3=%08VR{dr3}\n" ".es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} .dr6=%08VR{dr6} .dr6=%08VR{dr6}\n" ".fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} .cr3=%016VR{cr3}\n" ".gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}}\n" ".ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n" ".gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} .idtr=%08VR{idtr_base}:%04VR{idtr_lim} .eflags=%08VR{eflags}\n" ".ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n" ".tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n" ); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed"); char *pszRegs = strchr(szDisAndRegs, '\n'); *pszRegs++ = '\0'; rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs); /* * Disassemble one instruction at cs:[r|e]ip. */ return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs); } return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "."); } /** * @interface_method_impl{FNDBCCMD, The 'rt' command.} */ static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs); PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); pDbgc->fRegTerse = !pDbgc->fRegTerse; return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n"); } /** * @interface_method_impl{FNDBCCMD, The 't' command.} */ static DECLCALLBACK(int) dbgcCmdTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc = DBGFR3Step(pUVM, pDbgc->idCpu); if (RT_SUCCESS(rc)) pDbgc->fReady = false; else rc = pDbgc->CmdHlp.pfnVBoxError(&pDbgc->CmdHlp, rc, "When trying to single step VM %p\n", pDbgc->pVM); NOREF(pCmd); NOREF(paArgs); NOREF(cArgs); return rc; } /** * @interface_method_impl{FNDBCCMD, The 'k', 'kg' and 'kh' commands.} */ static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Figure which context we're called for and start walking that stack. */ int rc; PCDBGFSTACKFRAME pFirstFrame; bool const fGuest = pCmd->pszCmd[1] == 'g' || (!pCmd->pszCmd[1] && pDbgc->fRegCtxGuest); rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame); if (RT_FAILURE(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc); /* * Print header. * 12345678 12345678 0023:87654321 12345678 87654321 12345678 87654321 symbol */ uint32_t fBitFlags = 0; for (PCDBGFSTACKFRAME pFrame = pFirstFrame; pFrame; pFrame = DBGFR3StackWalkNext(pFrame)) { uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT); if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT) { if (fCurBitFlags != fBitFlags) pCmdHlp->pfnPrintf(pCmdHlp, NULL, "SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32", pFrame->AddrFrame.Sel, (uint16_t)pFrame->AddrFrame.off, pFrame->AddrReturnFrame.Sel, (uint16_t)pFrame->AddrReturnFrame.off, (uint32_t)pFrame->AddrReturnPC.Sel, (uint32_t)pFrame->AddrReturnPC.off, pFrame->Args.au32[0], pFrame->Args.au32[1], pFrame->Args.au32[2], pFrame->Args.au32[3]); } else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT) { if (fCurBitFlags != fBitFlags) pCmdHlp->pfnPrintf(pCmdHlp, NULL, "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32", (uint32_t)pFrame->AddrFrame.off, (uint32_t)pFrame->AddrReturnFrame.off, (uint32_t)pFrame->AddrReturnPC.Sel, (uint32_t)pFrame->AddrReturnPC.off, pFrame->Args.au32[0], pFrame->Args.au32[1], pFrame->Args.au32[2], pFrame->Args.au32[3]); } else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT) { if (fCurBitFlags != fBitFlags) pCmdHlp->pfnPrintf(pCmdHlp, NULL, "RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%016RX64 %04RX16:%016RX64 %016RX64", (uint64_t)pFrame->AddrFrame.off, pFrame->AddrReturnFrame.Sel, (uint64_t)pFrame->AddrReturnFrame.off, (uint64_t)pFrame->AddrReturnPC.off); } if (RT_FAILURE(rc)) break; if (!pFrame->pSymPC) rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT ? " %RTsel:%016RGv" : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT ? " %RTsel:%08RGv" : " %RTsel:%04RGv" , pFrame->AddrPC.Sel, pFrame->AddrPC.off); else { RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */ if (offDisp > 0) rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp); else if (offDisp < 0) rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp); else rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName); } if (RT_SUCCESS(rc) && pFrame->pLinePC) rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo); if (RT_SUCCESS(rc)) rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); if (RT_FAILURE(rc)) break; fBitFlags = fCurBitFlags; } DBGFR3StackWalkEnd(pFirstFrame); NOREF(paArgs); NOREF(cArgs); return rc; } static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, bool *pfDblEntry) { /* GUEST64 */ int rc; const char *pszHyper = fHyper ? " HYPER" : ""; const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP"; if (pDesc->Gen.u1DescType) { static const char * const s_apszTypes[] = { "DataRO", /* 0 Read-Only */ "DataRO", /* 1 Read-Only - Accessed */ "DataRW", /* 2 Read/Write */ "DataRW", /* 3 Read/Write - Accessed */ "DownRO", /* 4 Expand-down, Read-Only */ "DownRO", /* 5 Expand-down, Read-Only - Accessed */ "DownRW", /* 6 Expand-down, Read/Write */ "DownRW", /* 7 Expand-down, Read/Write - Accessed */ "CodeEO", /* 8 Execute-Only */ "CodeEO", /* 9 Execute-Only - Accessed */ "CodeER", /* A Execute/Readable */ "CodeER", /* B Execute/Readable - Accessed */ "ConfE0", /* C Conforming, Execute-Only */ "ConfE0", /* D Conforming, Execute-Only - Accessed */ "ConfER", /* E Conforming, Execute/Readable */ "ConfER" /* F Conforming, Execute/Readable - Accessed */ }; const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA"; const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " "; const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " "; uint32_t u32Base = X86DESC_BASE(pDesc); uint32_t cbLimit = X86DESC_LIMIT_G(pDesc); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit, pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig, pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper); } else { static const char * const s_apszTypes[] = { "Ill-0 ", /* 0 0000 Reserved (Illegal) */ "Ill-1 ", /* 1 0001 Available 16-bit TSS */ "LDT ", /* 2 0010 LDT */ "Ill-3 ", /* 3 0011 Busy 16-bit TSS */ "Ill-4 ", /* 4 0100 16-bit Call Gate */ "Ill-5 ", /* 5 0101 Task Gate */ "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */ "Ill-7 ", /* 7 0111 16-bit Trap Gate */ "Ill-8 ", /* 8 1000 Reserved (Illegal) */ "Tss64A", /* 9 1001 Available 32-bit TSS */ "Ill-A ", /* A 1010 Reserved (Illegal) */ "Tss64B", /* B 1011 Busy 32-bit TSS */ "Call64", /* C 1100 32-bit Call Gate */ "Ill-D ", /* D 1101 Reserved (Illegal) */ "Int64 ", /* E 1110 32-bit Interrupt Gate */ "Trap64" /* F 1111 32-bit Trap Gate */ }; switch (pDesc->Gen.u4Type) { /* raw */ case X86_SEL_TYPE_SYS_UNDEFINED: case X86_SEL_TYPE_SYS_UNDEFINED2: case X86_SEL_TYPE_SYS_UNDEFINED4: case X86_SEL_TYPE_SYS_UNDEFINED3: case X86_SEL_TYPE_SYS_286_TSS_AVAIL: case X86_SEL_TYPE_SYS_286_TSS_BUSY: case X86_SEL_TYPE_SYS_286_CALL_GATE: case X86_SEL_TYPE_SYS_286_INT_GATE: case X86_SEL_TYPE_SYS_286_TRAP_GATE: case X86_SEL_TYPE_SYS_TASK_GATE: rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc, pDesc->Gen.u2Dpl, pszPresent, pszHyper); break; case X86_SEL_TYPE_SYS_386_TSS_AVAIL: case X86_SEL_TYPE_SYS_386_TSS_BUSY: case X86_SEL_TYPE_SYS_LDT: { const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB"; const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " "; const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " "; uint64_t u64Base = X86DESC64_BASE(pDesc); uint32_t cbLimit = X86DESC_LIMIT_G(pDesc); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit, pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig, pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1), pszHyper); if (pfDblEntry) *pfDblEntry = true; break; } case X86_SEL_TYPE_SYS_386_CALL_GATE: { unsigned cParams = pDesc->au8[4] & 0x1f; const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC"; RTSEL sel = pDesc->au16[1]; uint64_t off = pDesc->au16[0] | ((uint64_t)pDesc->au16[3] << 16) | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off, pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper); if (pfDblEntry) *pfDblEntry = true; break; } case X86_SEL_TYPE_SYS_386_INT_GATE: case X86_SEL_TYPE_SYS_386_TRAP_GATE: { RTSEL sel = pDesc->au16[1]; uint64_t off = pDesc->au16[0] | ((uint64_t)pDesc->au16[3] << 16) | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off, pDesc->Gen.u2Dpl, pszPresent, pszHyper); if (pfDblEntry) *pfDblEntry = true; break; } /* impossible, just it's necessary to keep gcc happy. */ default: return VINF_SUCCESS; } } return VINF_SUCCESS; } /** * Worker