/* $Id: DBGCEmulateCodeView.cpp 106362 2024-10-16 13:08:09Z vboxsync $ */ /** @file * DBGC - Debugger Console, CodeView / WinDbg Emulation. */ /* * Copyright (C) 2006-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DBGC #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "DBGCInternal.h" /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static FNDBGCCMD dbgcCmdBrkAccess; static FNDBGCCMD dbgcCmdBrkClear; static FNDBGCCMD dbgcCmdBrkDisable; static FNDBGCCMD dbgcCmdBrkEnable; static FNDBGCCMD dbgcCmdBrkList; static FNDBGCCMD dbgcCmdBrkSet; static FNDBGCCMD dbgcCmdBrkREM; static FNDBGCCMD dbgcCmdDumpMem; static FNDBGCCMD dbgcCmdDumpDT; static FNDBGCCMD dbgcCmdDumpIDT; static FNDBGCCMD dbgcCmdDumpPageDir; static FNDBGCCMD dbgcCmdDumpPageDirBoth; static FNDBGCCMD dbgcCmdDumpPageHierarchy; static FNDBGCCMD dbgcCmdDumpPageTable; static FNDBGCCMD dbgcCmdDumpPageTableBoth; static FNDBGCCMD dbgcCmdDumpTSS; static FNDBGCCMD dbgcCmdDumpTypeInfo; static FNDBGCCMD dbgcCmdDumpTypedVal; static FNDBGCCMD dbgcCmdEditMem; static FNDBGCCMD dbgcCmdGo; static FNDBGCCMD dbgcCmdGoUp; static FNDBGCCMD dbgcCmdListModules; static FNDBGCCMD dbgcCmdListNear; static FNDBGCCMD dbgcCmdListSource; static FNDBGCCMD dbgcCmdListSymbols; static FNDBGCCMD dbgcCmdMemoryInfo; static FNDBGCCMD dbgcCmdReg; static FNDBGCCMD dbgcCmdRegGuest; static FNDBGCCMD dbgcCmdRegTerse; static FNDBGCCMD dbgcCmdSearchMem; static FNDBGCCMD dbgcCmdSearchMemType; static FNDBGCCMD dbgcCmdStepTrace; static FNDBGCCMD dbgcCmdStepTraceTo; static FNDBGCCMD dbgcCmdStepTraceToggle; static FNDBGCCMD dbgcCmdEventCtrl; static FNDBGCCMD dbgcCmdEventCtrlList; static FNDBGCCMD dbgcCmdEventCtrlReset; static FNDBGCCMD dbgcCmdStack; static FNDBGCCMD dbgcCmdUnassemble; static FNDBGCCMD dbgcCmdUnassembleCfg; static FNDBGCCMD dbgcCmdTraceFlowClear; static FNDBGCCMD dbgcCmdTraceFlowDisable; static FNDBGCCMD dbgcCmdTraceFlowEnable; static FNDBGCCMD dbgcCmdTraceFlowPrint; static FNDBGCCMD dbgcCmdTraceFlowReset; /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** 'ba' arguments. */ static const DBGCVARDESC g_aArgBrkAcc[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." }, { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." }, { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." }, { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" }, { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" }, }; /** 'bc', 'bd', 'be' arguments. */ static const DBGCVARDESC g_aArgBrks[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." }, { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." }, }; /** 'bp' arguments. */ static const DBGCVARDESC g_aArgBrkSet[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." }, { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" }, { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" }, }; /** 'br' arguments. */ static const DBGCVARDESC g_aArgBrkREM[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." }, { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" }, { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" }, }; /** 'd?' arguments. */ static const DBGCVARDESC g_aArgDumpMem[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory. Tip: Use the L or LB operator to specify how may items or bytes to dump." }, }; /** 'dg', 'dga', 'dl', 'dla' arguments. */ static const DBGCVARDESC g_aArgDumpDT[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." }, { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." }, }; /** 'di', 'dia' arguments. */ static const DBGCVARDESC g_aArgDumpIDT[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." }, }; /** 'dpd*' arguments. */ static const DBGCVARDESC g_aArgDumpPD[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." }, { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." }, }; /** 'dpda' arguments. */ static const DBGCVARDESC g_aArgDumpPDAddr[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." }, }; /** 'dph*' arguments. */ static const DBGCVARDESC g_aArgDumpPH[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." }, { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." }, }; /** 'dpt?' arguments. */ static const DBGCVARDESC g_aArgDumpPT[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." }, }; /** 'dpta' arguments. */ static const DBGCVARDESC g_aArgDumpPTAddr[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." }, }; /** 'dt' arguments. */ static const DBGCVARDESC g_aArgDumpTSS[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." }, { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." } }; /** 'dti' arguments. */ static const DBGCVARDESC g_aArgDumpTypeInfo[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" }, { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" } }; /** 'dtv' arguments. */ static const DBGCVARDESC g_aArgDumpTypedVal[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" }, { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." }, { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" } }; /** 'e?' arguments. */ static const DBGCVARDESC g_aArgEditMem[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." }, { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." }, }; /** 'g' arguments. */ static const DBGCVARDESC g_aArgGo[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_NUMBER, 0, "idCpu", "CPU ID." }, }; /** 'lm' arguments. */ static const DBGCVARDESC g_aArgListMods[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." }, }; /** 'ln' arguments. */ static const DBGCVARDESC g_aArgListNear[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." }, { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." }, }; /** 'ls' arguments. */ static const DBGCVARDESC g_aArgListSource[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." }, }; /** 'm' argument. */ static const DBGCVARDESC g_aArgMemoryInfo[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." }, }; /** 'p', 'pc', 'pt', 't', 'tc' and 'tt' arguments. */ static const DBGCVARDESC g_aArgStepTrace[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_NUMBER, 0, "count", "Number of instructions or source lines to step." }, { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" }, }; /** 'pa' and 'ta' arguments. */ static const DBGCVARDESC g_aArgStepTraceTo[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Where to stop" }, { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" }, }; /** 'r' arguments. */ static const DBGCVARDESC g_aArgReg[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." }, { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." }, { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." }, }; /** 's' arguments. */ static const DBGCVARDESC g_aArgSearchMem[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." }, { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." }, { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n ", "Maximum number of hits." }, { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." }, { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." }, }; /** 's?' arguments. */ static const DBGCVARDESC g_aArgSearchMemType[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." }, { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." }, }; /** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */ static const DBGCVARDESC g_aArgEventCtrl[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires ." }, { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." }, { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." }, }; /** 'sx' and 'sr' arguments. */ static const DBGCVARDESC g_aArgEventCtrlOpt[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." }, }; /** 'u' arguments. */ static const DBGCVARDESC g_aArgUnassemble[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." }, }; /** 'ucfg' arguments. */ static const DBGCVARDESC g_aArgUnassembleCfg[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." }, }; /** 'x' arguments. */ static const DBGCVARDESC g_aArgListSyms[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_STRING, 0, "symbols", "The symbols to list, format is Module!Symbol with wildcards being supoprted." } }; /** 'tflowc' arguments. */ static const DBGCVARDESC g_aArgTraceFlowClear[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." }, { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." }, }; /** 'tflowd' arguments. */ static const DBGCVARDESC g_aArgTraceFlowDisable[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." }, { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." }, }; /** 'tflowe' arguments. */ static const DBGCVARDESC g_aArgTraceFlowEnable[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start tracing." }, { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "", "Maximum number of hits before the module is disabled." } }; /** 'tflowp', 'tflowr' arguments. */ static const DBGCVARDESC g_aArgTraceFlowPrintReset[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." }, { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." }, }; /** Command descriptors for the CodeView / WinDbg emulation. * The emulation isn't attempting to be identical, only somewhat similar. */ const DBGCCMD g_aCmdsCodeView[] = { /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */ { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "
[passes [max passes]] [cmds]", "Sets a data access breakpoint." }, { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | [bp# []]", "Deletes a set of breakpoints." }, { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | [bp# []]", "Disables a set of breakpoints." }, { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | [bp# []]", "Enables a set of breakpoints." }, { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." }, { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "
[passes [max passes]] [cmds]", "Sets a breakpoint (int 3)." }, { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "
[passes [max passes]] [cmds]", "Sets a recompiler specific breakpoint." }, { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size and type." }, { "dF", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16." }, { "dFs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16 with near symbols." }, { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." }, { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." }, { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." }, { "dds", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as double words with near symbols." }, { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." }, { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." }, { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." }, { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." }, { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." }, { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." }, { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." }, { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." }, { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." }, { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " }, { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." }, { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " }, { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." }, { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." }, { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." }, { "dp", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words." }, { "dps", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words with near symbols." }, { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"", "Dumps page table entries of the default context." }, { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"", "Dumps memory at given address as a page table." }, { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"", "Dumps page table entries of the guest and the hypervisor." }, { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"", "Dumps page table entries of the guest." }, { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"", "Dumps page table entries of the hypervisor." }, { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." }, { "dqs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as quad words with near symbols." }, { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." }, { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." }, { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." }, { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." }, { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo," [levels]", "Dump type information." }, { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal," [levels]", "Dump a memory buffer using the information in the given type." }, { "du", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as unicode string (little endian)." }, { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." }, /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */ { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, " ", "Write a 1-byte value to memory." }, { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, " ", "Write a 2-byte value to memory." }, { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, " ", "Write a 4-byte value to memory." }, { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, " ", "Write a 8-byte value to memory." }, { "g", 0, 1, &g_aArgGo[0], RT_ELEMENTS(g_aArgGo), 0, dbgcCmdGo, "[idCpu]", "Continue execution of all or the specified CPU. (The latter is not recommended unless you know exactly what you're doing.)" }, { "gu", 0, 0, NULL, 0, 0, dbgcCmdGoUp, "", "Go up - continue execution till after return." }, { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." }, { "kv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack." }, { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." }, { "kgv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack - guest." }, { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." }, { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." }, { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." }, { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." }, { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." }, { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." }, { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." }, { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "", "Display information about that piece of memory." }, { "p", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step over." }, { "pr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." }, { "pa", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, " [count] [cmds]","Step to the given address." }, { "pc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next call instruction." }, { "pt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next return instruction." }, { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." }, { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." }, { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." }, { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." }, { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." }, { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] ", "Continue last search." }, { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for an ascii string." }, { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for one or more bytes." }, { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for one or more double words." }, { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for one or more quad words." }, { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for an unicode string." }, { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, " ", "Search memory for one or more words." }, { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[ [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." }, { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." }, { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c ] [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." }, { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c ] [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." }, { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c ] [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." }, { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." }, { "t", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace ." }, { "tflowc", 1, ~0U, &g_aArgTraceFlowClear[0], RT_ELEMENTS(g_aArgTraceFlowClear), 0, dbgcCmdTraceFlowClear, "all | [tf# []]", "Clears trace execution flow for the given method." }, { "tflowd", 0, 1, &g_aArgTraceFlowDisable[0], RT_ELEMENTS(g_aArgTraceFlowDisable), 0, dbgcCmdTraceFlowDisable, "all | [tf# []]", "Disables trace execution flow for the given method." }, { "tflowe", 0, 2, &g_aArgTraceFlowEnable[0], RT_ELEMENTS(g_aArgTraceFlowEnable), 0, dbgcCmdTraceFlowEnable, " ", "Enable trace execution flow of the given method." }, { "tflowp", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowPrint, "all | [tf# []]", "Prints the collected trace data of the given method." }, { "tflowr", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowReset, "all | [tf# []]", "Resets the collected trace data of the given trace flow module." }, { "tr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." }, { "ta", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, " [count] [cmds]","Trace to the given address." }, { "tc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next call instruction." }, { "tt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next return instruction." }, { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." }, { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." }, { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." }, { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." }, { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." }, { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." }, { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." }, { "x", 1, 1, &g_aArgListSyms[0], RT_ELEMENTS(g_aArgListSyms), 0, dbgcCmdListSymbols, "* | ", "Examine symbols." }, }; /** The number of commands in the CodeView/WinDbg emulation. */ const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView); /** * Selectable debug event descriptors. * * @remarks Sorted by DBGCSXEVT::enmType value. */ const DBGCSXEVT g_aDbgcSxEvents[] = { { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" }, { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" }, { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "}, { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" }, { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" }, { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" }, { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" }, { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" }, { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" }, { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" }, { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" }, { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" }, { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" }, { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" }, { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" }, { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" }, { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" }, { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" }, { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" }, { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" }, { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" }, { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" }, { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" }, { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL }, { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL }, { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL }, { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL }, { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_VMX_SPLIT_LOCK, "vmx_split_lock", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL }, { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL }, { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL }, { DBGFEVENT_BSOD_VMMDEV, "bsod_vmmdev", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL }, }; /** Number of entries in g_aDbgcSxEvents. */ const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents); /** * @callback_method_impl{FNDBGCCMD, The 'g' command.} */ static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Parse arguments. */ VMCPUID idCpu = VMCPUID_ALL; if (cArgs == 1) { VMCPUID cCpus = DBGFR3CpuGetCount(pUVM); if (paArgs[0].u.u64Number >= cCpus) return DBGCCmdHlpFail(pCmdHlp, pCmd, "idCpu %RU64 is out of range! Highest valid ID is %u.\n", paArgs[0].u.u64Number, cCpus - 1); idCpu = (VMCPUID)paArgs[0].u.u64Number; } else Assert(cArgs == 0); /* * Try resume the VM or CPU. */ int rc = DBGFR3Resume(pUVM, idCpu); if (RT_SUCCESS(rc)) { Assert(rc == VINF_SUCCESS || rc == VWRN_DBGF_ALREADY_RUNNING); if (rc != VWRN_DBGF_ALREADY_RUNNING) return VINF_SUCCESS; if (idCpu == VMCPUID_ALL) return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running"); return DBGCCmdHlpFail(pCmdHlp, pCmd, "CPU %u is already running", idCpu); } return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume"); } /** * @callback_method_impl{FNDBGCCMD, The 'gu' command.