function that displays one descriptor entry (GDT, LDT, IDT). * * @returns pfnPrintf status code. * @param pCmdHlp The DBGC command helpers. * @param pDesc The descriptor to display. * @param iEntry The descriptor entry number. * @param fHyper Whether the selector belongs to the hypervisor or not. */ static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper) { int rc; const char *pszHyper = fHyper ? " HYPER" : ""; const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP"; if (pDesc->Gen.u1DescType) { static const char * const s_apszTypes[] = { "DataRO", /* 0 Read-Only */ "DataRO", /* 1 Read-Only - Accessed */ "DataRW", /* 2 Read/Write */ "DataRW", /* 3 Read/Write - Accessed */ "DownRO", /* 4 Expand-down, Read-Only */ "DownRO", /* 5 Expand-down, Read-Only - Accessed */ "DownRW", /* 6 Expand-down, Read/Write */ "DownRW", /* 7 Expand-down, Read/Write - Accessed */ "CodeEO", /* 8 Execute-Only */ "CodeEO", /* 9 Execute-Only - Accessed */ "CodeER", /* A Execute/Readable */ "CodeER", /* B Execute/Readable - Accessed */ "ConfE0", /* C Conforming, Execute-Only */ "ConfE0", /* D Conforming, Execute-Only - Accessed */ "ConfER", /* E Conforming, Execute/Readable */ "ConfER" /* F Conforming, Execute/Readable - Accessed */ }; const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA"; const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " "; const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " "; uint32_t u32Base = pDesc->Gen.u16BaseLow | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16) | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24); uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16); if (pDesc->Gen.u1Granularity) cbLimit <<= PAGE_SHIFT; rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit, pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig, pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper); } else { static const char * const s_apszTypes[] = { "Ill-0 ", /* 0 0000 Reserved (Illegal) */ "Tss16A", /* 1 0001 Available 16-bit TSS */ "LDT ", /* 2 0010 LDT */ "Tss16B", /* 3 0011 Busy 16-bit TSS */ "Call16", /* 4 0100 16-bit Call Gate */ "TaskG ", /* 5 0101 Task Gate */ "Int16 ", /* 6 0110 16-bit Interrupt Gate */ "Trap16", /* 7 0111 16-bit Trap Gate */ "Ill-8 ", /* 8 1000 Reserved (Illegal) */ "Tss32A", /* 9 1001 Available 32-bit TSS */ "Ill-A ", /* A 1010 Reserved (Illegal) */ "Tss32B", /* B 1011 Busy 32-bit TSS */ "Call32", /* C 1100 32-bit Call Gate */ "Ill-D ", /* D 1101 Reserved (Illegal) */ "Int32 ", /* E 1110 32-bit Interrupt Gate */ "Trap32" /* F 1111 32-bit Trap Gate */ }; switch (pDesc->Gen.u4Type) { /* raw */ case X86_SEL_TYPE_SYS_UNDEFINED: case X86_SEL_TYPE_SYS_UNDEFINED2: case X86_SEL_TYPE_SYS_UNDEFINED4: case X86_SEL_TYPE_SYS_UNDEFINED3: rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc, pDesc->Gen.u2Dpl, pszPresent, pszHyper); break; case X86_SEL_TYPE_SYS_286_TSS_AVAIL: case X86_SEL_TYPE_SYS_386_TSS_AVAIL: case X86_SEL_TYPE_SYS_286_TSS_BUSY: case X86_SEL_TYPE_SYS_386_TSS_BUSY: case X86_SEL_TYPE_SYS_LDT: { const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " "; const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB"; const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " "; uint32_t u32Base = pDesc->Gen.u16BaseLow | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16) | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24); uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16); if (pDesc->Gen.u1Granularity) cbLimit <<= PAGE_SHIFT; rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit, pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig, pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1), pszHyper); break; } case X86_SEL_TYPE_SYS_TASK_GATE: { rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1], pDesc->Gen.u2Dpl, pszPresent, pszHyper); break; } case X86_SEL_TYPE_SYS_286_CALL_GATE: case X86_SEL_TYPE_SYS_386_CALL_GATE: { unsigned cParams = pDesc->au8[4] & 0x1f; const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC"; RTSEL sel = pDesc->au16[1]; uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off, pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper); break; } case X86_SEL_TYPE_SYS_286_INT_GATE: case X86_SEL_TYPE_SYS_386_INT_GATE: case X86_SEL_TYPE_SYS_286_TRAP_GATE: case X86_SEL_TYPE_SYS_386_TRAP_GATE: { RTSEL sel = pDesc->au16[1]; uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off, pDesc->Gen.u2Dpl, pszPresent, pszHyper); break; } /* impossible, just it's necessary to keep gcc happy. */ default: return VINF_SUCCESS; } } return rc; } /** * @interface_method_impl{FNDBCCMD, The 'dg', 'dga', 'dl' and 'dla' commands.} */ static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Get the CPU mode, check which command variation this is * and fix a default parameter if needed. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu); CPUMMODE enmMode = CPUMGetGuestMode(pVCpu); bool fGdt = pCmd->pszCmd[1] == 'g'; bool fAll = pCmd->pszCmd[2] == 'a'; RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT; DBGCVAR Var; if (!cArgs) { cArgs = 1; paArgs = &Var; Var.enmType = DBGCVAR_TYPE_NUMBER; Var.u.u64Number = 0; Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS; Var.u64Range = 1024; } /* * Process the arguments. */ for (unsigned i = 0; i < cArgs; i++) { /* * Retrieve the selector value from the argument. * The parser may confuse pointers and numbers if more than one * argument is given, that that into account. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType)); uint64_t u64; unsigned cSels = 1; switch (paArgs[i].enmType) { case DBGCVAR_TYPE_NUMBER: u64 = paArgs[i].u.u64Number; if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE) cSels = RT_MIN(paArgs[i].u64Range, 1024); break; case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break; case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break; case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break; case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break; case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break; default: u64 = _64K; break; } if (u64 < _64K) { unsigned Sel = (RTSEL)u64; /* * Dump the specified range. */ bool fSingle = cSels == 1; while ( cSels-- > 0 && Sel < _64K) { DBGFSELINFO SelInfo; int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo); if (RT_SUCCESS(rc)) { if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE) rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n", Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit); else if ( fAll || fSingle || SelInfo.u.Raw.Gen.u1Present) { if (enmMode == CPUMMODE_PROTECTED) rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER)); else { bool fDblSkip = false; rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), &fDblSkip); if (fDblSkip) Sel += 4; } } } else { rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc); if (!fAll) return rc; } if (RT_FAILURE(rc)) return rc; /* next */ Sel += 8; } } else DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64); } return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'di' and 'dia' commands.} */ static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Establish some stuff like the current IDTR and CPU mode, * and fix a default parameter. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu); uint16_t cbLimit; RTGCUINTPTR GCPtrBase = CPUMGetGuestIDTR(pVCpu, &cbLimit); CPUMMODE enmMode = CPUMGetGuestMode(pVCpu); unsigned cbEntry; switch (enmMode) { case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break; case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break; case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break; default: return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode); } bool fAll = pCmd->pszCmd[2] == 'a'; DBGCVAR Var; if (!cArgs) { cArgs = 1; paArgs = &Var; Var.enmType = DBGCVAR_TYPE_NUMBER; Var.u.u64Number = 0; Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS; Var.u64Range = 256; } /* * Process the arguments. */ for (unsigned i = 0; i < cArgs; i++) { DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER); if (paArgs[i].u.u64Number < 256) { RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number; unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE ? paArgs[i].u64Range : 1; bool fSingle = cInts == 1; while ( cInts-- > 0 && iInt < 256) { /* * Try read it. */ union { RTFAR16 Real; X86DESC Prot; X86DESC64 Long; } u; if (iInt * cbEntry + (cbEntry - 1) > cbLimit) { DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt); if (!fAll && !fSingle) return VINF_SUCCESS; } DBGCVAR AddrVar; AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT; AddrVar.u.GCFlat = GCPtrBase + iInt * cbEntry; AddrVar.enmRangeType = DBGCVAR_RANGE_NONE; int rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt); /* * Display it. */ switch (enmMode) { case CPUMMODE_REAL: rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16\n", (unsigned)iInt, u.Real); /** @todo resolve 16:16 IDTE to a symbol */ break; case CPUMMODE_PROTECTED: if (fAll || fSingle || u.Prot.Gen.u1Present) rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false); break; case CPUMMODE_LONG: if (fAll || fSingle || u.Long.Gen.u1Present) rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, NULL); break; default: break; /* to shut up gcc */ } if (RT_FAILURE(rc)) return rc; /* next */ iInt++; } } else DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number); } return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'da', 'dq', 'dd', 'dw' and 'db' * commands.