} */ static DECLCALLBACK(int) dbgcCmdGoUp(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); RT_NOREF(pCmd, paArgs, cArgs); /* The simple way out. */ PDBGFADDRESS pStackPop = NULL; /** @todo try set up some stack limitations */ RTGCPTR cbStackPop = 0; int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET, NULL, pStackPop, cbStackPop, _512K); if (RT_SUCCESS(rc)) pDbgc->fReady = false; else return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET,) failed"); return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'ba' command.} */ static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Interpret access type. */ if ( !strchr("xrwi", paArgs[0].u.pszString[0]) || paArgs[0].u.pszString[1]) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'", paArgs[0].u.pszString, pCmd->pszCmd); uint8_t fType = 0; switch (paArgs[0].u.pszString[0]) { case 'x': fType = X86_DR7_RW_EO; break; case 'r': fType = X86_DR7_RW_RW; break; case 'w': fType = X86_DR7_RW_WO; break; case 'i': fType = X86_DR7_RW_IO; break; } /* * Validate size. */ if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!", paArgs[1].u.u64Number, pCmd->pszCmd); switch (paArgs[1].u.u64Number) { case 1: case 2: case 4: break; /*case 8: - later*/ default: return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!", paArgs[1].u.u64Number, pCmd->pszCmd); } uint8_t cb = (uint8_t)paArgs[1].u.u64Number; /* * Convert the pointer to a DBGF address. */ DBGFADDRESS Address; int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]); /* * Pick out the optional arguments. */ uint64_t iHitTrigger = 0; uint64_t iHitDisable = UINT64_MAX; const char *pszCmds = NULL; unsigned iArg = 3; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitTrigger = paArgs[iArg].u.u64Number; iArg++; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitDisable = paArgs[iArg].u.u64Number; iArg++; } } if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING) { pszCmds = paArgs[iArg].u.pszString; iArg++; } /* * Try set the breakpoint. */ uint32_t iBp; rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp); if (RT_SUCCESS(rc)) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); rc = dbgcBpAdd(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr); if (rc == VERR_DBGC_BP_EXISTS) { rc = dbgcBpUpdate(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr); } int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp); AssertRC(rc2); } return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr); } /** * @callback_method_impl{FNDBGCCMD, The 'bc' command.} */ static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Enumerate the arguments. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc = VINF_SUCCESS; for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number; if (iBp == paArgs[iArg].u.u64Number) { int rc2 = DBGFR3BpClear(pUVM, iBp); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp); if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND) dbgcBpDelete(pDbgc, iBp); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGCBP pBp = pDbgc->pFirstBp; while (pBp) { uint32_t iBp = pBp->iBp; pBp = pBp->pNext; int rc2 = DBGFR3BpClear(pUVM, iBp); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp); if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND) dbgcBpDelete(pDbgc, iBp); } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'bd' command.} */ static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Enumerate the arguments. */ int rc = VINF_SUCCESS; for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number; if (iBp == paArgs[iArg].u.u64Number) { rc = DBGFR3BpDisable(pUVM, iBp); if (RT_FAILURE(rc)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext) { int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp); } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'be' command.} */ static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Enumerate the arguments. */ int rc = VINF_SUCCESS; for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number; if (iBp == paArgs[iArg].u.u64Number) { rc = DBGFR3BpEnable(pUVM, iBp); if (RT_FAILURE(rc)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext) { int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp); } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * Breakpoint enumeration callback function. * * @returns VBox status code. Any failure will stop the enumeration. * @param pUVM The user mode VM handle. * @param pvUser The user argument. * @param hBp The DBGF breakpoint handle. * @param pBp Pointer to the breakpoint information. (readonly) */ static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, DBGFBP hBp, PCDBGFBPPUB pBp) { PDBGC pDbgc = (PDBGC)pvUser; PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, hBp); /* * BP type and size. */ DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", hBp, DBGF_BP_PUB_IS_ENABLED(pBp) ? 'e' : 'd'); bool fHasAddress = false; switch (DBGF_BP_PUB_GET_TYPE(pBp)) { case DBGFBPTYPE_SOFTWARE: DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Sw.GCPtr); fHasAddress = true; break; case DBGFBPTYPE_REG: { char chType; switch (pBp->u.Reg.fType) { case X86_DR7_RW_EO: chType = 'x'; break; case X86_DR7_RW_WO: chType = 'w'; break; case X86_DR7_RW_IO: chType = 'i'; break; case X86_DR7_RW_RW: chType = 'r'; break; default: chType = '?'; break; } DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr); fHasAddress = true; break; } /** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */ case DBGFBPTYPE_PORT_IO: case DBGFBPTYPE_MMIO: { uint32_t fAccess = DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess; DBGCCmdHlpPrintf(&pDbgc->CmdHlp, DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? " i" : " m"); DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c", fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-', fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-', fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-', fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-', fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-', fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-'); DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c", fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-', fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-', fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-', fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-', fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-', fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-'); if (DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO) DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x", pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1); else DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb); break; } default: DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", DBGF_BP_PUB_GET_TYPE(pBp)); AssertFailed(); break; } if (pBp->iHitDisable == ~(uint64_t)0) DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger); else DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable); /* * Try resolve the address if it has one. */ if (fHasAddress) { RTDBGSYMBOL Sym; RTINTPTR off; DBGFADDRESS Addr; int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr), RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED, &off, &Sym, NULL); if (RT_SUCCESS(rc)) { if (!off) DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName); else if (off > 0) DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off); else DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off); } } /* * The commands. */ if (pDbgcBp) { if (pDbgcBp->cchCmd) DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd); else DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n"); } else DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n"); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'bl' command.} */ static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0); NOREF(paArgs); /* * Enumerate the breakpoints. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum"); return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'bp' command.} */ static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Convert the pointer to a DBGF address. */ DBGFADDRESS Address; int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]); /* * Pick out the optional arguments. */ uint64_t iHitTrigger = 0; uint64_t iHitDisable = UINT64_MAX; const char *pszCmds = NULL; unsigned iArg = 1; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitTrigger = paArgs[iArg].u.u64Number; iArg++; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitDisable = paArgs[iArg].u.u64Number; iArg++; } } if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING) { pszCmds = paArgs[iArg].u.pszString; iArg++; } /* * Try set the breakpoint. */ uint32_t iBp; PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); rc = DBGFR3BpSetInt3(pUVM, pDbgc->idCpu, &Address, iHitTrigger, iHitDisable, &iBp); if (RT_SUCCESS(rc)) { rc = dbgcBpAdd(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr); if (rc == VERR_DBGC_BP_EXISTS) { rc = dbgcBpUpdate(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr); } int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp); AssertRC(rc2); } return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr); } /** * @callback_method_impl{FNDBGCCMD, The 'br' command.} */ static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Convert the pointer to a DBGF address. */ DBGFADDRESS Address; int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]); /* * Pick out the optional arguments. */ uint64_t iHitTrigger = 0; uint64_t iHitDisable = UINT64_MAX; const char *pszCmds = NULL; unsigned iArg = 1; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitTrigger = paArgs[iArg].u.u64Number; iArg++; if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER) { iHitDisable = paArgs[iArg].u.u64Number; iArg++; } } if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING) { pszCmds = paArgs[iArg].u.pszString; iArg++; } /* * Try set the breakpoint. */ uint32_t iBp; rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp); if (RT_SUCCESS(rc)) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); rc = dbgcBpAdd(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr); if (rc == VERR_DBGC_BP_EXISTS) { rc = dbgcBpUpdate(pDbgc, iBp, pszCmds); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr); } int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp); AssertRC(rc2); } return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr); } /** * Helps the unassmble ('u') command display symbols it starts at and passes. * * @param pUVM The user mode VM handle. * @param pCmdHlp The command helpers for printing via. * @param hDbgAs The address space to look up addresses in. * @param pAddress The current address. * @param pcbCallAgain Where to return the distance to the next check (in * instruction bytes). */ static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress, PRTUINTPTR pcbCallAgain) { RTDBGSYMBOL Symbol; RTGCINTPTR offDispSym; int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED, &offDispSym, &Symbol, NULL); if (RT_FAILURE(rc) || offDispSym > _1G) rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED, &offDispSym, &Symbol, NULL); if (RT_SUCCESS(rc) && offDispSym < _1G) { if (!offDispSym) { DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName); *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb; } else if (offDispSym > 0) { DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym); *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1; } else { DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym); *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb; } } else *pcbCallAgain = UINT32_MAX; } /** * @callback_method_impl{FNDBGCCMD, The 'u' command.} */ static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType)); if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling"); /* * Check the desired mode. */ unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED; switch (pCmd->pszCmd[1]) { default: AssertFailed(); RT_FALL_THRU(); case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break; case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break; case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break; case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break; case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break; } /** @todo should use DBGFADDRESS for everything */ /* * Find address. */ if (!cArgs) { if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType)) { #if defined(VBOX_VMM_TARGET_ARMV8) AssertReleaseFailed(); #else /** @todo Batch query CS, RIP, CPU mode and flags. */ PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu); if (CPUMIsGuestIn64BitCode(pVCpu)) { pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT; pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu); } else { pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR; pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu); pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu); if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM)) { fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK; fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; } } #endif fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST; } else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm) { fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK; fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK; } pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE; } else pDbgc->DisasmPos = paArgs[0]; pDbgc->pLastPos = &pDbgc->DisasmPos; /* * Range. */ switch (pDbgc->DisasmPos.enmRangeType) { case DBGCVAR_RANGE_NONE: pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS; pDbgc->DisasmPos.u64Range = 10; break; case DBGCVAR_RANGE_ELEMENTS: if (pDbgc->DisasmPos.u64Range > 2048) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines"); break; case DBGCVAR_RANGE_BYTES: if (pDbgc->DisasmPos.u64Range > 65536) return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB"); break; default: return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType); } /* * Convert physical and host addresses to guest addresses. */ RTDBGAS hDbgAs = pDbgc->hDbgAs; int rc; switch (pDbgc->DisasmPos.enmType) { case DBGCVAR_TYPE_GC_FLAT: case DBGCVAR_TYPE_GC_FAR: break; case DBGCVAR_TYPE_GC_PHYS: hDbgAs = DBGF_AS_PHYS; RT_FALL_THRU(); case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: { DBGCVAR VarTmp; rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos); pDbgc->DisasmPos = VarTmp; break; } default: AssertFailed(); break; } DBGFADDRESS CurAddr; if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR) DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off); else { rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos); } pDbgc->fDisasm = fFlags; /* * Figure out where we are and display it. Also calculate when we need to * check for a new symbol if possible. */ RTGCUINTPTR cbCheckSymbol; dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol); /* * Do the disassembling. */ unsigned cTries = 32; int iRangeLeft = (int)pDbgc->DisasmPos.u64Range; if (iRangeLeft == 0) /* kludge for 'r'. */ iRangeLeft = -1; for (;;) { /* * Disassemble the instruction. */ char szDis[256]; uint32_t cbInstr = 1; if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT) rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags, &szDis[0], sizeof(szDis), &cbInstr); else rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags, &szDis[0], sizeof(szDis), &cbInstr); if (RT_SUCCESS(rc)) { /* print it */ rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]); if (RT_FAILURE(rc)) return rc; } else { /* bitch. */ int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n"); if (RT_FAILURE(rc2)) return rc2; if (cTries-- > 0) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up"); #if defined(VBOX_VMM_TARGET_ARMV8) cbInstr = sizeof(uint32_t); #else cbInstr = 1; #endif } /* advance */ if (iRangeLeft < 0) /* 'r' */ break; if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS) iRangeLeft--; else iRangeLeft -= cbInstr; rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr); if (iRangeLeft <= 0) break; fFlags &= ~DBGF_DISAS_FLAGS_CURRENT_GUEST; /* Print next symbol? */ if (cbCheckSymbol <= cbInstr) { if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR) DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off); else rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr); if (RT_SUCCESS(rc)) dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol); else cbCheckSymbol = UINT32_MAX; } else cbCheckSymbol -= cbInstr; } NOREF(pCmd); return VINF_SUCCESS; } /** * @callback_method_impl{FNDGCSCREENBLIT} */ static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser) { PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser; return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz); } /** * Checks whether both addresses are equal. * * @returns true if both addresses point to the same location, false otherwise. * @param pAddr1 First address. * @param pAddr2 Second address. */ static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2) { return pAddr1->Sel == pAddr2->Sel && pAddr1->off == pAddr2->off; } /** * Checks whether the first given address is lower than the second one. * * @returns true if both addresses point to the same location, false otherwise. * @param pAddr1 First address. * @param pAddr2 Second address. */ static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2) { return pAddr1->Sel == pAddr2->Sel && pAddr1->off < pAddr2->off; } /** * Calculates the size required for the given basic block including the * border and spacing on the edges. * * @param hFlowBb The basic block handle. * @param pDumpBb The dumper state to fill in for the basic block. */ static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb) { uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb); uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb); pDumpBb->hFlowBb = hFlowBb; pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */ pDumpBb->cchWidth = 0; DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart); DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb); if ( enmType == DBGFFLOWBBENDTYPE_COND || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP) DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget); if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR) { const char *pszErr = NULL; DBGFR3FlowBbQueryError(hFlowBb, &pszErr); if (pszErr) { uint32_t cchErr = (uint32_t)strlen(pszErr); pDumpBb->cchHeight++; pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, cchErr); } } for (unsigned i = 0; i < cInstr; i++) { const char *pszInstr = NULL; int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr); AssertRC(rc); uint32_t cchInstr = (uint32_t)strlen(pszInstr); pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, cchInstr); } pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */ } /** * Dumps a top or bottom boundary line. * * @param hScreen The screen to draw to. * @param uStartX Where to start drawing the boundary. * @param uStartY Y coordinate. * @param cchWidth Width of the boundary. * @param enmColor The color to use for drawing. */ static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth, DBGCSCREENCOLOR enmColor) { dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor); dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2, uStartY, '-', enmColor); dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor); } /** * Dumps a spacing line between the top or bottom boundary and the actual disassembly. * * @param hScreen The screen to draw to. * @param uStartX Where to start drawing the spacing. * @param uStartY Y coordinate. * @param cchWidth Width of the spacing. * @param enmColor The color to use for drawing. */ static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth, DBGCSCREENCOLOR enmColor) { dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor); dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2, uStartY, ' ', enmColor); dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor); } /** * Writes a given text to the screen. * * @param hScreen The screen to draw to. * @param uStartX Where to start drawing the line. * @param uStartY Y coordinate. * @param cchWidth Maximum width of the text. * @param pszText The text to write. * @param enmTextColor The color to use for drawing the text. * @param enmBorderColor The color to use for drawing the border. */ static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth, const char *pszText, DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor) { dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor); dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor); dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor); dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor); } /** * Dumps one basic block using the dumper callback. * * @param pDumpBb The basic block dump state to dump. * @param hScreen The screen to draw to. */ static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen) { uint32_t uStartY = pDumpBb->uStartY; bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR); DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT; dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor); uStartY++; dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor); uStartY++; uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb); for (unsigned i = 0; i < cInstr; i++) { const char *pszInstr = NULL; DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr); dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i, pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT, enmColor); } uStartY += cInstr; if (fError) { const char *pszErr = NULL; DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr); if (pszErr) dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, pszErr, enmColor, enmColor); uStartY++; } dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor); uStartY++; dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor); uStartY++; } /** * Dumps one branch table using the dumper callback. * * @param pDumpBranchTbl The basic block dump state to dump. * @param hScreen The screen to draw to. */ static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen) { uint32_t uStartY = pDumpBranchTbl->uStartY; DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT; dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor); uStartY++; dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor); uStartY++; uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl); for (unsigned i = 0; i < cSlots; i++) { DBGFADDRESS Addr; char szAddr[128]; RT_ZERO(szAddr); DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr); if (Addr.Sel == DBGF_SEL_FLAT) RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr); else RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off); dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i, pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT, enmColor); } uStartY += cSlots; dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor); uStartY++; dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor); uStartY++; } /** * Fills in the dump states for the basic blocks and branch tables. * * @param hFlowIt The control flow graph iterator handle. * @param hFlowBranchTblIt The control flow graph branch table iterator handle. * @param paDumpBb The array of basic block dump states. * @param paDumpBranchTbl The array of branch table dump states. * @param cBbs Number of basic blocks. * @param cBranchTbls Number of branch tables. */ static void dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt, PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl, uint32_t cBbs, uint32_t cBranchTbls) { RT_NOREF2(cBbs, cBranchTbls); /* Calculate the sizes of each basic block first. */ DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt); uint32_t idx = 0; while (hFlowBb) { dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]); idx++; hFlowBb = DBGFR3FlowItNext(hFlowIt); } if (paDumpBranchTbl) { idx = 0; DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt); while (hFlowBranchTbl) { paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl; paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */ paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */ idx++; hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt); } } } /** * Dumps the given control flow graph to the output. * * @returns VBox status code. * @param hCfg The control flow graph handle. * @param fUseColor Flag whether the output should be colorized. * @param pCmdHlp The command helper callback table. */ static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp) { int rc = VINF_SUCCESS; DBGFFLOWIT hCfgIt = NULL; DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL; uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg); uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg); PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP)); PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL; if (cBranchTbls) paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP)); if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0))) rc = VERR_NO_MEMORY; if (RT_SUCCESS(rc)) rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt); if (RT_SUCCESS(rc) && cBranchTbls > 0) rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt); if (RT_SUCCESS(rc)) { dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl, cBbs, cBranchTbls); /* Calculate the ASCII screen dimensions and create one. */ uint32_t cchWidth = 0; uint32_t cchLeftExtra = 5; uint32_t cchRightExtra = 5; uint32_t cchHeight = 0; for (unsigned i = 0; i < cBbs; i++) { PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i]; cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth); cchHeight += pDumpBb->cchHeight; /* Incomplete blocks don't have a successor. */ if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR) continue; switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb)) { case DBGFFLOWBBENDTYPE_EXIT: case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED: break; case DBGFFLOWBBENDTYPE_UNCOND_JMP: if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart) || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)) cchLeftExtra++; else cchRightExtra++; break; case DBGFFLOWBBENDTYPE_UNCOND: cchHeight += 2; /* For the arrow down to the next basic block. */ break; case DBGFFLOWBBENDTYPE_COND: cchHeight += 2; /* For the arrow down to the next basic block. */ if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart) || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)) cchLeftExtra++; else cchRightExtra++; break; case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP: default: AssertFailed(); } } for (unsigned i = 0; i < cBranchTbls; i++) { PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i]; cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth); cchHeight += pDumpBranchTbl->cchHeight; } cchWidth += 2; DBGCSCREEN hScreen = NULL; rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight); if (RT_SUCCESS(rc)) { uint32_t uY = 0; /* Dump the branch tables first. */ for (unsigned i = 0; i < cBranchTbls; i++) { paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2; paDumpBranchTbl[i].uStartY = uY; dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen); uY += paDumpBranchTbl[i].cchHeight; } /* Dump the basic blocks and connections to the immediate successor. */ for (unsigned i = 0; i < cBbs; i++) { paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2; paDumpBb[i].uStartY = uY; dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen); uY += paDumpBb[i].cchHeight; /* Incomplete blocks don't have a successor. */ if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR) continue; switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb)) { case DBGFFLOWBBENDTYPE_EXIT: case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED: case DBGFFLOWBBENDTYPE_UNCOND_JMP: case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP: break; case DBGFFLOWBBENDTYPE_UNCOND: /* Draw the arrow down to the next block. */ dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY, '|', DBGCSCREENCOLOR_BLUE_BRIGHT); uY++; dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY, 'V', DBGCSCREENCOLOR_BLUE_BRIGHT); uY++; break; case DBGFFLOWBBENDTYPE_COND: /* Draw the arrow down to the next block. */ dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY, '|', DBGCSCREENCOLOR_RED_BRIGHT); uY++; dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY, 'V', DBGCSCREENCOLOR_RED_BRIGHT); uY++; break; default: AssertFailed(); } } /* Last pass, connect all remaining branches. */ uint32_t uBackConns = 0; uint32_t uFwdConns = 0; for (unsigned i = 0; i < cBbs; i++) { PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i]; DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb); /* Incomplete blocks don't have a successor. */ if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR) continue; switch (enmEndType) { case DBGFFLOWBBENDTYPE_EXIT: case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED: case DBGFFLOWBBENDTYPE_UNCOND: break; case DBGFFLOWBBENDTYPE_COND: case DBGFFLOWBBENDTYPE_UNCOND_JMP: { /* Find the target first to get the coordinates. */ PDBGCFLOWBBDUMP pDumpBbTgt = NULL; for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++) { pDumpBbTgt = &paDumpBb[idxDumpBb]; if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart)) break; } DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP ? DBGCSCREENCOLOR_YELLOW_BRIGHT : DBGCSCREENCOLOR_GREEN_BRIGHT; /* * Use the right side for targets with higher addresses, * left when jumping backwards. */ if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart) || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)) { /* Going backwards. */ uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1; uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2; uBackConns++; /* Draw the arrow pointing to the target block. */ dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY, '>', enmColor); /* Draw the horizontal line. */ dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2, pDumpBbTgt->uStartY, '-', enmColor); dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+', enmColor); /* Draw the vertical line down to the source block. */ dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1, '|', enmColor); dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor); /* Draw the horizontal connection between the source block and vertical part. */ dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1, uYHorLine, '-', enmColor); } else { /* Going forward. */ uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1; uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2; uFwdConns++; /* Draw the horizontal line. */ dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth, uXVerLine - 1, uYHorLine, '-', enmColor); dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor); /* Draw the vertical line down to the target block. */ dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1, '|', enmColor); /* Draw the horizontal connection between the target block and vertical part. */ dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth, uXVerLine, pDumpBbTgt->uStartY, '-', enmColor); dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+', enmColor); /* Draw the arrow pointing to the target block. */ dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth, pDumpBbTgt->uStartY, '<', enmColor); } break; } case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP: default: AssertFailed(); } } rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor); dbgcScreenAsciiDestroy(hScreen); } } if (paDumpBb) { for (unsigned i = 0; i < cBbs; i++) DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb); RTMemTmpFree(paDumpBb); } if (paDumpBranchTbl) { for (unsigned i = 0; i < cBranchTbls; i++) DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl); RTMemTmpFree(paDumpBranchTbl); } if (hCfgIt) DBGFR3FlowItDestroy(hCfgIt); if (hFlowBranchTblIt) DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt); return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.} */ static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType)); if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling"); /* * Check the desired mode. */ unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED; bool fUseColor = false; switch (pCmd->pszCmd[4]) { default: AssertFailed(); RT_FALL_THRU(); case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break; case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break; case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break; case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break; case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break; case 'c': fUseColor = true; break; } /** @todo should use DBGFADDRESS for everything */ /* * Find address. */ if (!cArgs) { if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType)) { #if defined(VBOX_VMM_TARGET_ARMV8) AssertReleaseFailed(); #else /** @todo Batch query CS, RIP, CPU mode and flags. */ PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu); if (CPUMIsGuestIn64BitCode(pVCpu)) { pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT; pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu); } else { pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR; pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu); pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu); if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM)) { fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK; fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; } } #endif fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST; } else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm) { fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK; fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK; } pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE; } else pDbgc->DisasmPos = paArgs[0]; pDbgc->pLastPos = &pDbgc->DisasmPos; /* * Range. */ switch (pDbgc->DisasmPos.enmRangeType) { case DBGCVAR_RANGE_NONE: pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS; pDbgc->DisasmPos.u64Range = 10; break; case DBGCVAR_RANGE_ELEMENTS: if (pDbgc->DisasmPos.u64Range > 2048) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines"); break; case DBGCVAR_RANGE_BYTES: if (pDbgc->DisasmPos.u64Range > 65536) return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB"); break; default: return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType); } int rc; #if 0 /** @todo Unused right now. */ /* * Convert physical and host addresses to guest addresses. */ RTDBGAS hDbgAs = pDbgc->hDbgAs; switch (pDbgc->DisasmPos.enmType) { case DBGCVAR_TYPE_GC_FLAT: case DBGCVAR_TYPE_GC_FAR: break; case DBGCVAR_TYPE_GC_PHYS: hDbgAs = DBGF_AS_PHYS; RT_FALL_THRU(); case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: { DBGCVAR VarTmp; rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos); pDbgc->DisasmPos = VarTmp; break; } default: AssertFailed(); break; } #endif DBGFADDRESS CurAddr; if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR) DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off); else { rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos); } DBGFFLOW hCfg; rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/, DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg); if (RT_SUCCESS(rc)) { /* Dump the graph. */ rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp); DBGFR3FlowRelease(hCfg); } else rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos); NOREF(pCmd); return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'ls' command.} */ static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1); if (cArgs == 1) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing..."); if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM"); /* * Find address. */ if (!cArgs) { if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType)) { #if defined(VBOX_VMM_TARGET_ARMV8) AssertReleaseFailed(); #else PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu); pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR; pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu); pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu); #endif } pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE; } else pDbgc->SourcePos = paArgs[0]; pDbgc->pLastPos = &pDbgc->SourcePos; /* * Ensure the source address is flat GC. */ switch (pDbgc->SourcePos.enmType) { case DBGCVAR_TYPE_GC_FLAT: break; case DBGCVAR_TYPE_GC_PHYS: case DBGCVAR_TYPE_GC_FAR: case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: { int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos); if (RT_FAILURE(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc); break; } default: AssertFailed(); break; } /* * Range. */ switch (pDbgc->SourcePos.enmRangeType) { case DBGCVAR_RANGE_NONE: pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS; pDbgc->SourcePos.u64Range = 10; break; case DBGCVAR_RANGE_ELEMENTS: if (pDbgc->SourcePos.u64Range > 2048) return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n"); break; case DBGCVAR_RANGE_BYTES: if (pDbgc->SourcePos.u64Range > 65536) return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n"); break; default: return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType); } /* * Do the disassembling. */ bool fFirst = 1; RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" }; int iRangeLeft = (int)pDbgc->SourcePos.u64Range; if (iRangeLeft == 0) /* kludge for 'r'. */ iRangeLeft = -1; for (;;) { /* * Get line info. */ RTDBGLINE Line; RTGCINTPTR off; DBGFADDRESS SourcePosAddr; int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos); rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL); if (RT_FAILURE(rc)) return VINF_SUCCESS; unsigned cLines = 0; if (memcmp(&Line, &LinePrev, sizeof(Line))) { /* * Print filenamename */ if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename)) fFirst = true; if (fFirst) { rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo); if (RT_FAILURE(rc)) return rc; } /* * Try open the file and read the line. */ FILE *phFile = fopen(Line.szFilename, "r"); if (phFile) { /* Skip ahead to the desired line. */ char szLine[4096]; unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1; if (cBefore > 7) cBefore = 0; unsigned cLeft = Line.uLineNo - cBefore; while (cLeft > 0) { szLine[0] = '\0'; if (!fgets(szLine, sizeof(szLine), phFile)) break; cLeft--; } if (!cLeft) { /* print the before lines */ for (;;) { size_t cch = strlen(szLine); while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) ) szLine[--cch] = '\0'; if (cBefore-- <= 0) break; rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine); if (RT_FAILURE(rc)) break; szLine[0] = '\0'; const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc); cLines++; } /* print the actual line */ if (RT_SUCCESS(rc)) rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine); } fclose(phFile); if (RT_FAILURE(rc)) return rc; fFirst = false; } else return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename); LinePrev = Line; } /* * Advance */ if (iRangeLeft < 0) /* 'r' */ break; if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS) iRangeLeft -= cLines; else iRangeLeft -= 1; rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1); if (iRangeLeft <= 0) break; } NOREF(pCmd); return 0; } /** * @callback_method_impl{FNDBGCCMD, The 'r' command.} */ static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs); } /** * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*() * commands.} */ static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs, const char *pszPrefix) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc; DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL); /* * Parse the register name and kind. */ bool const fAllRegs = strcmp(paArgs[0].u.pszString, "all") == 0; const char *pszReg = paArgs[0].u.pszString; if (*pszReg == '@') pszReg++; VMCPUID idCpu = pDbgc->idCpu; if (*pszPrefix) idCpu |= DBGFREG_HYPER_VMCPUID; if (*pszReg == '.') { pszReg++; idCpu |= DBGFREG_HYPER_VMCPUID; } const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : ""; if (cArgs == 1) { /* * Show the register. * * If it ends with a '.' or '.*', we'll show any subfields and aliases as * well. This is a special VBox twist. */ size_t cchReg = strlen(pszReg); size_t cchSuffix = 0; if (cchReg >= 2 && pszReg[cchReg - 1] == '.') cchSuffix = 1; else if (cchReg >= 3 && pszReg[cchReg - 1] == '*' && pszReg[cchReg - 2] == '.') cchSuffix = 2; char szValue[160]; if (!cchSuffix && !fAllRegs) { DBGFREGVALTYPE enmType; DBGFREGVAL Value; rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType); if (RT_FAILURE(rc)) { if (rc == VERR_DBGF_REGISTER_NOT_FOUND) return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n", pszActualPrefix, pszReg); return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n", pszActualPrefix, pszReg, rc); } rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/); if (RT_SUCCESS(rc)) rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue); else rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc); } else { /* * Register + aliases + subfields OR 'all'. */ /* Duplicate the register specifier sans suffix. */ char *pszRegBase = RTStrDupN(pszReg, cchReg - cchSuffix); AssertReturn(pszRegBase, VERR_NO_STR_MEMORY); /* Make a rough guess on how many entires we need, or query it in the case of 'all'. */ size_t cRegsAlloc = 128; if (fAllRegs) DBGFR3RegNmQueryAllCount(pUVM, &cRegsAlloc); PDBGFREGENTRYNM paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc); AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY); size_t cRegs = cRegsAlloc; /* Query the registers.