} */ static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1); if (cArgs == 1) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Figure out the element size. */ unsigned cbElement; bool fAscii = false; switch (pCmd->pszCmd[1]) { default: case 'b': cbElement = 1; break; case 'w': cbElement = 2; break; case 'd': cbElement = 4; break; case 'q': cbElement = 8; break; case 'a': cbElement = 1; fAscii = true; break; case '\0': fAscii = !!(pDbgc->cbDumpElement & 0x80000000); cbElement = pDbgc->cbDumpElement & 0x7fffffff; if (!cbElement) cbElement = 1; break; } /* * Find address. */ if (!cArgs) pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE; else pDbgc->DumpPos = paArgs[0]; /* * Range. */ switch (pDbgc->DumpPos.enmRangeType) { case DBGCVAR_RANGE_NONE: pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES; pDbgc->DumpPos.u64Range = 0x60; break; case DBGCVAR_RANGE_ELEMENTS: if (pDbgc->DumpPos.u64Range > 2048) return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n"); pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES; pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range; break; case DBGCVAR_RANGE_BYTES: if (pDbgc->DumpPos.u64Range > 65536) return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n"); break; default: return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType); } pDbgc->pLastPos = &pDbgc->DumpPos; /* * Do the dumping. */ pDbgc->cbDumpElement = cbElement | (fAscii << 31); int cbLeft = (int)pDbgc->DumpPos.u64Range; uint8_t u8Prev = '\0'; for (;;) { /* * Read memory. */ char achBuffer[16]; size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft); size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft); int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb); if (RT_FAILURE(rc)) { if (u8Prev && u8Prev != '\n') DBGCCmdHlpPrintf(pCmdHlp, "\n"); return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos); } /* * Display it. */ memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb); if (!fAscii) { DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos); unsigned i; for (i = 0; i < cb; i += cbElement) { const char *pszSpace = " "; if (cbElement <= 2 && i == 8 && !fAscii) pszSpace = "-"; switch (cbElement) { case 1: DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]); break; case 2: DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]); break; case 4: DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]); break; case 8: DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]); break; } } /* chars column */ if (pDbgc->cbDumpElement == 1) { while (i++ < sizeof(achBuffer)) DBGCCmdHlpPrintf(pCmdHlp, " "); DBGCCmdHlpPrintf(pCmdHlp, " "); for (i = 0; i < cb; i += cbElement) { uint8_t u8 = *(uint8_t *)&achBuffer[i]; if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32) DBGCCmdHlpPrintf(pCmdHlp, "%c", u8); else DBGCCmdHlpPrintf(pCmdHlp, "."); } } rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); } else { /* * We print up to the first zero and stop there. * Only printables + '\t' and '\n' are printed. */ if (!u8Prev) DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos); uint8_t u8 = '\0'; unsigned i; for (i = 0; i < cb; i++) { u8Prev = u8; u8 = *(uint8_t *)&achBuffer[i]; if ( u8 < 127 && ( (RT_C_IS_PRINT(u8) && u8 >= 32) || u8 == '\t' || u8 == '\n')) DBGCCmdHlpPrintf(pCmdHlp, "%c", u8); else if (!u8) break; else DBGCCmdHlpPrintf(pCmdHlp, "\\x%x", u8); } if (u8 == '\0') cb = cbLeft = i + 1; if (cbLeft - cb <= 0 && u8Prev != '\n') DBGCCmdHlpPrintf(pCmdHlp, "\n"); } /* * Advance */ cbLeft -= (int)cb; rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb); if (cbLeft <= 0) break; } NOREF(pCmd); return VINF_SUCCESS; } /** * Best guess at which paging mode currently applies to the guest * paging structures. * * This have to come up with a decent answer even when the guest * is in non-paged protected mode or real mode. * * @returns cr3. * @param pDbgc The DBGC instance. * @param pfPAE Where to store the page address extension indicator. * @param pfLME Where to store the long mode enabled indicator. * @param pfPSE Where to store the page size extension indicator. * @param pfPGE Where to store the page global enabled indicator. * @param pfNXE Where to store the no-execution enabled indicator. */ static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE) { PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu); RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu); *pfPSE = !!(cr4 & X86_CR4_PSE); *pfPGE = !!(cr4 & X86_CR4_PGE); if (cr4 & X86_CR4_PAE) { *pfPSE = true; *pfPAE = true; } else *pfPAE = false; *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG; *pfNXE = false; /* GUEST64 GUESTNX */ return CPUMGetGuestCR3(pVCpu); } /** * Determine the shadow paging mode. * * @returns cr3. * @param pDbgc The DBGC instance. * @param pfPAE Where to store the page address extension indicator. * @param pfLME Where to store the long mode enabled indicator. * @param pfPSE Where to store the page size extension indicator. * @param pfPGE Where to store the page global enabled indicator. * @param pfNXE Where to store the no-execution enabled indicator. */ static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE) { PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu); *pfPSE = true; *pfPGE = false; switch (PGMGetShadowMode(pVCpu)) { default: case PGMMODE_32_BIT: *pfPAE = *pfLME = *pfNXE = false; break; case PGMMODE_PAE: *pfLME = *pfNXE = false; *pfPAE = true; break; case PGMMODE_PAE_NX: *pfLME = false; *pfPAE = *pfNXE = true; break; case PGMMODE_AMD64: *pfNXE = false; *pfPAE = *pfLME = true; break; case PGMMODE_AMD64_NX: *pfPAE = *pfLME = *pfNXE = true; break; } return PGMGetHyperCR3(pVCpu); } /** * @interface_method_impl{FNDBCCMD, The 'dpd', 'dpda', 'dpdb', 'dpdg' and 'dpdh' * commands.} */ static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1); if (cArgs == 1 && pCmd->pszCmd[3] == 'a') DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); if (cArgs == 1 && pCmd->pszCmd[3] != 'a') DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[0].enmType)); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Guest or shadow page directories? Get the paging parameters. */ bool fGuest = pCmd->pszCmd[3] != 'h'; if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a') fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? pDbgc->fRegCtxGuest : DBGCVAR_ISGCPOINTER(paArgs[0].enmType); bool fPAE, fLME, fPSE, fPGE, fNXE; uint64_t cr3 = fGuest ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE) : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE); const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE); /* * Setup default argument if none was specified. * Fix address / index confusion. */ DBGCVAR VarDefault; if (!cArgs) { if (pCmd->pszCmd[3] == 'a') { if (fLME || fPAE) return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n"); if (fGuest) DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3); else DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3); } else DBGCVAR_INIT_GC_FLAT(&VarDefault, 0); paArgs = &VarDefault; cArgs = 1; } else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER) { /* If it's a number (not an address), it's an index, so convert it to an address. */ Assert(pCmd->pszCmd[3] != 'a'); VarDefault = paArgs[0]; if (fPAE) return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n"); if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry) return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1); VarDefault.u.u64Number <<= X86_PD_SHIFT; VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT; paArgs = &VarDefault; } /* * Locate the PDE to start displaying at. * * The 'dpda' command takes the address of a PDE, while the others are guest * virtual address which PDEs should be displayed. So, 'dpda' is rather simple * while the others require us to do all the tedious walking thru the paging * hierarchy to find the intended PDE. */ unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */ DBGCVAR VarGCPtr; /* The GC address corresponding to the current PDE (iEntry != ~0U). */ DBGCVAR VarPDEAddr; /* The address of the current PDE. */ unsigned cEntries; /* The number of entries to display. */ unsigned cEntriesMax; /* The max number of entries to display. */ int rc; if (pCmd->pszCmd[3] == 'a') { VarPDEAddr = paArgs[0]; switch (VarPDEAddr.enmRangeType) { case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break; case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break; default: cEntries = 10; break; } cEntriesMax = PAGE_SIZE / cbEntry; } else { /* * Determine the range. */ switch (paArgs[0].enmRangeType) { case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break; case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break; default: cEntries = 10; break; } /* * Normalize the input address, it must be a flat GC address. */ rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]); if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT) { VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat; VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT; } if (fPAE) VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1); else VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1); /* * Do the paging walk until we get to the page directory. */ DBGCVAR VarCur; if (fGuest) DBGCVAR_INIT_GC_PHYS(&VarCur, cr3); else DBGCVAR_INIT_HC_PHYS(&VarCur, cr3); if (fLME) { /* Page Map Level 4 Lookup. */ /* Check if it's a valid address first? */ VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK; VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E); X86PML4E Pml4e; rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur); if (!Pml4e.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr); VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK; Assert(fPAE); } if (fPAE) { /* Page directory pointer table. */ X86PDPE Pdpe; VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe); rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur); if (!Pdpe.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr); iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; VarPDEAddr = VarCur; VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK; VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE); } else { /* 32-bit legacy - CR3 == page directory. */ iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK; VarPDEAddr = VarCur; VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE); } cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry; } /* adjust cEntries */ cEntries = RT_MAX(1, cEntries); cEntries = RT_MIN(cEntries, cEntriesMax); /* * The display loop. */ DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n", &VarPDEAddr, iEntry); do { /* * Read. */ X86PDEPAE Pde; Pde.u = 0; rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr); /* * Display. */ if (iEntry != ~0U) { DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr); iEntry++; } if (fPSE && Pde.b.u1Size) DBGCCmdHlpPrintf(pCmdHlp, fPAE ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s" : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s", Pde.u, Pde.u & X86_PDE_PAE_PG_MASK, Pde.b.u1Present ? "p " : "np", Pde.b.u1Write ? "w" : "r", Pde.b.u1User ? "u" : "s", Pde.b.u1Accessed ? "a " : "na", Pde.b.u1Dirty ? "d " : "nd", Pde.b.u3Available, Pde.b.u1Global ? (fPGE ? "g" : "G") : " ", Pde.b.u1WriteThru ? "pwt" : " ", Pde.b.u1CacheDisable ? "pcd" : " ", Pde.b.u1PAT ? "pat" : "", Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " "); else DBGCCmdHlpPrintf(pCmdHlp, fPAE ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s" : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s", Pde.u, Pde.u & X86_PDE_PAE_PG_MASK, Pde.n.u1Present ? "p " : "np", Pde.n.u1Write ? "w" : "r", Pde.n.u1User ? "u" : "s", Pde.n.u1Accessed ? "a " : "na", Pde.u & RT_BIT(6) ? "6 " : " ", Pde.n.u3Available, Pde.u & RT_BIT(8) ? "8" : " ", Pde.n.u1WriteThru ? "pwt" : " ", Pde.n.u1CacheDisable ? "pcd" : " ", Pde.u & RT_BIT(7) ? "7" : "", Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "); if (Pde.u & UINT64_C(0x7fff000000000000)) DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000))); rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); if (RT_FAILURE(rc)) return rc; /* * Advance. */ VarPDEAddr.u.u64Number += cbEntry; if (iEntry != ~0U) VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT); } while (cEntries-- > 0); return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'dpdb' command.} */ static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]); int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]); if (RT_FAILURE(rc1)) return rc1; NOREF(pCmd); NOREF(paArgs); NOREF(cArgs); return rc2; } /** * @interface_method_impl{FNDBCCMD, The 'dph*' commands and main part of 'm'.} */ static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Figure the context and base flags. */ uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3; if (pCmd->pszCmd[0] == 'm') fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW; else if (pCmd->pszCmd[3] == '\0') fFlags |= pDbgc->fRegCtxGuest ? DBGFPGDMP_FLAGS_GUEST : DBGFPGDMP_FLAGS_SHADOW; else if (pCmd->pszCmd[3] == 'g') fFlags |= DBGFPGDMP_FLAGS_GUEST; else if (pCmd->pszCmd[3] == 'h') fFlags |= DBGFPGDMP_FLAGS_SHADOW; else AssertFailed(); if (pDbgc->cPagingHierarchyDumps == 0) fFlags |= DBGFPGDMP_FLAGS_HEADER; pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42; /* * Get the range. */ PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos; RTGCPTR GCPtrFirst = NIL_RTGCPTR; int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc); uint64_t cbRange; rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc); RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst; if (cbRange >= GCPtrLast) GCPtrLast = RTGCPTR_MAX; else if (!cbRange) GCPtrLast = GCPtrFirst; else GCPtrLast = GCPtrFirst + cbRange - 1; /* * Do we have a CR3? */ uint64_t cr3 = 0; if (cArgs > 1) { if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please."); if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER) return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]); cr3 = paArgs[1].u.u64Number; } else fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3; /* * Do we have a mode? */ if (cArgs > 2) { if (paArgs[2].enmType != DBGCVAR_TYPE_STRING) return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]); static const struct MODETOFLAGS { const char *pszName; uint32_t fFlags; } s_aModeToFlags[] = { { "ept", DBGFPGDMP_FLAGS_EPT }, { "legacy", 0 }, { "legacy-np", DBGFPGDMP_FLAGS_NP }, { "pse", DBGFPGDMP_FLAGS_PSE }, { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP }, { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE }, { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP }, { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE }, { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }, { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME }, { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP }, { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE }, { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP } }; int i = RT_ELEMENTS(s_aModeToFlags); while (i-- > 0) if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString)) { fFlags |= s_aModeToFlags[i].fFlags; break; } if (i < 0) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString); } else fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE; /* * Call the worker. */ rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/, DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp)); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc); return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'dpg*' commands.