*/ if (fAllRegs) rc = DBGFR3RegNmQueryAll(pUVM, paRegs, cRegs); else rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase, DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES, paRegs, &cRegs); if (rc == VERR_BUFFER_OVERFLOW && !fAllRegs) { RTMemTmpFree(paRegs); cRegsAlloc = cRegs; paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc); AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY); rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase, DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES, paRegs, &cRegs); } if (RT_SUCCESS(rc)) { /* Find max lengths and sizes for producing pretty columns. */ size_t cchMaxNm = 2; size_t cchMaxSubFieldNm = 2; size_t cMaxSubFieldBits = 1; if (*pszActualPrefix == '\0') for (uint32_t iReg = 0; iReg < cRegs; iReg++) { size_t const cchName = strlen(paRegs[iReg].pszName); if (cchMaxNm < cchName) cchMaxNm = cchName; if (paRegs[iReg].u.s.fSubField) { cchMaxSubFieldNm = RT_MAX(cchMaxSubFieldNm, cchName); cMaxSubFieldBits = RT_MAX(cMaxSubFieldBits, paRegs[iReg].u.s.cBits); } } /* Output the registers. */ size_t cchMaxSubFieldValue = 2 + (cMaxSubFieldBits + 3) / 4; size_t cMaxSameLine = 80 / (2 + cchMaxSubFieldNm + 1 + cchMaxSubFieldValue); unsigned iSameLine = 0; for (uint32_t iReg = 0; iReg < cRegs; iReg++) { if ( !paRegs[iReg].u.s.fSubField || !paRegs[iReg].u.s.cBits) rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &paRegs[iReg].Val, paRegs[iReg].enmType, true /*fSpecial*/); else rc = DBGFR3RegFormatValueEx(szValue, sizeof(szValue), &paRegs[iReg].Val, paRegs[iReg].enmType, 16, (paRegs[iReg].u.s.cBits + 3) / 4, 0, (paRegs[iReg].u.s.cBits == 1 ? 0 : RTSTR_F_SPECIAL) | RTSTR_F_WIDTH); if (RT_SUCCESS(rc)) { if (!paRegs[iReg].u.s.fSubField) { if (iSameLine > 0) rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); if (RT_SUCCESS(rc)) { if (*pszActualPrefix == '\0') rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s=%s\n", cchMaxNm, paRegs[iReg].pszName, szValue); else rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, paRegs[iReg].pszName, szValue); } iSameLine = 0; } else { if (*pszActualPrefix == '\0') rc = DBGCCmdHlpPrintf(pCmdHlp, " %*s=%s", cchMaxSubFieldNm, paRegs[iReg].pszName, szValue); else rc = DBGCCmdHlpPrintf(pCmdHlp, " %s%s=%s", pszActualPrefix, paRegs[iReg].pszName, szValue); iSameLine++; if (iSameLine < cMaxSameLine) { size_t cchValue = strlen(szValue); if (cchValue < cchMaxSubFieldValue) rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s", cchMaxSubFieldValue - cchValue, ""); } else { rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); iSameLine = 0; } } } else rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue[Ex] failed for %s: %Rrc.\n", paRegs[iReg].pszName, rc); } if (iSameLine > 0) rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); } else if (fAllRegs) rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryAll failed: %Rrc.\n", rc); else if (rc == VERR_DBGF_REGISTER_NOT_FOUND) rc = DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n", pszActualPrefix, pszRegBase); else rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryEx failed querying '%s%s': %Rrc.\n", pszActualPrefix, pszRegBase, rc); RTStrFree(pszRegBase); RTMemTmpFree(paRegs); } } else { /* * We're about to modify the register. * * First we need to query the register type (see below). */ DBGFREGVALTYPE enmType; DBGFREGVAL Value; rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType); if (RT_FAILURE(rc)) { if (rc == VERR_DBGF_REGISTER_NOT_FOUND) return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n", pszActualPrefix, pszReg); return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n", pszActualPrefix, pszReg, rc); } DBGCVAR NewValueTmp; PCDBGCVAR pNewValue; if (cArgs == 3) { DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING); if (strcmp(paArgs[1].u.pszString, "=")) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='."); pNewValue = &paArgs[2]; } else { /* Not possible to convince the parser to support both codeview and windbg syntax and make the equal sign optional. Try help it. */ /** @todo make DBGCCmdHlpConvert do more with strings. */ rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol."); pNewValue = &NewValueTmp; } /* * Modify the register. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER); if (enmType != DBGFREGVALTYPE_DTR) { enmType = DBGFREGVALTYPE_U64; rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64); } else { enmType = DBGFREGVALTYPE_DTR; rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base); if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE) Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range; } if (RT_SUCCESS(rc)) { rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType); if (RT_FAILURE(rc)) rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n", pszActualPrefix, pszReg, rc); if (rc != VINF_SUCCESS) DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc); } else rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc); } return rc; } /** * @callback_method_impl{FNDBGCCMD, * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.} */ static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Show all registers our selves. */ if (cArgs == 0) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64") || ( strcmp(pCmd->pszCmd, "rg32") != 0 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu)); return DBGCCmdHlpRegPrintf(pCmdHlp, pDbgc->idCpu, f64BitMode, pDbgc->fRegTerse); } return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, ""); } /** * @callback_method_impl{FNDBGCCMD, The 'rt' command.} */ static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs); PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); pDbgc->fRegTerse = !pDbgc->fRegTerse; return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n"); } /** * @callback_method_impl{FNDBGCCMD, The 'pr' and 'tr' commands.} */ static DECLCALLBACK(int) dbgcCmdStepTraceToggle(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); Assert(cArgs == 0); NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs); /* Note! windbg accepts 'r' as a flag to 'p', 'pa', 'pc', 'pt', 't', 'ta', 'tc' and 'tt'. We've simplified it. */ pDbgc->fStepTraceRegs = !pDbgc->fStepTraceRegs; return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'p'\, 'pc'\, 'pt'\, 't'\, 'tc'\, and 'tt' commands.} */ static DECLCALLBACK(int) dbgcCmdStepTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); if (cArgs != 0) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Sorry, but the '%s' command does not currently implement any arguments.\n", pCmd->pszCmd); /* The 'count' has to be implemented by DBGC, whereas the filtering is taken care of by DBGF. */ /* * Convert the command to DBGF_STEP_F_XXX and other API input. */ //DBGFADDRESS StackPop; PDBGFADDRESS pStackPop = NULL; RTGCPTR cbStackPop = 0; uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : _64K; uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO; if (pCmd->pszCmd[1] == 'c') fFlags |= DBGF_STEP_F_STOP_ON_CALL; else if (pCmd->pszCmd[1] == 't') fFlags |= DBGF_STEP_F_STOP_ON_RET; else if (pCmd->pszCmd[0] != 'p') cMaxSteps = 1; else { /** @todo consider passing RSP + 1 in for 'p' and something else sensible for * the 'pt' command. */ } int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, NULL, pStackPop, cbStackPop, cMaxSteps); if (RT_SUCCESS(rc)) pDbgc->fReady = false; else return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags); NOREF(pCmd); NOREF(paArgs); NOREF(cArgs); return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'pa' and 'ta' commands.} */ static DECLCALLBACK(int) dbgcCmdStepTraceTo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); if (cArgs != 1) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Sorry, but the '%s' command only implements a single argument at present.\n", pCmd->pszCmd); DBGFADDRESS Address; int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[0]); uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : 1; uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO; rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, &Address, NULL, 0, cMaxSteps); if (RT_SUCCESS(rc)) pDbgc->fReady = false; else return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags); return rc; } /** * Helper that tries to resolve a far address to a symbol and formats it. * * @returns Pointer to symbol string on success, NULL if not resolved. * Free using RTStrFree. * @param pCmdHlp The command helper structure. * @param hAs The address space to use. NIL_RTDBGAS means no symbol resolving. * @param sel The selector part of the address. * @param off The offset part of the address. * @param pszPrefix How to prefix the symbol string. * @param pszSuffix How to suffix the symbol string. */ static char *dbgcCmdHlpFarAddrToSymbol(PDBGCCMDHLP pCmdHlp, RTDBGAS hAs, RTSEL sel, uint64_t off, const char *pszPrefix, const char *pszSuffix) { char *pszRet = NULL; if (hAs != NIL_RTDBGAS) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); DBGFADDRESS Addr; int rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, sel, off); if (RT_SUCCESS(rc)) { RTGCINTPTR offDispSym = 0; PRTDBGSYMBOL pSymbol = DBGFR3AsSymbolByAddrA(pDbgc->pUVM, hAs, &Addr, RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED, &offDispSym, NULL); if (pSymbol) { if (offDispSym == 0) pszRet = RTStrAPrintf2("%s%s%s", pszPrefix, pSymbol->szName, pszSuffix); else if (offDispSym > 0) pszRet = RTStrAPrintf2("%s%s+%llx%s", pszPrefix, pSymbol->szName, (int64_t)offDispSym, pszSuffix); else pszRet = RTStrAPrintf2("%s%s-%llx%s", pszPrefix, pSymbol->szName, -(int64_t)offDispSym, pszSuffix); RTDbgSymbolFree(pSymbol); } } } return pszRet; } /** * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.} */ static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Figure which context we're called for and start walking that stack. */ int rc; PCDBGFSTACKFRAME pFirstFrame; bool const fGuest = true; bool const fVerbose = pCmd->pszCmd[1] == 'v' || (pCmd->pszCmd[1] != '\0' && pCmd->pszCmd[2] == 'v'); rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame); if (RT_FAILURE(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc); /* * Print the frames. */ char szTmp[1024]; uint32_t fBitFlags = 0; for (PCDBGFSTACKFRAME pFrame = pFirstFrame; pFrame; pFrame = DBGFR3StackWalkNext(pFrame)) { uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT); if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT) { if (fCurBitFlags != fBitFlags) pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32", pFrame->iFrame, pFrame->AddrFrame.Sel, (uint16_t)pFrame->AddrFrame.off, pFrame->AddrReturnFrame.Sel, (uint16_t)pFrame->AddrReturnFrame.off, (uint32_t)pFrame->AddrReturnPC.Sel, (uint32_t)pFrame->AddrReturnPC.off, pFrame->Args.au32[0], pFrame->Args.au32[1], pFrame->Args.au32[2], pFrame->Args.au32[3]); } else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT) { if (fCurBitFlags != fBitFlags) pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32", pFrame->iFrame, (uint32_t)pFrame->AddrFrame.off, (uint32_t)pFrame->AddrReturnFrame.off, (uint32_t)pFrame->AddrReturnPC.Sel, (uint32_t)pFrame->AddrReturnPC.off, pFrame->Args.au32[0], pFrame->Args.au32[1], pFrame->Args.au32[2], pFrame->Args.au32[3]); } else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT) { if (fCurBitFlags != fBitFlags) pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %016RX64 %04RX16:%016RX64 %016RX64", pFrame->iFrame, (uint64_t)pFrame->AddrFrame.off, pFrame->AddrReturnFrame.Sel, (uint64_t)pFrame->AddrReturnFrame.off, (uint64_t)pFrame->AddrReturnPC.off); } if (RT_FAILURE(rc)) break; if (!pFrame->pSymPC) rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT ? " %RTsel:%016RGv" : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT ? " %RTsel:%08RGv" : " %RTsel:%04RGv" , pFrame->AddrPC.Sel, pFrame->AddrPC.off); else { RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */ if (offDisp > 0) rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp); else if (offDisp < 0) rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp); else rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName); } if (RT_SUCCESS(rc) && pFrame->pLinePC) rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo); if (RT_SUCCESS(rc)) rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); if (fVerbose && RT_SUCCESS(rc)) { /* * Display verbose frame info. */ const char *pszRetType = "invalid"; switch (pFrame->enmReturnType) { case RTDBGRETURNTYPE_NEAR16: pszRetType = "retn/16"; break; case RTDBGRETURNTYPE_NEAR32: pszRetType = "retn/32"; break; case RTDBGRETURNTYPE_NEAR64: pszRetType = "retn/64"; break; case RTDBGRETURNTYPE_FAR16: pszRetType = "retf/16"; break; case RTDBGRETURNTYPE_FAR32: pszRetType = "retf/32"; break; case RTDBGRETURNTYPE_FAR64: pszRetType = "retf/64"; break; case RTDBGRETURNTYPE_IRET16: pszRetType = "iret-16"; break; case RTDBGRETURNTYPE_IRET32: pszRetType = "iret/32s"; break; case RTDBGRETURNTYPE_IRET32_PRIV: pszRetType = "iret/32p"; break; case RTDBGRETURNTYPE_IRET32_V86: pszRetType = "iret/v86"; break; case RTDBGRETURNTYPE_IRET64: pszRetType = "iret/64"; break; case RTDBGRETURNTYPE_END: case RTDBGRETURNTYPE_INVALID: case RTDBGRETURNTYPE_32BIT_HACK: break; } size_t cchLine = DBGCCmdHlpPrintfLen(pCmdHlp, " %s", pszRetType); if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_UNWIND_INFO) cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-unwind-info"); if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_ODD_EVEN) cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-odd-even"); if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_REAL_V86) cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " real-v86"); if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_MAX_DEPTH) cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " max-depth"); if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_TRAP_FRAME) cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " trap-frame"); if (pFrame->cSureRegs > 0) { cchLine = 1024; /* force new line */ for (uint32_t i = 0; i < pFrame->cSureRegs; i++) { if (cchLine > 80) { DBGCCmdHlpPrintf(pCmdHlp, "\n "); cchLine = 2; } szTmp[0] = '\0'; DBGFR3RegFormatValue(szTmp, sizeof(szTmp), &pFrame->paSureRegs[i].Value, pFrame->paSureRegs[i].enmType, false); const char *pszName = pFrame->paSureRegs[i].enmReg != DBGFREG_END ? DBGFR3RegCpuName(pUVM, pFrame->paSureRegs[i].enmReg, pFrame->paSureRegs[i].enmType) : pFrame->paSureRegs[i].pszName; cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " %s=%s", pszName, szTmp); } } if (RT_SUCCESS(rc)) rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); } if (RT_FAILURE(rc)) break; fBitFlags = fCurBitFlags; } DBGFR3StackWalkEnd(pFirstFrame); NOREF(paArgs); NOREF(cArgs); return rc; } /** * Worker function that displays one descriptor entry (GDT, LDT, IDT). * * @returns pfnPrintf status code. * @param pCmdHlp The DBGC command helpers. * @param pDesc The descriptor to display. * @param iEntry The descriptor entry number. * @param fHyper Whether the selector belongs to the hypervisor or not. * @param hAs Address space to use when resolving symbols. * @param pfDblEntry Where to indicate whether the entry is two entries wide. * Optional. */ static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs, bool *pfDblEntry) { /* GUEST64 */ int rc; const char *pszHyper = fHyper ? " HYPER" : ""; const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP"; if (pDesc->Gen.u1DescType) { static const char * const s_apszTypes[] = { "DataRO", /* 0 Read-Only */ "DataRO", /* 1 Read-Only - Accessed */ "DataRW", /* 2 Read/Write */ "DataRW", /* 3 Read/Write - Accessed */ "DownRO", /* 4 Expand-down, Read-Only */ "DownRO", /* 5 Expand-down, Read-Only - Accessed */ "DownRW", /* 6 Expand-down, Read/Write */ "DownRW", /* 7 Expand-down, Read/Write - Accessed */ "CodeEO", /* 8 Execute-Only */ "CodeEO", /* 9 Execute-Only - Accessed */ "CodeER", /* A Execute/Readable */ "CodeER", /* B Execute/Readable - Accessed */ "ConfE0", /* C Conforming, Execute-Only */ "ConfE0", /* D Conforming, Execute-Only - Accessed */ "ConfER", /* E Conforming, Execute/Readable */ "ConfER" /* F Conforming, Execute/Readable - Accessed */ }; const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA"; const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " "; const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " "; uint32_t u32Base = X86DESC_BASE(pDesc); uint32_t cbLimit = X86DESC_LIMIT_G(pDesc); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit, pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig, pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper); } else { static const char * const s_apszTypes[] = { "Ill-0 ", /* 0 0000 Reserved (Illegal) */ "Ill-1 ", /* 1 0001 Available 16-bit TSS */ "LDT ", /* 2 0010 LDT */ "Ill-3 ", /* 3 0011 Busy 16-bit TSS */ "Ill-4 ", /* 4 0100 16-bit Call Gate */ "Ill-5 ", /* 5 0101 Task Gate */ "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */ "Ill-7 ", /* 7 0111 16-bit Trap Gate */ "Ill-8 ", /* 8 1000 Reserved (Illegal) */ "Tss64A", /* 9 1001 Available 32-bit TSS */ "Ill-A ", /* A 1010 Reserved (Illegal) */ "Tss64B", /* B 1011 Busy 32-bit TSS */ "Call64", /* C 1100 32-bit Call Gate */ "Ill-D ", /* D 1101 Reserved (Illegal) */ "Int64 ", /* E 1110 32-bit Interrupt Gate */ "Trap64" /* F 1111 32-bit Trap Gate */ }; switch (pDesc->Gen.u4Type) { /* raw */ case X86_SEL_TYPE_SYS_UNDEFINED: case X86_SEL_TYPE_SYS_UNDEFINED2: case X86_SEL_TYPE_SYS_UNDEFINED4: case X86_SEL_TYPE_SYS_UNDEFINED3: case X86_SEL_TYPE_SYS_286_TSS_AVAIL: case X86_SEL_TYPE_SYS_286_TSS_BUSY: case X86_SEL_TYPE_SYS_286_CALL_GATE: case X86_SEL_TYPE_SYS_286_INT_GATE: case X86_SEL_TYPE_SYS_286_TRAP_GATE: case X86_SEL_TYPE_SYS_TASK_GATE: rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc, pDesc->Gen.u2Dpl, pszPresent, pszHyper); break; case X86_SEL_TYPE_SYS_386_TSS_AVAIL: case X86_SEL_TYPE_SYS_386_TSS_BUSY: case X86_SEL_TYPE_SYS_LDT: { const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB"; const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " "; const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " "; uint64_t u64Base = X86DESC64_BASE(pDesc); uint32_t cbLimit = X86DESC_LIMIT_G(pDesc); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit, pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig, pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1), pszHyper); if (pfDblEntry) *pfDblEntry = true; break; } case X86_SEL_TYPE_SYS_386_CALL_GATE: { unsigned cParams = pDesc->au8[4] & 0x1f; const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC"; RTSEL sel = pDesc->au16[1]; uint64_t off = pDesc->au16[0] | ((uint64_t)pDesc->au16[3] << 16) | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32); char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off, pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : ""); RTStrFree(pszSymbol); if (pfDblEntry) *pfDblEntry = true; break; } case X86_SEL_TYPE_SYS_386_INT_GATE: case X86_SEL_TYPE_SYS_386_TRAP_GATE: { RTSEL sel = pDesc->Gate.u16Sel; uint64_t off = pDesc->Gate.u16OffsetLow | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16) | ((uint64_t)pDesc->Gate.u32OffsetTop << 32); char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s%s\n", iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off, pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper, pszSymbol ? pszSymbol : ""); RTStrFree(pszSymbol); if (pfDblEntry) *pfDblEntry = true; break; } /* impossible, just it's necessary to keep gcc happy. */ default: return VINF_SUCCESS; } } return rc; } /** * Worker function that displays one descriptor entry (GDT, LDT, IDT). * * @returns pfnPrintf status code. * @param pCmdHlp The DBGC command helpers. * @param pDesc The descriptor to display. * @param iEntry The descriptor entry number. * @param fHyper Whether the selector belongs to the hypervisor or not. * @param hAs Address space to use when resolving symbols. */ static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs) { int rc; const char *pszHyper = fHyper ? " HYPER" : ""; const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP"; if (pDesc->Gen.u1DescType) { static const char * const s_apszTypes[] = { "DataRO", /* 0 Read-Only */ "DataRO", /* 1 Read-Only - Accessed */ "DataRW", /* 2 Read/Write */ "DataRW", /* 3 Read/Write - Accessed */ "DownRO", /* 4 Expand-down, Read-Only */ "DownRO", /* 5 Expand-down, Read-Only - Accessed */ "DownRW", /* 6 Expand-down, Read/Write */ "DownRW", /* 7 Expand-down, Read/Write - Accessed */ "CodeEO", /* 8 Execute-Only */ "CodeEO", /* 9 Execute-Only - Accessed */ "CodeER", /* A Execute/Readable */ "CodeER", /* B Execute/Readable - Accessed */ "ConfE0", /* C Conforming, Execute-Only */ "ConfE0", /* D Conforming, Execute-Only - Accessed */ "ConfER", /* E Conforming, Execute/Readable */ "ConfER" /* F Conforming, Execute/Readable - Accessed */ }; const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA"; const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " "; const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " "; uint32_t u32Base = pDesc->Gen.u16BaseLow | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16) | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24); uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16); if (pDesc->Gen.u1Granularity) cbLimit <<= GUEST_PAGE_SHIFT; rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit, pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig, pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper); } else { static const char * const s_apszTypes[] = { "Ill-0 ", /* 0 0000 Reserved (Illegal) */ "Tss16A", /* 1 0001 Available 16-bit TSS */ "LDT ", /* 2 0010 LDT */ "Tss16B", /* 3 0011 Busy 16-bit TSS */ "Call16", /* 4 0100 16-bit Call Gate */ "TaskG ", /* 5 0101 Task Gate */ "Int16 ", /* 6 0110 16-bit Interrupt Gate */ "Trap16", /* 7 0111 16-bit Trap Gate */ "Ill-8 ", /* 8 1000 Reserved (Illegal) */ "Tss32A", /* 9 1001 Available 32-bit TSS */ "Ill-A ", /* A 1010 Reserved (Illegal) */ "Tss32B", /* B 1011 Busy 32-bit TSS */ "Call32", /* C 1100 32-bit Call Gate */ "Ill-D ", /* D 1101 Reserved (Illegal) */ "Int32 ", /* E 1110 32-bit Interrupt Gate */ "Trap32" /* F 1111 32-bit Trap Gate */ }; switch (pDesc->Gen.u4Type) { /* raw */ case X86_SEL_TYPE_SYS_UNDEFINED: case X86_SEL_TYPE_SYS_UNDEFINED2: case X86_SEL_TYPE_SYS_UNDEFINED4: case X86_SEL_TYPE_SYS_UNDEFINED3: rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc, pDesc->Gen.u2Dpl, pszPresent, pszHyper); break; case X86_SEL_TYPE_SYS_286_TSS_AVAIL: case X86_SEL_TYPE_SYS_386_TSS_AVAIL: case X86_SEL_TYPE_SYS_286_TSS_BUSY: case X86_SEL_TYPE_SYS_386_TSS_BUSY: case X86_SEL_TYPE_SYS_LDT: { const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " "; const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB"; const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " "; uint32_t u32Base = pDesc->Gen.u16BaseLow | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16) | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24); uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16); if (pDesc->Gen.u1Granularity) cbLimit <<= GUEST_PAGE_SHIFT; rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit, pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig, pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1), pszHyper); break; } case X86_SEL_TYPE_SYS_TASK_GATE: { rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1], pDesc->Gen.u2Dpl, pszPresent, pszHyper); break; } case X86_SEL_TYPE_SYS_286_CALL_GATE: case X86_SEL_TYPE_SYS_386_CALL_GATE: { unsigned cParams = pDesc->au8[4] & 0x1f; const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC"; RTSEL sel = pDesc->au16[1]; uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16); char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off, pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : ""); RTStrFree(pszSymbol); break; } case X86_SEL_TYPE_SYS_286_INT_GATE: case X86_SEL_TYPE_SYS_386_INT_GATE: case X86_SEL_TYPE_SYS_286_TRAP_GATE: case X86_SEL_TYPE_SYS_386_TRAP_GATE: { RTSEL sel = pDesc->au16[1]; uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16); char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s%s\n", iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off, pDesc->Gen.u2Dpl, pszPresent, pszHyper, pszSymbol ? pszSymbol : ""); RTStrFree(pszSymbol); break; } /* impossible, just it's necessary to keep gcc happy. */ default: return VINF_SUCCESS; } } return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.