} */ static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1); if (pCmd->pszCmd[3] == 'a') DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); else DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[0].enmType)); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Guest or shadow page tables? Get the paging parameters. */ bool fGuest = pCmd->pszCmd[3] != 'h'; if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a') fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? pDbgc->fRegCtxGuest : DBGCVAR_ISGCPOINTER(paArgs[0].enmType); bool fPAE, fLME, fPSE, fPGE, fNXE; uint64_t cr3 = fGuest ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE) : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE); const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE); /* * Locate the PTE to start displaying at. * * The 'dpta' command takes the address of a PTE, while the others are guest * virtual address which PTEs should be displayed. So, 'pdta' is rather simple * while the others require us to do all the tedious walking thru the paging * hierarchy to find the intended PTE. */ unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */ DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */ DBGCVAR VarPTEAddr; /* The address of the current PTE. */ unsigned cEntries; /* The number of entries to display. */ unsigned cEntriesMax; /* The max number of entries to display. */ int rc; if (pCmd->pszCmd[3] == 'a') { VarPTEAddr = paArgs[0]; switch (VarPTEAddr.enmRangeType) { case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break; case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break; default: cEntries = 10; break; } cEntriesMax = PAGE_SIZE / cbEntry; } else { /* * Determine the range. */ switch (paArgs[0].enmRangeType) { case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break; case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break; default: cEntries = 10; break; } /* * Normalize the input address, it must be a flat GC address. */ rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]); if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT) { VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat; VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT; } VarGCPtr.u.GCFlat &= ~(RTGCPTR)PAGE_OFFSET_MASK; /* * Do the paging walk until we get to the page table. */ DBGCVAR VarCur; if (fGuest) DBGCVAR_INIT_GC_PHYS(&VarCur, cr3); else DBGCVAR_INIT_HC_PHYS(&VarCur, cr3); if (fLME) { /* Page Map Level 4 Lookup. */ /* Check if it's a valid address first? */ VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK; VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E); X86PML4E Pml4e; rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur); if (!Pml4e.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr); VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK; Assert(fPAE); } if (fPAE) { /* Page directory pointer table. */ X86PDPE Pdpe; VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe); rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur); if (!Pdpe.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr); VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK; /* Page directory (PAE). */ X86PDEPAE Pde; VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde); rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur); if (!Pde.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr); if (fPSE && Pde.n.u1Size) return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr); iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK; VarPTEAddr = VarCur; VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK; VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE); } else { /* Page directory (legacy). */ X86PDE Pde; VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde); rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur); if (!Pde.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr); if (fPSE && Pde.n.u1Size) return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr); iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK; VarPTEAddr = VarCur; VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK; VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE); } cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry; } /* adjust cEntries */ cEntries = RT_MAX(1, cEntries); cEntries = RT_MIN(cEntries, cEntriesMax); /* * The display loop. */ DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n", &VarPTEAddr, &VarGCPtr, iEntry); do { /* * Read. */ X86PTEPAE Pte; Pte.u = 0; rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr); /* * Display. */ if (iEntry != ~0U) { DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr); iEntry++; } DBGCCmdHlpPrintf(pCmdHlp, fPAE ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s" : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s", Pte.u, Pte.u & X86_PTE_PAE_PG_MASK, Pte.n.u1Present ? "p " : "np", Pte.n.u1Write ? "w" : "r", Pte.n.u1User ? "u" : "s", Pte.n.u1Accessed ? "a " : "na", Pte.n.u1Dirty ? "d " : "nd", Pte.n.u3Available, Pte.n.u1Global ? (fPGE ? "g" : "G") : " ", Pte.n.u1WriteThru ? "pwt" : " ", Pte.n.u1CacheDisable ? "pcd" : " ", Pte.n.u1PAT ? "pat" : " ", Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " " ); if (Pte.u & UINT64_C(0x7fff000000000000)) DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000))); rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); if (RT_FAILURE(rc)) return rc; /* * Advance. */ VarPTEAddr.u.u64Number += cbEntry; if (iEntry != ~0U) VarGCPtr.u.GCFlat += PAGE_SIZE; } while (cEntries-- > 0); return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'dptb' command.} */ static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]); int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]); if (RT_FAILURE(rc1)) return rc1; NOREF(pCmd); NOREF(cArgs); return rc2; } /** * @interface_method_impl{FNDBCCMD, The 'dt' command.} */ static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc; DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1); if (cArgs == 1) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL); /* * Check if the command indicates the type. */ enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined; if (!strcmp(pCmd->pszCmd, "dt16")) enmTssType = kTss16; else if (!strcmp(pCmd->pszCmd, "dt32")) enmTssType = kTss32; else if (!strcmp(pCmd->pszCmd, "dt64")) enmTssType = kTss64; /* * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer. */ uint32_t SelTss = UINT32_MAX; DBGCVAR VarTssAddr; if (cArgs == 0) { /** @todo consider querying the hidden bits instead (missing API). */ uint16_t SelTR; rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc); DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0); SelTss = SelTR; } else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER) { if (paArgs[0].u.u64Number < 0xffff) DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0); else { if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n"); DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number); if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES) { VarTssAddr.enmRangeType = paArgs[0].enmRangeType; VarTssAddr.u64Range = paArgs[0].u64Range; } } } else VarTssAddr = paArgs[0]; /* * Deal with TSS:ign by means of the GDT. */ if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR) { SelTss = VarTssAddr.u.GCFar.sel; DBGFSELINFO SelInfo; rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n", pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc); if (SelInfo.u.Raw.Gen.u1DescType) return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel); switch (SelInfo.u.Raw.Gen.u4Type) { case X86_SEL_TYPE_SYS_286_TSS_BUSY: case X86_SEL_TYPE_SYS_286_TSS_AVAIL: if (enmTssType == kTssToBeDetermined) enmTssType = kTss16; break; case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */ case X86_SEL_TYPE_SYS_386_TSS_AVAIL: if (enmTssType == kTssToBeDetermined) enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32; break; default: return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n", VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type); } DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase); DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit)); } /* * Determine the TSS type if none is currently given. */ if (enmTssType == kTssToBeDetermined) { if ( VarTssAddr.u64Range > 0 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4) enmTssType = kTss16; else { uint64_t uEfer; rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer); if ( RT_FAILURE(rc) || !(uEfer & MSR_K6_EFER_LMA) ) enmTssType = kTss32; else enmTssType = kTss64; } } /* * Figure the min/max sizes. * ASSUMES max TSS size is 64 KB. */ uint32_t cbTssMin; uint32_t cbTssMax; switch (enmTssType) { case kTss16: cbTssMin = cbTssMax = sizeof(X86TSS16); break; case kTss32: cbTssMin = RT_OFFSETOF(X86TSS32, IntRedirBitmap); cbTssMax = _64K; break; case kTss64: cbTssMin = RT_OFFSETOF(X86TSS64, IntRedirBitmap); cbTssMax = _64K; break; default: AssertFailedReturn(VERR_INTERNAL_ERROR); } uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0; if (cbTss == 0) cbTss = cbTssMin; else if (cbTss < cbTssMin) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n", cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range); else if (cbTss > cbTssMax) cbTss = cbTssMax; DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss); /* * Read the TSS into a temporary buffer. */ uint8_t abBuf[_64K]; size_t cbTssRead; rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc); if (cbTssRead < cbTssMin) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n", cbTssRead, cbTssMin); if (cbTssRead < cbTss) memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead); /* * Format the TSS. */ uint16_t offIoBitmap; switch (enmTssType) { case kTss16: { PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0]; if (SelTss != UINT32_MAX) DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr); else DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr); DBGCCmdHlpPrintf(pCmdHlp, "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n" "ip=%04x sp=%04x bp=%04x\n" "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n" "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n" "prev=%04x ldtr=%04x\n" , pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di, pTss->ip, pTss->sp, pTss->bp, pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags, pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2, pTss->selPrev, pTss->selLdt); if (pTss->cs != 0) pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip); offIoBitmap = 0; break; } case kTss32: { PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0]; if (SelTss != UINT32_MAX) DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin); else DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin); DBGCCmdHlpPrintf(pCmdHlp, "eax=%08x bx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n" "eip=%08x esp=%08x ebp=%08x\n" "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n" "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n" "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n" , pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi, pTss->eip, pTss->esp, pTss->ebp, pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags, pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2, pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap); if (pTss->cs != 0) pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip); offIoBitmap = pTss->offIoBitmap; break; } case kTss64: { PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0]; if (SelTss != UINT32_MAX) DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin); else DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin); DBGCCmdHlpPrintf(pCmdHlp, "rsp0=%016RX16 rsp1=%016RX16 rsp2=%016RX16\n" "ist1=%016RX16 ist2=%016RX16\n" "ist3=%016RX16 ist4=%016RX16\n" "ist5=%016RX16 ist6=%016RX16\n" "ist7=%016RX16 iomap=%04x\n" , pTss->rsp0, pTss->rsp1, pTss->rsp2, pTss->ist1, pTss->ist2, pTss->ist3, pTss->ist4, pTss->ist5, pTss->ist6, pTss->ist7, pTss->offIoBitmap); offIoBitmap = pTss->offIoBitmap; break; } default: AssertFailedReturn(VERR_INTERNAL_ERROR); } /* * Dump the interrupt redirection bitmap. */ if (enmTssType != kTss16) { if ( offIoBitmap > cbTssMin && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */ { if (offIoBitmap - cbTssMin >= 32) { DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n"); uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32]; uint32_t iStart = 0; bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */ for (uint32_t i = 0; i < 256; i++) { bool fThis = ASMBitTest(pbIntRedirBitmap, i); if (fThis != fPrev) { DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected"); fPrev = fThis; iStart = i; } } if (iStart != 255) DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected"); } else DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n", offIoBitmap - cbTssMin, offIoBitmap - cbTssMin); } else if (offIoBitmap > 0) DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap); else DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n"); } /* * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x64 * (that applies to both 32-bit and 64-bit TSSs since their size is the same). */ if (enmTssType != kTss16) { if (offIoBitmap < cbTss && offIoBitmap >= 0x64) { uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K); DBGCVAR VarAddr; DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap); DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts); uint8_t const *pbIoBitmap = &abBuf[offIoBitmap]; uint32_t iStart = 0; bool fPrev = ASMBitTest(pbIoBitmap, 0); uint32_t cLine = 0; for (uint32_t i = 1; i < cPorts; i++) { bool fThis = ASMBitTest(pbIoBitmap, i); if (fThis != fPrev) { cLine++; DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1, fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " "); fPrev = fThis; iStart = i; } } if (iStart != _64K-1) DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK"); } else if (offIoBitmap > 0) DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap); else DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n"); } return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'm' command.} */ static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs); } /** * Converts one or more variables into a byte buffer for a * given unit size. * * @returns VBox status codes: * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched. * @retval VERR_INTERNAL_ERROR on bad variable type, bitched. * @retval VINF_SUCCESS on success. * * @param pvBuf The buffer to convert into. * @param pcbBuf The buffer size on input. The size of the result on output. * @param cbUnit The unit size to apply when converting. * The high bit is used to indicate unicode string. * @param paVars The array of variables to convert. * @param cVars The number of variables. */ int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars) { union { uint8_t *pu8; uint16_t *pu16; uint32_t *pu32; uint64_t *pu64; } u, uEnd; u.pu8 = (uint8_t *)pvBuf; uEnd.pu8 = u.pu8 + *pcbBuf; unsigned i; for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++) { switch (paVars[i].enmType) { case DBGCVAR_TYPE_GC_FAR: case DBGCVAR_TYPE_GC_FLAT: case DBGCVAR_TYPE_GC_PHYS: case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: case DBGCVAR_TYPE_NUMBER: { uint64_t u64 = paVars[i].u.u64Number; switch (cbUnit & 0x1f) { case 1: do { *u.pu8++ = u64; u64 >>= 8; } while (u64); break; case 2: do { *u.pu16++ = u64; u64 >>= 16; } while (u64); break; case 4: *u.pu32++ = u64; u64 >>= 32; if (u64) *u.pu32++ = u64; break; case 8: *u.pu64++ = u64; break; } break; } case DBGCVAR_TYPE_STRING: case DBGCVAR_TYPE_SYMBOL: { const char *psz = paVars[i].u.pszString; size_t cbString = strlen(psz); if (cbUnit & RT_BIT_32(31)) { /* Explode char to unit. */ if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f)) { pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf); return VERR_TOO_MUCH_DATA; } while (*psz) { switch (cbUnit & 0x1f) { case 1: *u.pu8++ = *psz; break; case 2: *u.pu16++ = *psz; break; case 4: *u.pu32++ = *psz; break; case 8: *u.pu64++ = *psz; break; } psz++; } } else { /* Raw copy with zero padding if the size isn't aligned. */ if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8)) { pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf); return VERR_TOO_MUCH_DATA; } size_t cbCopy = cbString & ~(cbUnit - 1); memcpy(u.pu8, psz, cbCopy); u.pu8 += cbCopy; psz += cbCopy; size_t cbReminder = cbString & (cbUnit - 1); if (cbReminder) { memcpy(u.pu8, psz, cbString & (cbUnit - 1)); memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder); u.pu8 += cbUnit; } } break; } default: *pcbBuf = u.pu8 - (uint8_t *)pvBuf; pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR, "i=%d enmType=%d\n", i, paVars[i].enmType); return VERR_INTERNAL_ERROR; } } *pcbBuf = u.pu8 - (uint8_t *)pvBuf; if (i != cVars) { pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf); return VERR_TOO_MUCH_DATA; } return VINF_SUCCESS; } /** * @interface_method_impl{FNDBCCMD, The 'eb', 'ew', 'ed' and 'eq' commands.