} */ static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Get the CPU mode, check which command variation this is * and fix a default parameter if needed. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu); CPUMMODE enmMode = CPUMGetGuestMode(pVCpu); bool fGdt = pCmd->pszCmd[1] == 'g'; bool fAll = pCmd->pszCmd[2] == 'a'; RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT; DBGCVAR Var; if (!cArgs) { cArgs = 1; paArgs = &Var; Var.enmType = DBGCVAR_TYPE_NUMBER; Var.u.u64Number = fGdt ? 0 : 4; Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS; Var.u64Range = 1024; } /* * Process the arguments. */ for (unsigned i = 0; i < cArgs; i++) { /* * Retrieve the selector value from the argument. * The parser may confuse pointers and numbers if more than one * argument is given, that that into account. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType)); uint64_t u64; unsigned cSels = 1; switch (paArgs[i].enmType) { case DBGCVAR_TYPE_NUMBER: u64 = paArgs[i].u.u64Number; if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE) cSels = RT_MIN(paArgs[i].u64Range, 1024); break; case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break; case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break; case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break; case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break; case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break; default: u64 = _64K; break; } if (u64 < _64K) { unsigned Sel = (RTSEL)u64; /* * Dump the specified range. */ bool fSingle = cSels == 1; while ( cSels-- > 0 && Sel < _64K) { DBGFSELINFO SelInfo; int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo); if (RT_SUCCESS(rc)) { if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE) rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n", Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit); else if ( fAll || fSingle || SelInfo.u.Raw.Gen.u1Present) { if (enmMode == CPUMMODE_PROTECTED) rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL); else { bool fDblSkip = false; rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL, &fDblSkip); if (fDblSkip) Sel += 4; } } } else { rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc); if (!fAll) return rc; } if (RT_FAILURE(rc)) return rc; /* next */ Sel += 8; } } else DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64); } return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.} */ static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Establish some stuff like the current IDTR and CPU mode, * and fix a default parameter. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp); uint16_t cbLimit = 0; uint64_t GCFlat = 0; int rc = DBGFR3RegCpuQueryXdtr(pDbgc->pUVM, pDbgc->idCpu, DBGFREG_IDTR, &GCFlat, &cbLimit); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3RegCpuQueryXdtr/DBGFREG_IDTR"); unsigned cbEntry; switch (enmMode) { case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break; case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break; case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break; default: return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode); } bool fAll = pCmd->pszCmd[2] == 'a'; DBGCVAR Var; if (!cArgs) { cArgs = 1; paArgs = &Var; Var.enmType = DBGCVAR_TYPE_NUMBER; Var.u.u64Number = 0; Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS; Var.u64Range = 256; } /* * Process the arguments. */ for (unsigned i = 0; i < cArgs; i++) { DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER); if (paArgs[i].u.u64Number < 256) { RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number; unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE ? paArgs[i].u64Range : 1; bool fSingle = cInts == 1; while ( cInts-- > 0 && iInt < 256) { /* * Try read it. */ union { RTFAR16 Real; X86DESC Prot; X86DESC64 Long; } u; if (iInt * cbEntry + (cbEntry - 1) > cbLimit) { DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt); if (!fAll && !fSingle) return VINF_SUCCESS; } DBGCVAR AddrVar; AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT; AddrVar.u.GCFlat = GCFlat + iInt * cbEntry; AddrVar.enmRangeType = DBGCVAR_RANGE_NONE; rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt); /* * Display it. */ switch (enmMode) { case CPUMMODE_REAL: { char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, DBGF_AS_GLOBAL, u.Real.sel, u.Real.off, " (", ")"); rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16%s\n", (unsigned)iInt, u.Real, pszSymbol ? pszSymbol : ""); RTStrFree(pszSymbol); break; } case CPUMMODE_PROTECTED: if (fAll || fSingle || u.Prot.Gen.u1Present) rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false, DBGF_AS_GLOBAL); break; case CPUMMODE_LONG: if (fAll || fSingle || u.Long.Gen.u1Present) rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, DBGF_AS_GLOBAL, NULL); break; default: break; /* to shut up gcc */ } if (RT_FAILURE(rc)) return rc; /* next */ iInt++; } } else DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number); } return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, * The 'da'\, 'dq'\, 'dqs'\, 'dd'\, 'dds'\, 'dw'\, 'db'\, 'dp'\, 'dps'\, * and 'du' commands.} */ static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1); if (cArgs == 1) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); #define DBGC_DUMP_MEM_F_ASCII RT_BIT_32(31) #define DBGC_DUMP_MEM_F_UNICODE RT_BIT_32(30) #define DBGC_DUMP_MEM_F_FAR RT_BIT_32(29) #define DBGC_DUMP_MEM_F_SYMBOLS RT_BIT_32(28) #define DBGC_DUMP_MEM_F_SIZE UINT32_C(0x0000ffff) /* * Figure out the element size. */ unsigned cbElement; bool fAscii = false; bool fUnicode = false; bool fFar = false; bool fSymbols = pCmd->pszCmd[1] && pCmd->pszCmd[2] == 's'; switch (pCmd->pszCmd[1]) { default: case 'b': cbElement = 1; break; case 'w': cbElement = 2; break; case 'd': cbElement = 4; break; case 'q': cbElement = 8; break; case 'a': cbElement = 1; fAscii = true; break; case 'F': cbElement = 4; fFar = true; break; case 'p': cbElement = DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu) ? 8 : 4; break; case 'u': cbElement = 2; fUnicode = true; break; case '\0': fAscii = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_ASCII); fSymbols = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SYMBOLS); fUnicode = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_UNICODE); fFar = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_FAR); cbElement = pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SIZE; if (!cbElement) cbElement = 1; break; } uint32_t const cbDumpElement = cbElement | (fSymbols ? DBGC_DUMP_MEM_F_SYMBOLS : 0) | (fFar ? DBGC_DUMP_MEM_F_FAR : 0) | (fUnicode ? DBGC_DUMP_MEM_F_UNICODE : 0) | (fAscii ? DBGC_DUMP_MEM_F_ASCII : 0); pDbgc->cbDumpElement = cbDumpElement; /* * Find address. */ if (!cArgs) pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE; else pDbgc->DumpPos = paArgs[0]; /* * Range. */ switch (pDbgc->DumpPos.enmRangeType) { case DBGCVAR_RANGE_NONE: pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES; pDbgc->DumpPos.u64Range = 0x60; break; case DBGCVAR_RANGE_ELEMENTS: if (pDbgc->DumpPos.u64Range > 2048) return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n"); pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES; pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range; break; case DBGCVAR_RANGE_BYTES: if (pDbgc->DumpPos.u64Range > 65536) return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n"); break; default: return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType); } pDbgc->pLastPos = &pDbgc->DumpPos; /* * Do the dumping. */ int cbLeft = (int)pDbgc->DumpPos.u64Range; uint8_t u16Prev = '\0'; for (;;) { /* * Read memory. */ char achBuffer[16]; size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft); size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft); int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb); if (RT_FAILURE(rc)) { if (u16Prev && u16Prev != '\n') DBGCCmdHlpPrintf(pCmdHlp, "\n"); return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos); } /* * Display it. */ memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb); if (!fAscii && !fUnicode) { DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos); unsigned i; for (i = 0; i < cb; i += cbElement) { const char *pszSpace = " "; if (cbElement <= 2 && i == 8) pszSpace = "-"; switch (cbElement) { case 1: DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]); break; case 2: DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]); break; case 4: if (!fFar) DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]); else DBGCCmdHlpPrintf(pCmdHlp, "%s%04x:%04x:", pszSpace, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]); break; case 8: DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]); break; } if (fSymbols) { /* Try lookup symbol for the above address. */ DBGFADDRESS Addr; rc = VINF_SUCCESS; if (cbElement == 8) DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint64_t *)&achBuffer[i]); else if (!fFar) DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint32_t *)&achBuffer[i]); else rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]); if (RT_SUCCESS(rc)) { RTINTPTR offDisp; RTDBGSYMBOL Symbol; rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, &Addr, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED, &offDisp, &Symbol, NULL); if (RT_SUCCESS(rc)) { if (!offDisp) rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", Symbol.szName); else if (offDisp > 0) rc = DBGCCmdHlpPrintf(pCmdHlp, " %s + %RGv", Symbol.szName, offDisp); else rc = DBGCCmdHlpPrintf(pCmdHlp, " %s - %RGv", Symbol.szName, -offDisp); if ( RT_SUCCESS(rc) && Symbol.cb > 0) DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)", Symbol.cb); } } /* Next line prefix. */ unsigned iNext = i + cbElement; if (iNext < cb) { DBGCVAR TmpPos = pDbgc->DumpPos; DBGCCmdHlpEval(pCmdHlp, &TmpPos, "(%Dv) + %x", &pDbgc->DumpPos, iNext); DBGCCmdHlpPrintf(pCmdHlp, "\n%DV:", &pDbgc->DumpPos); } } } /* Chars column. */ if (cbElement == 1) { while (i++ < sizeof(achBuffer)) DBGCCmdHlpPrintf(pCmdHlp, " "); DBGCCmdHlpPrintf(pCmdHlp, " "); for (i = 0; i < cb; i += cbElement) { uint8_t u8 = *(uint8_t *)&achBuffer[i]; if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32) DBGCCmdHlpPrintf(pCmdHlp, "%c", u8); else DBGCCmdHlpPrintf(pCmdHlp, "."); } } rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); if (RT_FAILURE(rc)) return rc; } else { /* * We print up to the first zero and stop there. * Only printables + '\t' and '\n' are printed. */ if (!u16Prev) DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos); uint16_t u16 = '\0'; unsigned i; for (i = 0; i < cb; i += cbElement) { u16Prev = u16; if (cbElement == 1) u16 = *(uint8_t *)&achBuffer[i]; else u16 = *(uint16_t *)&achBuffer[i]; if ( u16 < 127 && ( (RT_C_IS_PRINT(u16) && u16 >= 32) || u16 == '\t' || u16 == '\n')) DBGCCmdHlpPrintf(pCmdHlp, "%c", (int)u16); else if (!u16) break; else DBGCCmdHlpPrintf(pCmdHlp, "\\x%0*x", cbElement * 2, u16); } if (u16 == '\0') cb = cbLeft = i + 1; if (cbLeft - cb <= 0 && u16Prev != '\n') DBGCCmdHlpPrintf(pCmdHlp, "\n"); } /* * Advance */ cbLeft -= (int)cb; rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb); if (cbLeft <= 0) break; } NOREF(pCmd); return VINF_SUCCESS; } /** * Best guess at which paging mode currently applies to the guest * paging structures. * * This have to come up with a decent answer even when the guest * is in non-paged protected mode or real mode. * * @returns cr3. * @param pDbgc The DBGC instance. * @param pfPAE Where to store the page address extension indicator. * @param pfLME Where to store the long mode enabled indicator. * @param pfPSE Where to store the page size extension indicator. * @param pfPGE Where to store the page global enabled indicator. * @param pfNXE Where to store the no-execution enabled indicator. */ static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE) { #if defined(VBOX_VMM_TARGET_ARMV8) AssertReleaseFailed(); RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE); *pfPAE = *pfLME = *pfPSE = *pfPGE = *pfNXE = false; return ~(RTGCPHYS)0; #else PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu); RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu); *pfPSE = !!(cr4 & X86_CR4_PSE); *pfPGE = !!(cr4 & X86_CR4_PGE); if (cr4 & X86_CR4_PAE) { *pfPSE = true; *pfPAE = true; } else *pfPAE = false; *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG; *pfNXE = false; /* GUEST64 GUESTNX */ return CPUMGetGuestCR3(pVCpu); #endif } /** * Determine the shadow paging mode. * * @returns cr3. * @param pDbgc The DBGC instance. * @param pfPAE Where to store the page address extension indicator. * @param pfLME Where to store the long mode enabled indicator. * @param pfPSE Where to store the page size extension indicator. * @param pfPGE Where to store the page global enabled indicator. * @param pfNXE Where to store the no-execution enabled indicator. */ static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE) { #if defined(VBOX_VMM_TARGET_ARMV8) RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE); AssertReleaseFailed(); *pfPAE = *pfLME = *pfPSE = *pfPGE = *pfNXE = false; return ~(RTHCPHYS)0; #else PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu); *pfPSE = true; *pfPGE = false; switch (PGMGetShadowMode(pVCpu)) { default: case PGMMODE_32_BIT: *pfPAE = *pfLME = *pfNXE = false; break; case PGMMODE_PAE: *pfLME = *pfNXE = false; *pfPAE = true; break; case PGMMODE_PAE_NX: *pfLME = false; *pfPAE = *pfNXE = true; break; case PGMMODE_AMD64: *pfNXE = false; *pfPAE = *pfLME = true; break; case PGMMODE_AMD64_NX: *pfPAE = *pfLME = *pfNXE = true; break; } return PGMGetHyperCR3(pVCpu); #endif } /** * @callback_method_impl{FNDBGCCMD, * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.} */ static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1); if (cArgs == 1 && pCmd->pszCmd[3] == 'a') DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); if (cArgs == 1 && pCmd->pszCmd[3] != 'a') DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[0].enmType)); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Guest or shadow page directories? Get the paging parameters. */ bool fGuest = pCmd->pszCmd[3] != 'h'; if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a') fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType); bool fPAE, fLME, fPSE, fPGE, fNXE; uint64_t cr3 = fGuest ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE) : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE); const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE); /* * Setup default argument if none was specified. * Fix address / index confusion. */ DBGCVAR VarDefault; if (!cArgs) { if (pCmd->pszCmd[3] == 'a') { if (fLME || fPAE) return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n"); if (fGuest) DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3); else DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3); } else DBGCVAR_INIT_GC_FLAT(&VarDefault, 0); paArgs = &VarDefault; //cArgs = 1; Unused } else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER) { /* If it's a number (not an address), it's an index, so convert it to an address. */ Assert(pCmd->pszCmd[3] != 'a'); VarDefault = paArgs[0]; if (fPAE) return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n"); if (VarDefault.u.u64Number >= GUEST_PAGE_SIZE / cbEntry) return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", GUEST_PAGE_SIZE / cbEntry - 1); VarDefault.u.u64Number <<= X86_PD_SHIFT; VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT; paArgs = &VarDefault; } /* * Locate the PDE to start displaying at. * * The 'dpda' command takes the address of a PDE, while the others are guest * virtual address which PDEs should be displayed. So, 'dpda' is rather simple * while the others require us to do all the tedious walking thru the paging * hierarchy to find the intended PDE. */ unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */ DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */ DBGCVAR VarPDEAddr; /* The address of the current PDE. */ unsigned cEntries; /* The number of entries to display. */ unsigned cEntriesMax; /* The max number of entries to display. */ int rc; if (pCmd->pszCmd[3] == 'a') { VarPDEAddr = paArgs[0]; switch (VarPDEAddr.enmRangeType) { case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break; case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break; default: cEntries = 10; break; } cEntriesMax = GUEST_PAGE_SIZE / cbEntry; } else { /* * Determine the range. */ switch (paArgs[0].enmRangeType) { case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / GUEST_PAGE_SIZE; break; case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break; default: cEntries = 10; break; } /* * Normalize the input address, it must be a flat GC address. */ rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]); if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT) { VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat; VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT; } if (fPAE) VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1); else VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1); /* * Do the paging walk until we get to the page directory. */ DBGCVAR VarCur; if (fGuest) DBGCVAR_INIT_GC_PHYS(&VarCur, cr3); else DBGCVAR_INIT_HC_PHYS(&VarCur, cr3); if (fLME) { /* Page Map Level 4 Lookup. */ /* Check if it's a valid address first? */ VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK; VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E); X86PML4E Pml4e; rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur); if (!Pml4e.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr); VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK; Assert(fPAE); } if (fPAE) { /* Page directory pointer table. */ X86PDPE Pdpe; VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe); rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur); if (!Pdpe.