} */ static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); unsigned iArg; /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); for (iArg = 1; iArg < cArgs; iArg++) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Figure out the element size. */ unsigned cbElement; switch (pCmd->pszCmd[1]) { default: case 'b': cbElement = 1; break; case 'w': cbElement = 2; break; case 'd': cbElement = 4; break; case 'q': cbElement = 8; break; } /* * Do setting. */ DBGCVAR Addr = paArgs[0]; for (iArg = 1;;) { size_t cbWritten; int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr); if (cbWritten != cbElement) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement); /* advance. */ iArg++; if (iArg >= cArgs) break; rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]); } return VINF_SUCCESS; } /** * Executes the search. * * @returns VBox status code. * @param pCmdHlp The command helpers. * @param pUVM The user mode VM handle. * @param pAddress The address to start searching from. (undefined on output) * @param cbRange The address range to search. Must not wrap. * @param pabBytes The byte pattern to search for. * @param cbBytes The size of the pattern. * @param cbUnit The search unit. * @param cMaxHits The max number of hits. * @param pResult Where to store the result if it's a function invocation. */ static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange, const uint8_t *pabBytes, uint32_t cbBytes, uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Do the search. */ uint64_t cHits = 0; for (;;) { /* search */ DBGFADDRESS HitAddress; int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress); if (RT_FAILURE(rc)) { if (rc != VERR_DBGF_MEM_NOT_FOUND) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n"); /* update the current address so we can save it (later). */ pAddress->off += cbRange; pAddress->FlatPtr += cbRange; cbRange = 0; break; } /* report result */ DBGCVAR VarCur; rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n"); if (!pResult) pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur); else DBGCVAR_ASSIGN(pResult, &VarCur); /* advance */ cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr; *pAddress = HitAddress; pAddress->FlatPtr += cbBytes; pAddress->off += cbBytes; if (cbRange <= cbBytes) { cbRange = 0; break; } cbRange -= cbBytes; if (++cHits >= cMaxHits) { /// @todo save the search. break; } } /* * Save the search so we can resume it... */ if (pDbgc->abSearch != pabBytes) { memcpy(pDbgc->abSearch, pabBytes, cbBytes); pDbgc->cbSearch = cbBytes; pDbgc->cbSearchUnit = cbUnit; } pDbgc->cMaxSearchHits = cMaxHits; pDbgc->SearchAddr = *pAddress; pDbgc->cbSearchRange = cbRange; return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED; } /** * Resumes the previous search. * * @returns VBox status code. * @param pCmdHlp Pointer to the command helper functions. * @param pUVM The user mode VM handle. * @param pResult Where to store the result of a function invocation. */ static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Make sure there is a previous command. */ if (!pDbgc->cbSearch) { DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n"); return VERR_DBGC_COMMAND_FAILED; } /* * Make range and address adjustments. */ DBGFADDRESS Address = pDbgc->SearchAddr; if (Address.FlatPtr == ~(RTGCUINTPTR)0) { Address.FlatPtr -= Address.off; Address.off = 0; } RTGCUINTPTR cbRange = pDbgc->cbSearchRange; if (!cbRange) cbRange = ~(RTGCUINTPTR)0; if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr) cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr; return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch, pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult); } /** * Search memory, worker for the 's' and 's?' functions. * * @returns VBox status. * @param pCmdHlp Pointer to the command helper functions. * @param pUVM The user mode VM handle. * @param pAddress Where to start searching. If no range, search till end of address space. * @param cMaxHits The maximum number of hits. * @param chType The search type. * @param paPatArgs The pattern variable array. * @param cPatArgs Number of pattern variables. * @param pResult Where to store the result of a function invocation. */ static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType, PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult) { if (pResult) DBGCVAR_INIT_GC_FLAT(pResult, 0); /* * Convert the search pattern into bytes and DBGFR3MemScan can deal with. */ uint32_t cbUnit; switch (chType) { case 'a': case 'b': cbUnit = 1; break; case 'u': cbUnit = 2 | RT_BIT_32(31); break; case 'w': cbUnit = 2; break; case 'd': cbUnit = 4; break; case 'q': cbUnit = 8; break; default: return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType); } uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)]; uint32_t cbBytes = sizeof(abBytes); int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs); if (RT_FAILURE(rc)) return VERR_DBGC_COMMAND_FAILED; /* * Make DBGF address and fix the range. */ DBGFADDRESS Address; rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress); RTGCUINTPTR cbRange; switch (pAddress->enmRangeType) { case DBGCVAR_RANGE_BYTES: cbRange = pAddress->u64Range; if (cbRange != pAddress->u64Range) cbRange = ~(RTGCUINTPTR)0; break; case DBGCVAR_RANGE_ELEMENTS: cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit); if ( cbRange != pAddress->u64Range * cbUnit || cbRange < pAddress->u64Range) cbRange = ~(RTGCUINTPTR)0; break; default: cbRange = ~(RTGCUINTPTR)0; break; } if (Address.FlatPtr + cbRange < Address.FlatPtr) cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr; /* * Ok, do it. */ return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult); } /** * @interface_method_impl{FNDBCCMD, The 's' command.} */ static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* check that the parser did what it's supposed to do. */ //if ( cArgs <= 2 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING) // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n"); /* * Repeat previous search? */ if (cArgs == 0) return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL); /* * Parse arguments. */ return -1; } /** * @interface_method_impl{FNDBCCMD, The 's?' command.} */ static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* check that the parser did what it's supposed to do. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType)); return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL); } /** * List near symbol. * * @returns VBox status code. * @param pCmdHlp Pointer to command helper functions. * @param pUVM The user mode VM handle. * @param pArg Pointer to the address or symbol to lookup. */ static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); RTDBGSYMBOL Symbol; int rc; if (pArg->enmType == DBGCVAR_TYPE_SYMBOL) { /* * Lookup the symbol address. */ rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString); rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName); } else { /* * Convert it to a flat GC address and lookup that address. */ DBGCVAR AddrVar; rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg); RTINTPTR offDisp; DBGFADDRESS Addr; rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat), RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDisp, &Symbol, NULL); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3ASymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat); if (!offDisp) rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName); else if (offDisp > 0) rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp); else rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp); if (Symbol.cb > 0) rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb); else rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); } return rc; } /** * @interface_method_impl{FNDBCCMD, The 'ln' (listnear) command.} */ static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); if (!cArgs) { /* * Current cs:eip symbol. */ DBGCVAR AddrVar; const char *pszFmtExpr = pDbgc->fRegCtxGuest ? "%%(cs:eip)" : "%%(.cs:.eip)"; int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1); return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar); } /** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */ /* * Iterate arguments. */ for (unsigned iArg = 0; iArg < cArgs; iArg++) { int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]); if (RT_FAILURE(rc)) return rc; } NOREF(pCmd); return VINF_SUCCESS; } /** * Matches the module patters against a module name. * * @returns true if matching, otherwise false. * @param pszName The module name. * @param paArgs The module pattern argument list. * @param cArgs Number of arguments. */ static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs) { for (uint32_t i = 0; i < cArgs; i++) if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName)) return true; return false; } /** * @interface_method_impl{FNDBCCMD, The 'ln' (list near) command.} */ static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { bool const fMappings = pCmd->pszCmd[2] == 'o'; bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v'; PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Iterate the modules in the current address space and print info about * those matching the input. */ RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, pDbgc->hDbgAs); uint32_t cMods = RTDbgAsModuleCount(hAs); for (uint32_t iMod = 0; iMod < cMods; iMod++) { RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod); if (hMod != NIL_RTDBGMOD) { bool const fDeferred = RTDbgModIsDeferred(hMod); bool const fExports = RTDbgModIsExports(hMod); uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod); const char * const pszName = RTDbgModName(hMod); const char * const pszImgFile = RTDbgModImageFile(hMod); const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod); const char * const pszDbgFile = RTDbgModDebugFile(hMod); if ( cArgs == 0 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs)) { /* * Find the mapping with the lower address, preferring a full * image mapping, for the main line. */ RTDBGASMAPINFO aMappings[128]; uint32_t cMappings = RT_ELEMENTS(aMappings); int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/); if (RT_SUCCESS(rc)) { bool fFull = false; RTUINTPTR uMin = RTUINTPTR_MAX; for (uint32_t iMap = 0; iMap < cMappings; iMap++) if ( aMappings[iMap].Address < uMin && ( !fFull || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)) uMin = aMappings[iMap].Address; if (!fVerbose || !pszImgFile) DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, fExports ? " (exports)" : fDeferred ? " (deferred)" : ""); else DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile, fExports ? " (exports)" : fDeferred ? " (deferred)" : ""); if (fVerbose && pszImgFileUsed) DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed); if (fVerbose && pszDbgFile) DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile); if (fMappings) { /* sort by address first - not very efficient. */ for (uint32_t i = 0; i + 1 < cMappings; i++) for (uint32_t j = i + 1; j < cMappings; j++) if (aMappings[j].Address < aMappings[i].Address) { RTDBGASMAPINFO Tmp = aMappings[j]; aMappings[j] = aMappings[i]; aMappings[i] = Tmp; } /* print */ if ( cMappings == 1 && aMappings[0].iSeg == NIL_RTDBGSEGIDX && !fDeferred) { for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++) { RTDBGSEGMENT SegInfo; rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo); if (RT_SUCCESS(rc)) { if (SegInfo.uRva != RTUINTPTR_MAX) DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n", (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva), (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName); else DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n", sizeof(RTGCUINTPTR)*2, "noload", (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName); } else DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc); } } else { for (uint32_t iMap = 0; iMap < cMappings; iMap++) if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX) DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv \n", (RTGCUINTPTR)aMappings[iMap].Address, (RTGCUINTPTR)RTDbgModImageSize(hMod)); else if (!fDeferred) { RTDBGSEGMENT SegInfo; rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo); if (RT_FAILURE(rc)) { RT_ZERO(SegInfo); strcpy(SegInfo.szName, "error"); } DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n", (RTGCUINTPTR)aMappings[iMap].Address, (RTGCUINTPTR)SegInfo.cb, aMappings[iMap].iSeg, SegInfo.szName); } else DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n", (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg); } } } else DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n", sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc); /** @todo missing address space API for enumerating the mappings. */ } RTDbgModRelease(hMod); } } RTDbgAsRelease(hAs); NOREF(pCmd); return VINF_SUCCESS; } /** * @callback_method_impl{Reads a unsigned 8-bit value.} */ static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); uint8_t b; int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL); if (RT_FAILURE(rc)) return rc; DBGCVAR_INIT_NUMBER(pResult, b); NOREF(pFunc); return VINF_SUCCESS; } /** * @callback_method_impl{Reads a unsigned 16-bit value.} */ static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); uint16_t u16; int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL); if (RT_FAILURE(rc)) return rc; DBGCVAR_INIT_NUMBER(pResult, u16); NOREF(pFunc); return VINF_SUCCESS; } /** * @callback_method_impl{Reads a unsigned 32-bit value.} */ static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); uint32_t u32; int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL); if (RT_FAILURE(rc)) return rc; DBGCVAR_INIT_NUMBER(pResult, u32); NOREF(pFunc); return VINF_SUCCESS; } /** * @callback_method_impl{Reads a unsigned 64-bit value.} */ static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); uint64_t u64; int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL); if (RT_FAILURE(rc)) return rc; DBGCVAR_INIT_NUMBER(pResult, u64); NOREF(pFunc); return VINF_SUCCESS; } /** * @callback_method_impl{Reads a unsigned pointer-sized value.} */ static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp); if (enmMode == CPUMMODE_LONG) return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult); return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult); } /** * @callback_method_impl{The hi(value) function implementation.} */ static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); uint16_t uHi; switch (paArgs[0].enmType) { case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break; case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break; case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break; case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break; case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break; case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break; default: AssertFailedReturn(VERR_DBGC_PARSE_BUG); } DBGCVAR_INIT_NUMBER(pResult, uHi); DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range); NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM); return VINF_SUCCESS; } /** * @callback_method_impl{The low(value) function implementation.} */ static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); uint16_t uLow; switch (paArgs[0].enmType) { case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break; case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break; case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break; case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break; case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break; case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break; default: AssertFailedReturn(VERR_DBGC_PARSE_BUG); } DBGCVAR_INIT_NUMBER(pResult, uLow); DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range); NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM); return VINF_SUCCESS; } /** * @callback_method_impl{The low(value) function implementation.} */ static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM); return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]); } /** Generic pointer argument wo/ range. */ static const DBGCVARDESC g_aArgPointerWoRange[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." }, }; /** Generic pointer or number argument. */ static const DBGCVARDESC g_aArgPointerNumber[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." }, }; /** Function descriptors for the CodeView / WinDbg emulation. * The emulation isn't attempting to be identical, only somewhat similar. */ const DBGCFUNC g_aFuncsCodeView[] = { { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." }, { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." }, { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." }, { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." }, { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." }, { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." }, { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." }, { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." }, }; /** The number of functions in the CodeView/WinDbg emulation. */ const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);