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr); iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; VarPDEAddr = VarCur; VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK; VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE); } else { /* 32-bit legacy - CR3 == page directory. */ iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK; VarPDEAddr = VarCur; VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE); } cEntriesMax = (GUEST_PAGE_SIZE - iEntry) / cbEntry; } /* adjust cEntries */ cEntries = RT_MAX(1, cEntries); cEntries = RT_MIN(cEntries, cEntriesMax); /* * The display loop. */ DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n", &VarPDEAddr, iEntry); do { /* * Read. */ X86PDEPAE Pde; Pde.u = 0; rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr); /* * Display. */ if (iEntry != ~0U) { DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr); iEntry++; } if (fPSE && Pde.b.u1Size) DBGCCmdHlpPrintf(pCmdHlp, fPAE ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s" : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s", Pde.u, Pde.u & X86_PDE_PAE_PG_MASK, Pde.b.u1Present ? "p " : "np", Pde.b.u1Write ? "w" : "r", Pde.b.u1User ? "u" : "s", Pde.b.u1Accessed ? "a " : "na", Pde.b.u1Dirty ? "d " : "nd", Pde.b.u3Available, Pde.b.u1Global ? (fPGE ? "g" : "G") : " ", Pde.b.u1WriteThru ? "pwt" : " ", Pde.b.u1CacheDisable ? "pcd" : " ", Pde.b.u1PAT ? "pat" : "", Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " "); else DBGCCmdHlpPrintf(pCmdHlp, fPAE ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s" : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s", Pde.u, Pde.u & X86_PDE_PAE_PG_MASK, Pde.n.u1Present ? "p " : "np", Pde.n.u1Write ? "w" : "r", Pde.n.u1User ? "u" : "s", Pde.n.u1Accessed ? "a " : "na", Pde.u & RT_BIT(6) ? "6 " : " ", Pde.n.u3Available, Pde.u & RT_BIT(8) ? "8" : " ", Pde.n.u1WriteThru ? "pwt" : " ", Pde.n.u1CacheDisable ? "pcd" : " ", Pde.u & RT_BIT(7) ? "7" : "", Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "); if (Pde.u & UINT64_C(0x7fff000000000000)) DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000))); rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); if (RT_FAILURE(rc)) return rc; /* * Advance. */ VarPDEAddr.u.u64Number += cbEntry; if (iEntry != ~0U) VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT); } while (cEntries-- > 0); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.} */ static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]); int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]); if (RT_FAILURE(rc1)) return rc1; NOREF(pCmd); NOREF(paArgs); NOREF(cArgs); return rc2; } /** * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.} */ static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Figure the context and base flags. */ uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3; if (pCmd->pszCmd[0] == 'm') fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW; else if (pCmd->pszCmd[3] == '\0') fFlags |= DBGFPGDMP_FLAGS_GUEST; else if (pCmd->pszCmd[3] == 'g') fFlags |= DBGFPGDMP_FLAGS_GUEST; else if (pCmd->pszCmd[3] == 'h') fFlags |= DBGFPGDMP_FLAGS_SHADOW; else AssertFailed(); if (pDbgc->cPagingHierarchyDumps == 0) fFlags |= DBGFPGDMP_FLAGS_HEADER; pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42; /* * Get the range. */ PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos; RTGCPTR GCPtrFirst = NIL_RTGCPTR; int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc); uint64_t cbRange; rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, GUEST_PAGE_SIZE, GUEST_PAGE_SIZE * 8, &cbRange); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc); RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst; if (cbRange >= GCPtrLast) GCPtrLast = RTGCPTR_MAX; else if (!cbRange) GCPtrLast = GCPtrFirst; else GCPtrLast = GCPtrFirst + cbRange - 1; /* * Do we have a CR3? */ uint64_t cr3 = 0; if (cArgs > 1) { if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please."); if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER) return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]); cr3 = paArgs[1].u.u64Number; } else fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3; /* * Do we have a mode? */ if (cArgs > 2) { if (paArgs[2].enmType != DBGCVAR_TYPE_STRING) return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]); static const struct MODETOFLAGS { const char *pszName; uint32_t fFlags; } s_aModeToFlags[] = { { "ept", DBGFPGDMP_FLAGS_EPT }, { "legacy", 0 }, { "legacy-np", DBGFPGDMP_FLAGS_NP }, { "pse", DBGFPGDMP_FLAGS_PSE }, { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP }, { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE }, { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP }, { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE }, { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }, { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME }, { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP }, { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE }, { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP } }; int i = RT_ELEMENTS(s_aModeToFlags); while (i-- > 0) if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString)) { fFlags |= s_aModeToFlags[i].fFlags; break; } if (i < 0) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString); } else fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE; /* * Call the worker. */ rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/, DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp)); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.} */ static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1); if (pCmd->pszCmd[3] == 'a') DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); else DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[0].enmType)); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Guest or shadow page tables? Get the paging parameters. */ bool fGuest = pCmd->pszCmd[3] != 'h'; if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a') fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType); bool fPAE, fLME, fPSE, fPGE, fNXE; uint64_t cr3 = fGuest ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE) : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE); const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE); /* * Locate the PTE to start displaying at. * * The 'dpta' command takes the address of a PTE, while the others are guest * virtual address which PTEs should be displayed. So, 'pdta' is rather simple * while the others require us to do all the tedious walking thru the paging * hierarchy to find the intended PTE. */ unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */ DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */ DBGCVAR VarPTEAddr; /* The address of the current PTE. */ unsigned cEntries; /* The number of entries to display. */ unsigned cEntriesMax; /* The max number of entries to display. */ int rc; if (pCmd->pszCmd[3] == 'a') { VarPTEAddr = paArgs[0]; switch (VarPTEAddr.enmRangeType) { case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break; case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break; default: cEntries = 10; break; } cEntriesMax = GUEST_PAGE_SIZE / cbEntry; } else { /* * Determine the range. */ switch (paArgs[0].enmRangeType) { case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / GUEST_PAGE_SIZE; break; case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break; default: cEntries = 10; break; } /* * Normalize the input address, it must be a flat GC address. */ rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]); if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT) { VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat; VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT; } VarGCPtr.u.GCFlat &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK; /* * Do the paging walk until we get to the page table. */ DBGCVAR VarCur; if (fGuest) DBGCVAR_INIT_GC_PHYS(&VarCur, cr3); else DBGCVAR_INIT_HC_PHYS(&VarCur, cr3); if (fLME) { /* Page Map Level 4 Lookup. */ /* Check if it's a valid address first? */ VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK; VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E); X86PML4E Pml4e; rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur); if (!Pml4e.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr); VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK; Assert(fPAE); } if (fPAE) { /* Page directory pointer table. */ X86PDPE Pdpe; VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe); rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur); if (!Pdpe.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr); VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK; /* Page directory (PAE). */ X86PDEPAE Pde; VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde); rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur); if (!Pde.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr); if (fPSE && Pde.n.u1Size) return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr); iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK; VarPTEAddr = VarCur; VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK; VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE); } else { /* Page directory (legacy). */ X86PDE Pde; VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde); rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur); if (!Pde.n.u1Present) return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr); if (fPSE && Pde.n.u1Size) return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr); iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK; VarPTEAddr = VarCur; VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK; VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE); } cEntriesMax = (GUEST_PAGE_SIZE - iEntry) / cbEntry; } /* adjust cEntries */ cEntries = RT_MAX(1, cEntries); cEntries = RT_MIN(cEntries, cEntriesMax); /* * The display loop. */ DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n", &VarPTEAddr, &VarGCPtr, iEntry); do { /* * Read. */ X86PTEPAE Pte; Pte.u = 0; rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr); /* * Display. */ if (iEntry != ~0U) { DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr); iEntry++; } DBGCCmdHlpPrintf(pCmdHlp, fPAE ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s" : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s", Pte.u, Pte.u & X86_PTE_PAE_PG_MASK, Pte.n.u1Present ? "p " : "np", Pte.n.u1Write ? "w" : "r", Pte.n.u1User ? "u" : "s", Pte.n.u1Accessed ? "a " : "na", Pte.n.u1Dirty ? "d " : "nd", Pte.n.u3Available, Pte.n.u1Global ? (fPGE ? "g" : "G") : " ", Pte.n.u1WriteThru ? "pwt" : " ", Pte.n.u1CacheDisable ? "pcd" : " ", Pte.n.u1PAT ? "pat" : " ", Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " " ); if (Pte.u & UINT64_C(0x7fff000000000000)) DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000))); rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); if (RT_FAILURE(rc)) return rc; /* * Advance. */ VarPTEAddr.u.u64Number += cbEntry; if (iEntry != ~0U) VarGCPtr.u.GCFlat += GUEST_PAGE_SIZE; } while (cEntries-- > 0); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'dptb' command.} */ static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]); int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]); if (RT_FAILURE(rc1)) return rc1; NOREF(pCmd); NOREF(cArgs); return rc2; } /** * @callback_method_impl{FNDBGCCMD, The 'dt' command.} */ static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc; DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1); if (cArgs == 1) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL); /* * Check if the command indicates the type. */ enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined; if (!strcmp(pCmd->pszCmd, "dt16")) enmTssType = kTss16; else if (!strcmp(pCmd->pszCmd, "dt32")) enmTssType = kTss32; else if (!strcmp(pCmd->pszCmd, "dt64")) enmTssType = kTss64; /* * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer. */ uint32_t SelTss = UINT32_MAX; DBGCVAR VarTssAddr; if (cArgs == 0) { /** @todo consider querying the hidden bits instead (missing API). */ uint16_t SelTR; rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc); DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0); SelTss = SelTR; } else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER) { if (paArgs[0].u.u64Number < 0xffff) DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0); else { if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n"); DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number); if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES) { VarTssAddr.enmRangeType = paArgs[0].enmRangeType; VarTssAddr.u64Range = paArgs[0].u64Range; } } } else VarTssAddr = paArgs[0]; /* * Deal with TSS:ign by means of the GDT. */ if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR) { SelTss = VarTssAddr.u.GCFar.sel; DBGFSELINFO SelInfo; rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n", pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc); if (SelInfo.u.Raw.Gen.u1DescType) return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel); switch (SelInfo.u.Raw.Gen.u4Type) { case X86_SEL_TYPE_SYS_286_TSS_BUSY: case X86_SEL_TYPE_SYS_286_TSS_AVAIL: if (enmTssType == kTssToBeDetermined) enmTssType = kTss16; break; case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */ case X86_SEL_TYPE_SYS_386_TSS_AVAIL: if (enmTssType == kTssToBeDetermined) enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32; break; default: return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n", VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type); } DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase); DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit)); } /* * Determine the TSS type if none is currently given. */ if (enmTssType == kTssToBeDetermined) { if ( VarTssAddr.u64Range > 0 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4) enmTssType = kTss16; else { uint64_t uEfer; rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer); if ( RT_FAILURE(rc) || !(uEfer & MSR_K6_EFER_LMA) ) enmTssType = kTss32; else enmTssType = kTss64; } } /* * Figure the min/max sizes. * ASSUMES max TSS size is 64 KB. */ uint32_t cbTssMin; uint32_t cbTssMax; switch (enmTssType) { case kTss16: cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1; break; case kTss32: cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1; cbTssMax = _64K; break; case kTss64: cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1; cbTssMax = _64K; break; default: AssertFailedReturn(VERR_INTERNAL_ERROR); } uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0; if (cbTss == 0) cbTss = cbTssMin; else if (cbTss < cbTssMin) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n", cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range); else if (cbTss > cbTssMax) cbTss = cbTssMax; DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss); /* * Read the TSS into a temporary buffer. */ uint8_t abBuf[_64K]; size_t cbTssRead; rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc); if (cbTssRead < cbTssMin) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n", cbTssRead, cbTssMin); if (cbTssRead < cbTss) memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead); /* * Format the TSS. */ uint16_t offIoBitmap; switch (enmTssType) { case kTss16: { PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0]; if (SelTss != UINT32_MAX) DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr); else DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr); DBGCCmdHlpPrintf(pCmdHlp, "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n" "ip=%04x sp=%04x bp=%04x\n" "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n" "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n" "prev=%04x ldtr=%04x\n" , pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di, pTss->ip, pTss->sp, pTss->bp, pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags, pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2, pTss->selPrev, pTss->selLdt); if (pTss->cs != 0) pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip); offIoBitmap = 0; break; } case kTss32: { PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0]; if (SelTss != UINT32_MAX) DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin); else DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin); DBGCCmdHlpPrintf(pCmdHlp, "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n" "eip=%08x esp=%08x ebp=%08x\n" "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n" "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n" "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n" , pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi, pTss->eip, pTss->esp, pTss->ebp, pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags, pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2, pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap); if (pTss->cs != 0) pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip); offIoBitmap = pTss->offIoBitmap; break; } case kTss64: { PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0]; if (SelTss != UINT32_MAX) DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin); else DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin); DBGCCmdHlpPrintf(pCmdHlp, "rsp0=%016RX64 rsp1=%016RX64 rsp2=%016RX64\n" "ist1=%016RX64 ist2=%016RX64\n" "ist3=%016RX64 ist4=%016RX64\n" "ist5=%016RX64 ist6=%016RX64\n" "ist7=%016RX64 iomap=%04x\n" , pTss->rsp0, pTss->rsp1, pTss->rsp2, pTss->ist1, pTss->ist2, pTss->ist3, pTss->ist4, pTss->ist5, pTss->ist6, pTss->ist7, pTss->offIoBitmap); offIoBitmap = pTss->offIoBitmap; break; } default: AssertFailedReturn(VERR_INTERNAL_ERROR); } /* * Dump the interrupt redirection bitmap. */ if (enmTssType != kTss16) { if ( offIoBitmap > cbTssMin && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */ { if (offIoBitmap - cbTssMin >= 32) { DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n"); uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32]; uint32_t iStart = 0; bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */ for (uint32_t i = 0; i < 256; i++) { bool fThis = ASMBitTest(pbIntRedirBitmap, i); if (fThis != fPrev) { DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected"); fPrev = fThis; iStart = i; } } DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected"); } else DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n", offIoBitmap - cbTssMin, offIoBitmap - cbTssMin); } else if (offIoBitmap > 0) DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap); else DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n"); } /* * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x68 * (that applies to both 32-bit and 64-bit TSSs since their size is the same). * Note that there is always one padding byte that is not technically part of the bitmap * and "must have all bits set". It's not clear what happens when it doesn't. All ports * not covered by the bitmap are considered to be not accessible. */ if (enmTssType != kTss16) { if (offIoBitmap < cbTss && offIoBitmap >= 0x68) { uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K); DBGCVAR VarAddr; DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap); DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts); uint8_t const *pbIoBitmap = &abBuf[offIoBitmap]; uint32_t iStart = 0; bool fPrev = ASMBitTest(pbIoBitmap, 0); uint32_t cLine = 0; for (uint32_t i = 1; i < _64K; i++) { bool fThis = i < cPorts ? ASMBitTest(pbIoBitmap, i) : true; if (fThis != fPrev) { cLine++; DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1, fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " "); fPrev = fThis; iStart = i; } } DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK"); } else if (offIoBitmap > 0) DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap); else DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n"); } return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dti' command dumper callback.} */ static DECLCALLBACK(int) dbgcCmdDumpTypeInfoCallback(uint32_t off, const char *pszField, uint32_t iLvl, const char *pszType, uint32_t fTypeFlags, uint32_t cElements, void *pvUser) { PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser; /* Pad with spaces to match the level. */ for (uint32_t i = 0; i < iLvl; i++) DBGCCmdHlpPrintf(pCmdHlp, " "); size_t cbWritten = 0; DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField); while (cbWritten < 32) { /* Fill with spaces to get proper aligning. */ DBGCCmdHlpPrintf(pCmdHlp, " "); cbWritten++; } DBGCCmdHlpPrintf(pCmdHlp, ": "); if (fTypeFlags & DBGFTYPEREGMEMBER_F_ARRAY) DBGCCmdHlpPrintf(pCmdHlp, "[%u] ", cElements); if (fTypeFlags & DBGFTYPEREGMEMBER_F_POINTER) DBGCCmdHlpPrintf(pCmdHlp, "Ptr "); DBGCCmdHlpPrintf(pCmdHlp, "%s\n", pszType); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'dti' command.} */ static DECLCALLBACK(int) dbgcCmdDumpTypeInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING); if (cArgs == 2) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[1].enmType == DBGCVAR_TYPE_NUMBER); uint32_t cLvlMax = cArgs == 2 ? (uint32_t)paArgs[1].u.u64Number : UINT32_MAX; return DBGFR3TypeDumpEx(pUVM, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax, dbgcCmdDumpTypeInfoCallback, pCmdHlp); } static void dbgcCmdDumpTypedValCallbackBuiltin(PDBGCCMDHLP pCmdHlp, DBGFTYPEBUILTIN enmType, size_t cbType, PDBGFTYPEVALBUF pValBuf) { switch (enmType) { case DBGFTYPEBUILTIN_UINT8: DBGCCmdHlpPrintf(pCmdHlp, "%RU8", pValBuf->u8); break; case DBGFTYPEBUILTIN_INT8: DBGCCmdHlpPrintf(pCmdHlp, "%RI8", pValBuf->i8); break; case DBGFTYPEBUILTIN_UINT16: DBGCCmdHlpPrintf(pCmdHlp, "%RU16", pValBuf->u16); break; case DBGFTYPEBUILTIN_INT16: DBGCCmdHlpPrintf(pCmdHlp, "%RI16", pValBuf->i16); break; case DBGFTYPEBUILTIN_UINT32: DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->u32); break; case DBGFTYPEBUILTIN_INT32: DBGCCmdHlpPrintf(pCmdHlp, "%RI32", pValBuf->i32); break; case DBGFTYPEBUILTIN_UINT64: DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->u64); break; case DBGFTYPEBUILTIN_INT64: DBGCCmdHlpPrintf(pCmdHlp, "%RI64", pValBuf->i64); break; case DBGFTYPEBUILTIN_PTR32: DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr); break; case DBGFTYPEBUILTIN_PTR64: DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr); break; case DBGFTYPEBUILTIN_PTR: if (cbType == sizeof(uint32_t)) DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr); else if (cbType == sizeof(uint64_t)) DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr); else DBGCCmdHlpPrintf(pCmdHlp, "", cbType); break; case DBGFTYPEBUILTIN_SIZE: if (cbType == sizeof(uint32_t)) DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->size); else if (cbType == sizeof(uint64_t)) DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->size); else DBGCCmdHlpPrintf(pCmdHlp, "", cbType); break; case DBGFTYPEBUILTIN_FLOAT32: case DBGFTYPEBUILTIN_FLOAT64: case DBGFTYPEBUILTIN_COMPOUND: default: AssertMsgFailed(("Invalid built-in type: %d\n", enmType)); } } /** * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dtv' command dumper callback.} */ static DECLCALLBACK(int) dbgcCmdDumpTypedValCallback(uint32_t off, const char *pszField, uint32_t iLvl, DBGFTYPEBUILTIN enmType, size_t cbType, PDBGFTYPEVALBUF pValBuf, uint32_t cValBufs, void *pvUser) { PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser; /* Pad with spaces to match the level. */ for (uint32_t i = 0; i < iLvl; i++) DBGCCmdHlpPrintf(pCmdHlp, " "); size_t cbWritten = 0; DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField); while (cbWritten < 32) { /* Fill with spaces to get proper aligning. */ DBGCCmdHlpPrintf(pCmdHlp, " "); cbWritten++; } DBGCCmdHlpPrintf(pCmdHlp, ": "); if (cValBufs > 1) DBGCCmdHlpPrintf(pCmdHlp, "[%u] [ ", cValBufs); for (uint32_t i = 0; i < cValBufs; i++) { dbgcCmdDumpTypedValCallbackBuiltin(pCmdHlp, enmType, cbType, pValBuf); if (i < cValBufs - 1) DBGCCmdHlpPrintf(pCmdHlp, " , "); pValBuf++; } if (cValBufs > 1) DBGCCmdHlpPrintf(pCmdHlp, " ]"); DBGCCmdHlpPrintf(pCmdHlp, "\n"); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'dtv' command.} */ static DECLCALLBACK(int) dbgcCmdDumpTypedVal(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 2 || cArgs == 3); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISGCPOINTER(paArgs[1].enmType)); if (cArgs == 3) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[2].enmType == DBGCVAR_TYPE_NUMBER); /* * Make DBGF address and fix the range. */ DBGFADDRESS Address; int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[1], &Address); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[1]); uint32_t cLvlMax = cArgs == 3 ? (uint32_t)paArgs[2].u.u64Number : UINT32_MAX; return DBGFR3TypeValDumpEx(pUVM, &Address, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax, dbgcCmdDumpTypedValCallback, pCmdHlp); } /** * @callback_method_impl{FNDBGCCMD, The 'm' command.} */ static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs); } /** * Converts one or more variables into a byte buffer for a * given unit size. * * @returns VBox status codes: * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched. * @retval VERR_INTERNAL_ERROR on bad variable type, bitched. * @retval VINF_SUCCESS on success. * * @param pCmdHlp The command helper callback table. * @param pvBuf The buffer to convert into. * @param pcbBuf The buffer size on input. The size of the result on output. * @param cbUnit The unit size to apply when converting. * The high bit is used to indicate unicode string. * @param paVars The array of variables to convert. * @param cVars The number of variables. */ static int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars) { union { uint8_t *pu8; uint16_t *pu16; uint32_t *pu32; uint64_t *pu64; } u, uEnd; u.pu8 = (uint8_t *)pvBuf; uEnd.pu8 = u.pu8 + *pcbBuf; unsigned i; for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++) { switch (paVars[i].enmType) { case DBGCVAR_TYPE_GC_FAR: case DBGCVAR_TYPE_GC_FLAT: case DBGCVAR_TYPE_GC_PHYS: case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: case DBGCVAR_TYPE_NUMBER: { uint64_t u64 = paVars[i].u.u64Number; switch (cbUnit & 0x1f) { case 1: do { *u.pu8++ = u64; u64 >>= 8; } while (u64); break; case 2: do { *u.pu16++ = u64; u64 >>= 16; } while (u64); break; case 4: *u.pu32++ = u64; u64 >>= 32; if (u64) *u.pu32++ = u64; break; case 8: *u.pu64++ = u64; break; } break; } case DBGCVAR_TYPE_STRING: case DBGCVAR_TYPE_SYMBOL: { const char *psz = paVars[i].u.pszString; size_t cbString = strlen(psz); if (cbUnit & RT_BIT_32(31)) { /* Explode char to unit. */ if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f)) { pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf); return VERR_TOO_MUCH_DATA; } while (*psz) { switch (cbUnit & 0x1f) { case 1: *u.pu8++ = *psz; break; case 2: *u.pu16++ = *psz; break; case 4: *u.pu32++ = *psz; break; case 8: *u.pu64++ = *psz; break; } psz++; } } else { /* Raw copy with zero padding if the size isn't aligned. */ if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8)) { pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf); return VERR_TOO_MUCH_DATA; } size_t cbCopy = cbString & ~(cbUnit - 1); memcpy(u.pu8, psz, cbCopy); u.pu8 += cbCopy; psz += cbCopy; size_t cbReminder = cbString & (cbUnit - 1); if (cbReminder) { memcpy(u.pu8, psz, cbString & (cbUnit - 1)); memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder); u.pu8 += cbUnit; } } break; } default: *pcbBuf = u.pu8 - (uint8_t *)pvBuf; pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR, "i=%d enmType=%d\n", i, paVars[i].enmType); return VERR_INTERNAL_ERROR; } } *pcbBuf = u.pu8 - (uint8_t *)pvBuf; if (i != cVars) { pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf); return VERR_TOO_MUCH_DATA; } return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.} */ static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType)); for (unsigned iArg = 1; iArg < cArgs; iArg++) DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Figure out the element size. */ unsigned cbElement; switch (pCmd->pszCmd[1]) { default: case 'b': cbElement = 1; break; case 'w': cbElement = 2; break; case 'd': cbElement = 4; break; case 'q': cbElement = 8; break; } /* * Do setting. */ DBGCVAR Addr = paArgs[0]; for (unsigned iArg = 1;;) { size_t cbWritten; int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr); if (cbWritten != cbElement) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement); /* advance. */ iArg++; if (iArg >= cArgs) break; rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]); } return VINF_SUCCESS; } /** * Executes the search. * * @returns VBox status code. * @param pCmdHlp The command helpers. * @param pUVM The user mode VM handle. * @param pAddress The address to start searching from. (undefined on output) * @param cbRange The address range to search. Must not wrap. * @param pabBytes The byte pattern to search for. * @param cbBytes The size of the pattern. * @param cbUnit The search unit. * @param cMaxHits The max number of hits. * @param pResult Where to store the result if it's a function invocation. */ static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange, const uint8_t *pabBytes, uint32_t cbBytes, uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Do the search. */ uint64_t cHits = 0; for (;;) { /* search */ DBGFADDRESS HitAddress; int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress); if (RT_FAILURE(rc)) { if (rc != VERR_DBGF_MEM_NOT_FOUND) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n"); /* update the current address so we can save it (later). */ pAddress->off += cbRange; pAddress->FlatPtr += cbRange; cbRange = 0; break; } /* report result */ DBGCVAR VarCur; rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n"); if (!pResult) pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur); else DBGCVAR_ASSIGN(pResult, &VarCur); /* advance */ cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr; *pAddress = HitAddress; pAddress->FlatPtr += cbBytes; pAddress->off += cbBytes; if (cbRange <= cbBytes) { cbRange = 0; break; } cbRange -= cbBytes; if (++cHits >= cMaxHits) { /// @todo save the search. break; } } /* * Save the search so we can resume it... */ if (pDbgc->abSearch != pabBytes) { memcpy(pDbgc->abSearch, pabBytes, cbBytes); pDbgc->cbSearch = cbBytes; pDbgc->cbSearchUnit = cbUnit; } pDbgc->cMaxSearchHits = cMaxHits; pDbgc->SearchAddr = *pAddress; pDbgc->cbSearchRange = cbRange; return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED; } /** * Resumes the previous search. * * @returns VBox status code. * @param pCmdHlp Pointer to the command helper functions. * @param pUVM The user mode VM handle. * @param pResult Where to store the result of a function invocation. */ static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Make sure there is a previous command. */ if (!pDbgc->cbSearch) { DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n"); return VERR_DBGC_COMMAND_FAILED; } /* * Make range and address adjustments. */ DBGFADDRESS Address = pDbgc->SearchAddr; if (Address.FlatPtr == ~(RTGCUINTPTR)0) { Address.FlatPtr -= Address.off; Address.off = 0; } RTGCUINTPTR cbRange = pDbgc->cbSearchRange; if (!cbRange) cbRange = ~(RTGCUINTPTR)0; if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr) cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr; return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch, pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult); } /** * Search memory, worker for the 's' and 's?' functions. * * @returns VBox status code. * @param pCmdHlp Pointer to the command helper functions. * @param pUVM The user mode VM handle. * @param pAddress Where to start searching. If no range, search till end of address space. * @param cMaxHits The maximum number of hits. * @param chType The search type. * @param paPatArgs The pattern variable array. * @param cPatArgs Number of pattern variables. * @param pResult Where to store the result of a function invocation. */ static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType, PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult) { if (pResult) DBGCVAR_INIT_GC_FLAT(pResult, 0); /* * Convert the search pattern into bytes and DBGFR3MemScan can deal with. */ uint32_t cbUnit; switch (chType) { case 'a': case 'b': cbUnit = 1; break; case 'u': cbUnit = 2 | RT_BIT_32(31); break; case 'w': cbUnit = 2; break; case 'd': cbUnit = 4; break; case 'q': cbUnit = 8; break; default: return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType); } uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)]; uint32_t cbBytes = sizeof(abBytes); int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs); if (RT_FAILURE(rc)) return VERR_DBGC_COMMAND_FAILED; /* * Make DBGF address and fix the range. */ DBGFADDRESS Address; rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress); RTGCUINTPTR cbRange; switch (pAddress->enmRangeType) { case DBGCVAR_RANGE_BYTES: cbRange = pAddress->u64Range; if (cbRange != pAddress->u64Range) cbRange = ~(RTGCUINTPTR)0; break; case DBGCVAR_RANGE_ELEMENTS: cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit); if ( cbRange != pAddress->u64Range * cbUnit || cbRange < pAddress->u64Range) cbRange = ~(RTGCUINTPTR)0; break; default: cbRange = ~(RTGCUINTPTR)0; break; } if (Address.FlatPtr + cbRange < Address.FlatPtr) cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr; /* * Ok, do it. */ return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult); } /** * @callback_method_impl{FNDBGCCMD, The 's' command.} */ static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { RT_NOREF2(pCmd, paArgs); /* check that the parser did what it's supposed to do. */ //if ( cArgs <= 2 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING) // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n"); /* * Repeat previous search? */ if (cArgs == 0) return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL); /* * Parse arguments. */ return -1; } /** * @callback_method_impl{FNDBGCCMD, The 's?' command.} */ static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* check that the parser did what it's supposed to do. */ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType)); return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL); } /** * Matching function for interrupts event names. * * This parses the interrupt number and length. * * @returns True if match, false if not. * @param pPattern The user specified pattern to match. * @param pszEvtName The event name. * @param pCmdHlp Command helpers for warning about malformed stuff. * @param piFirst Where to return start interrupt number on success. * @param pcInts Where to return the number of interrupts on success. */ static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp, uint8_t *piFirst, uint16_t *pcInts) { /* * Ignore trailing hex digits when comparing with the event base name. */ const char *pszPattern = pPattern->u.pszString; const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX); while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern && RT_C_IS_XDIGIT(pszEnd[-1])) pszEnd -= 1; if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX)) { /* * Parse the index and length. */ if (!*pszEnd) *piFirst = 0; else { int rc = RTStrToUInt8Full(pszEnd, 16, piFirst); if (rc != VINF_SUCCESS) { if (RT_FAILURE(rc)) *piFirst = 0; DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst); } } if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE) *pcInts = 1; else *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1); return true; } return false; } /** * Updates a DBGC event config. * * @returns VINF_SUCCESS or VERR_NO_MEMORY. * @param ppEvtCfg The event configuration entry to update. * @param pszCmd The new command. Leave command alone if NULL. * @param enmEvtState The new event state. * @param fChangeCmdOnly Whether to only update the command. */ static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly) { PDBGCEVTCFG pEvtCfg = *ppEvtCfg; /* * If we've got a command string, update the command too. */ if (pszCmd) { size_t cchCmd = strlen(pszCmd); if ( !cchCmd && ( !fChangeCmdOnly ? enmEvtState == kDbgcEvtState_Disabled : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled)) { /* NULL entry is fine if no command and disabled. */ RTMemFree(pEvtCfg); *ppEvtCfg = NULL; } else { if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd) { RTMemFree(pEvtCfg); *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_UOFFSETOF_DYN(DBGCEVTCFG, szCmd[cchCmd + 1])); if (!pEvtCfg) return VERR_NO_MEMORY; } pEvtCfg->enmState = enmEvtState; pEvtCfg->cchCmd = cchCmd; memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1); } } /* * Update existing or enable new. If NULL and not enabled, we can keep it that way. */ else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled) { if (!pEvtCfg) { *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG)); if (!pEvtCfg) return VERR_NO_MEMORY; pEvtCfg->cchCmd = 0; pEvtCfg->szCmd[0] = '\0'; } pEvtCfg->enmState = enmEvtState; } return VINF_SUCCESS; } /** * Record one settings change for a plain event. * * @returns The new @a cIntCfgs value. * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END * entries. * @param cEventCfgs The current number of entries in @a paEventCfgs. * @param enmType The event to change the settings for. * @param enmEvtState The new event state. * @param iSxEvt Index into the g_aDbgcSxEvents array. * * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and * abUnused[2] are used for iSxEvt. */ static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType, DBGCEVTSTATE enmEvtState, uint16_t iSxEvt) { uint32_t iCfg; for (iCfg = 0; iCfg < cEventCfgs; iCfg++) if (paEventCfgs[iCfg].enmType == enmType) break; if (iCfg == cEventCfgs) { Assert(cEventCfgs < DBGFEVENT_END); paEventCfgs[iCfg].enmType = enmType; cEventCfgs++; } paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled; paEventCfgs[iCfg].abUnused[0] = enmEvtState; paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt; paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8); return cEventCfgs; } /** * Record one or more interrupt event config changes. * * @returns The new @a cIntCfgs value. * @param paIntCfgs Interrupt confiruation array. Must have 256 entries. * @param cIntCfgs The current number of entries in @a paIntCfgs. * @param iInt The interrupt number to start with. * @param cInts The number of interrupts to change. * @param pszName The settings name (hwint/swint). * @param enmEvtState The new event state. * @param bIntOp The new DBGF interrupt state. */ static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts, const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp) { bool const fHwInt = *pszName == 'h'; bIntOp |= (uint8_t)enmEvtState << 4; uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH; uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH; while (cInts > 0) { uint32_t iCfg; for (iCfg = 0; iCfg < cIntCfgs; iCfg++) if (paIntCfgs[iCfg].iInterrupt == iInt) break; if (iCfg == cIntCfgs) break; if (fHwInt) paIntCfgs[iCfg].enmHardState = bHardState; else paIntCfgs[iCfg].enmSoftState = bSoftState; iInt++; cInts--; } while (cInts > 0) { Assert(cIntCfgs < 256); paIntCfgs[cIntCfgs].iInterrupt = iInt; paIntCfgs[cIntCfgs].enmHardState = bHardState; paIntCfgs[cIntCfgs].enmSoftState = bSoftState; cIntCfgs++; iInt++; cInts--; } return cIntCfgs; } /** * Applies event settings changes to DBGC and DBGF. * * @returns VBox status code (fully bitched) * @param pCmdHlp The command helpers. * @param pUVM The user mode VM handle. * @param paIntCfgs Interrupt configuration array. We use the upper 4 * bits of the settings for the DBGCEVTSTATE. This * will be cleared. * @param cIntCfgs Number of interrupt configuration changes. * @param paEventCfgs The generic event configuration array. We use the * abUnused[0] member for the DBGCEVTSTATE, and * abUnused[2:1] for the g_aDbgcSxEvents index. * @param cEventCfgs The number of generic event settings changes. * @param pszCmd The commands to associate with the changed events. * If this is NULL, don't touch the command. * @param fChangeCmdOnly Whether to only change the commands (sx-). */ static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly) { int rc; /* * Apply changes to DBGC. This can only fail with out of memory error. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); if (cIntCfgs) for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++) { DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4); paIntCfgs[iCfg].enmHardState &= 0xf; if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH) { rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly); if (RT_FAILURE(rc)) return rc; } enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4); paIntCfgs[iCfg].enmSoftState &= 0xf; if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH) { rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly); if (RT_FAILURE(rc)) return rc; } } if (cEventCfgs) { for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++) { Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs)); uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]); Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents)); rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly); if (RT_FAILURE(rc)) return rc; } } /* * Apply changes to DBGF. */ if (!fChangeCmdOnly) { if (cIntCfgs) { rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc); } if (cEventCfgs) { rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs); if (RT_FAILURE(rc)) return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc); } } return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.} */ static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Figure out which command this is. */ uint8_t bIntOp; DBGCEVTSTATE enmEvtState; bool fChangeCmdOnly; switch (pCmd->pszCmd[2]) { case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break; case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break; case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break; case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break; default: return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd); } /* * Command option. */ unsigned iArg = 0; const char *pszCmd = NULL; if ( cArgs >= iArg + 2 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING && strcmp(paArgs[iArg].u.pszString, "-c") == 0) { pszCmd = paArgs[iArg + 1].u.pszString; iArg += 2; } if (fChangeCmdOnly && !pszCmd) return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n"); /* * The remaining arguments are event specifiers to which the operation should be applied. */ uint32_t cIntCfgs = 0; DBGFINTERRUPTCONFIG aIntCfgs[256]; uint32_t cEventCfgs = 0; DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END]; for (; iArg < cArgs; iArg++) { DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL); uint32_t cHits = 0; for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++) if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain) { if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName) || ( g_aDbgcSxEvents[iEvt].pszAltNm && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) ) { cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType, enmEvtState, iEvt); cHits++; } } else { Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt); uint8_t iInt; uint16_t cInts; if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts)) { cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName, enmEvtState, bIntOp); cHits++; } } if (!cHits) return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString); } /* * Apply the changes. */ return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly); } /** * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.} */ static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { RT_NOREF1(pCmd); uint32_t cEventCfgs = 0; DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END]; uint32_t cIntCfgs = 0; DBGFINTERRUPTCONFIG aIntCfgs[256]; if (cArgs == 0) { /* * All events. */ for (uint32_t iInt = 0; iInt < 256; iInt++) { aIntCfgs[iInt].iInterrupt = iInt; aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH; aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH; } cIntCfgs = 256; for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++) if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain) { aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType; aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled; aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault; aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt; aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8); cEventCfgs++; } else { uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED) | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4); if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0) for (uint32_t iInt = 0; iInt < 256; iInt++) aIntCfgs[iInt].enmHardState = bState; else for (uint32_t iInt = 0; iInt < 256; iInt++) aIntCfgs[iInt].enmSoftState = bState; } } else { /* * Selected events. */ for (uint32_t iArg = 0; iArg < cArgs; iArg++) { unsigned cHits = 0; for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++) if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain) { if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName) || ( g_aDbgcSxEvents[iEvt].pszAltNm && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) ) { cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType, g_aDbgcSxEvents[iEvt].enmDefault, iEvt); cHits++; } } else { Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt); uint8_t iInt; uint16_t cInts; if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts)) { cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault, g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED); cHits++; } } if (!cHits) return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString); } } /* * Apply the reset changes. */ return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false); } /** * Used during DBGC initialization to configure events with defaults. * * @param pDbgc The DBGC instance. */ void dbgcEventInit(PDBGC pDbgc) { if (pDbgc->pUVM) dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0); } /** * Used during DBGC termination to disable all events. * * @param pDbgc The DBGC instance. */ void dbgcEventTerm(PDBGC pDbgc) { /** @todo need to do more than just reset later. */ if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING) dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0); } static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg) { RT_NOREF1(enmDefault); PDBGCEVTCFG pEvtCfg = *ppEvtCfg; const char *pszState; switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled) { case kDbgcEvtState_Disabled: pszState = "ignore"; break; case kDbgcEvtState_Enabled: pszState = "enabled"; break; case kDbgcEvtState_Notify: pszState = "notify"; break; default: AssertFailed(); pszState = "invalid"; break; } if (pEvtCfg && pEvtCfg->cchCmd > 0) DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd); else DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState); } static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs) { do { PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg]; if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0) pFirstCfg = NULL; unsigned const iFirstCfg = iCfg; iCfg++; while (iCfg < cCfgs) { PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg]; if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0) pCurCfg = NULL; if (pCurCfg != pFirstCfg) { if (!pCurCfg || !pFirstCfg) break; if (pCurCfg->enmState != pFirstCfg->enmState) break; if (pCurCfg->cchCmd != pFirstCfg->cchCmd) break; if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0) break; } iCfg++; } char szName[16]; unsigned cEntries = iCfg - iFirstCfg; if (cEntries == 1) RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg); else RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries); dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]); cCfgs -= cEntries; } while (cCfgs > 0); } /** * @callback_method_impl{FNDBGCCMD, The 'sx' commands.} */ static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { RT_NOREF2(pCmd, pUVM); PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); if (cArgs == 0) { /* * All events. */ for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++) if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain) dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault, &pDbgc->apEventCfgs[iEvt]); else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0) dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault, pDbgc->apHardInts, 0, 256); else dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault, pDbgc->apSoftInts, 0, 256); } else { /* * Selected events. */ for (uint32_t iArg = 0; iArg < cArgs; iArg++) { unsigned cHits = 0; for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++) if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain) { if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName) || ( g_aDbgcSxEvents[iEvt].pszAltNm && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) ) { dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault, &pDbgc->apEventCfgs[iEvt]); cHits++; } } else { Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt); uint8_t iInt; uint16_t cInts; if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts)) { if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0) dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault, pDbgc->apHardInts, iInt, cInts); else dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault, pDbgc->apSoftInts, iInt, cInts); cHits++; } } if (cHits == 0) return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString); } } return VINF_SUCCESS; } /** * List near symbol. * * @returns VBox status code. * @param pCmdHlp Pointer to command helper functions. * @param pUVM The user mode VM handle. * @param pArg Pointer to the address or symbol to lookup. */ static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); RTDBGSYMBOL Symbol; int rc; if (pArg->enmType == DBGCVAR_TYPE_SYMBOL) { /* * Lookup the symbol address. */ rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString); rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName); } else { /* * Convert it to a flat GC address and lookup that address. */ DBGCVAR AddrVar; rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg); RTINTPTR offDisp; DBGFADDRESS Addr; rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat), RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED, &offDisp, &Symbol, NULL); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat); if (!offDisp) rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName); else if (offDisp > 0) rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp); else rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp); if (RT_SUCCESS(rc)) { if (Symbol.cb > 0) rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb); else rc = DBGCCmdHlpPrintf(pCmdHlp, "\n"); } } return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.} */ static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { if (!cArgs) { /* * Current cs:eip symbol. */ DBGCVAR AddrVar; const char *pszFmtExpr = "%%(cs:eip)"; int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr); if (RT_FAILURE(rc)) return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1); return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar); } /** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */ /* * Iterate arguments. */ for (unsigned iArg = 0; iArg < cArgs; iArg++) { int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]); if (RT_FAILURE(rc)) return rc; } NOREF(pCmd); return VINF_SUCCESS; } /** * Matches the module patters against a module name. * * @returns true if matching, otherwise false. * @param pszName The module name. * @param paArgs The module pattern argument list. * @param cArgs Number of arguments. */ static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs) { for (uint32_t i = 0; i < cArgs; i++) if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName)) return true; return false; } /** * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.} */ static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { bool const fMappings = pCmd->pszCmd[2] == 'o'; bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v'; PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Iterate the modules in the current address space and print info about * those matching the input. */ RTDBGAS hAsCurAlias = pDbgc->hDbgAs; for (uint32_t iAs = 0;; iAs++) { RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias); uint32_t cMods = RTDbgAsModuleCount(hAs); for (uint32_t iMod = 0; iMod < cMods; iMod++) { RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod); if (hMod != NIL_RTDBGMOD) { bool const fDeferred = RTDbgModIsDeferred(hMod); bool const fExports = RTDbgModIsExports(hMod); uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod); const char * const pszName = RTDbgModName(hMod); const char * const pszImgFile = RTDbgModImageFile(hMod); const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod); const char * const pszDbgFile = RTDbgModDebugFile(hMod); if ( cArgs == 0 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs)) { /* * Find the mapping with the lower address, preferring a full * image mapping, for the main line. */ RTDBGASMAPINFO aMappings[128]; uint32_t cMappings = RT_ELEMENTS(aMappings); int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/); if (RT_SUCCESS(rc)) { bool fFull = false; RTUINTPTR uMin = RTUINTPTR_MAX; for (uint32_t iMap = 0; iMap < cMappings; iMap++) if ( aMappings[iMap].Address < uMin && ( !fFull || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)) uMin = aMappings[iMap].Address; if (!fVerbose || !pszImgFile) DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, fExports ? " (exports)" : fDeferred ? " (deferred)" : ""); else DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile, fExports ? " (exports)" : fDeferred ? " (deferred)" : ""); if (fVerbose && pszImgFileUsed) DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed); if (fVerbose && pszDbgFile) DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile); if (fVerbose) { char szTmp[64]; RTTIMESPEC TimeSpec; int64_t secTs = 0; if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_TIMESTAMP_SECONDS, &secTs, sizeof(secTs), NULL))) DBGCCmdHlpPrintf(pCmdHlp, " Timestamp: %08RX64 %s\n", secTs, RTTimeSpecToString(RTTimeSpecSetSeconds(&TimeSpec, secTs), szTmp, sizeof(szTmp))); RTUUID Uuid; if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_UUID, &Uuid, sizeof(Uuid), NULL))) DBGCCmdHlpPrintf(pCmdHlp, " UUID: %RTuuid\n", &Uuid); } if (fMappings) { /* sort by address first - not very efficient. */ for (uint32_t i = 0; i + 1 < cMappings; i++) for (uint32_t j = i + 1; j < cMappings; j++) if (aMappings[j].Address < aMappings[i].Address) { RTDBGASMAPINFO Tmp = aMappings[j]; aMappings[j] = aMappings[i]; aMappings[i] = Tmp; } /* print */ if ( cMappings == 1 && aMappings[0].iSeg == NIL_RTDBGSEGIDX && !fDeferred) { for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++) { RTDBGSEGMENT SegInfo; rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo); if (RT_SUCCESS(rc)) { if (SegInfo.uRva != RTUINTPTR_MAX) DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n", (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva), (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName); else DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n", sizeof(RTGCUINTPTR)*2, "noload", (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName); } else DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc); } } else { for (uint32_t iMap = 0; iMap < cMappings; iMap++) if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX) DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv \n", (RTGCUINTPTR)aMappings[iMap].Address, (RTGCUINTPTR)RTDbgModImageSize(hMod)); else if (!fDeferred) { RTDBGSEGMENT SegInfo; rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo); if (RT_FAILURE(rc)) { RT_ZERO(SegInfo); strcpy(SegInfo.szName, "error"); } DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n", (RTGCUINTPTR)aMappings[iMap].Address, (RTGCUINTPTR)SegInfo.cb, aMappings[iMap].iSeg, SegInfo.szName); } else DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n", (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg); } } } else DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n", sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc); /** @todo missing address space API for enumerating the mappings. */ } RTDbgModRelease(hMod); } } RTDbgAsRelease(hAs); /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */ if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL) break; AssertBreak(iAs == 0); hAsCurAlias = DBGF_AS_GLOBAL; } NOREF(pCmd); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'x' (examine symbols) command.} */ static DECLCALLBACK(int) dbgcCmdListSymbols(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmType == DBGCVAR_TYPE_STRING, VERR_DBGC_PARSE_BUG); PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Allowed is either a single * to match everything or the Module!Symbol style * which requiresa ! to separate module and symbol. */ bool fDumpAll = strcmp(paArgs[0].u.pszString, "*") == 0; const char *pszModule = NULL; size_t cchModule = 0; const char *pszSymbol = NULL; if (!fDumpAll) { const char *pszDelimiter = strchr(paArgs[0].u.pszString, '!'); if (!pszDelimiter) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid search string '%s' for '%s'. Valid are either '*' or the form ! where the and can contain wildcards", paArgs[0].u.pszString, pCmd->pszCmd); pszModule = paArgs[0].u.pszString; cchModule = pszDelimiter - pszModule; pszSymbol = pszDelimiter + 1; } /* * Iterate the modules in the current address space and print info about * those matching the input. */ RTDBGAS hAsCurAlias = pDbgc->hDbgAs; for (uint32_t iAs = 0;; iAs++) { RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias); uint32_t cMods = RTDbgAsModuleCount(hAs); for (uint32_t iMod = 0; iMod < cMods; iMod++) { RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod); if (hMod != NIL_RTDBGMOD) { const char *pszModName = RTDbgModName(hMod); if ( fDumpAll || RTStrSimplePatternNMatch(pszModule, cchModule, pszModName, strlen(pszModName))) { RTDBGASMAPINFO aMappings[128]; uint32_t cMappings = RT_ELEMENTS(aMappings); RTUINTPTR uMapping = 0; /* Get the minimum mapping address of the module so we can print absolute values for the symbol later on. */ int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/); if (RT_SUCCESS(rc)) { uMapping = RTUINTPTR_MAX; for (uint32_t iMap = 0; iMap < cMappings; iMap++) if (aMappings[iMap].Address < uMapping) uMapping = aMappings[iMap].Address; } /* Go through the symbols and print any matches. */ uint32_t cSyms = RTDbgModSymbolCount(hMod); for (uint32_t iSym = 0; iSym < cSyms; iSym++) { RTDBGSYMBOL SymInfo; rc = RTDbgModSymbolByOrdinal(hMod, iSym, &SymInfo); if ( RT_SUCCESS(rc) && ( fDumpAll || RTStrSimplePatternMatch(pszSymbol, &SymInfo.szName[0]))) DBGCCmdHlpPrintf(pCmdHlp, "%RGv %s!%s\n", uMapping + RTDbgModSegmentRva(hMod, SymInfo.iSeg) + (RTGCUINTPTR)SymInfo.Value, pszModName, &SymInfo.szName[0]); } } RTDbgModRelease(hMod); } } RTDbgAsRelease(hAs); /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */ if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL) break; AssertBreak(iAs == 0); hAsCurAlias = DBGF_AS_GLOBAL; } RT_NOREF(pCmd); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The 'tflowc' (clear trace flow) command.} */ static DECLCALLBACK(int) dbgcCmdTraceFlowClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Enumerate the arguments. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc = VINF_SUCCESS; for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number; if (iFlowTraceMod == paArgs[iArg].u.u64Number) { PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod); if (pFlowTrace) { rc = DBGFR3FlowTraceModRelease(pFlowTrace->hTraceFlowMod); if (RT_FAILURE(rc)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModRelease failed for flow trace module %#x", iFlowTraceMod); rc = DBGFR3FlowRelease(pFlowTrace->hFlow); if (RT_FAILURE(rc)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowRelease failed for flow trace module %#x", iFlowTraceMod); dbgcFlowTraceModDelete(pDbgc, iFlowTraceMod); } else rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGCTFLOW pIt, pItNext; RTListForEachSafe(&pDbgc->LstTraceFlowMods, pIt, pItNext, DBGCTFLOW, NdTraceFlow) { int rc2 = DBGFR3FlowTraceModRelease(pIt->hTraceFlowMod); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", pIt->iTraceFlowMod); dbgcFlowTraceModDelete(pDbgc, pIt->iTraceFlowMod); } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'tflowd' (disable trace flow) command.} */ static DECLCALLBACK(int) dbgcCmdTraceFlowDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Enumerate the arguments. */ RT_NOREF1(pUVM); int rc = VINF_SUCCESS; PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number; if (iFlowTraceMod == paArgs[iArg].u.u64Number) { PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod); if (pFlowTrace) { rc = DBGFR3FlowTraceModDisable(pFlowTrace->hTraceFlowMod); if (RT_FAILURE(rc)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", iFlowTraceMod); } else rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGCTFLOW pIt; RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow) { int rc2 = DBGFR3FlowTraceModDisable(pIt->hTraceFlowMod); if (RT_FAILURE(rc2)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", pIt->iTraceFlowMod); } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'tflowe' (enable trace flow) command.} */ static DECLCALLBACK(int) dbgcCmdTraceFlowEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); /* * Validate input. */ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 2); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType)); if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling"); /* * Check the desired mode. */ unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED | DBGF_DISAS_FLAGS_DEFAULT_MODE; /** @todo should use DBGFADDRESS for everything */ /* * Find address. */ if (!cArgs) { if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType)) { #if defined(VBOX_VMM_TARGET_ARMV8) AssertReleaseFailed(); #else /** @todo Batch query CS, RIP, CPU mode and flags. */ PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu); if (CPUMIsGuestIn64BitCode(pVCpu)) { pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT; pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu); } else { pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR; pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu); pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu); if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM)) { fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK; fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; } } #endif fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST; } else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm) { fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK; fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK; } pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE; } else pDbgc->DisasmPos = paArgs[0]; pDbgc->pLastPos = &pDbgc->DisasmPos; int rc; #if 0 /** @todo unused right now */ /* * Convert physical and host addresses to guest addresses. */ RTDBGAS hDbgAs = pDbgc->hDbgAs; switch (pDbgc->DisasmPos.enmType) { case DBGCVAR_TYPE_GC_FLAT: case DBGCVAR_TYPE_GC_FAR: break; case DBGCVAR_TYPE_GC_PHYS: hDbgAs = DBGF_AS_PHYS; /* fall thru */ case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: { DBGCVAR VarTmp; rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos); pDbgc->DisasmPos = VarTmp; break; } default: AssertFailed(); break; } #endif DBGFADDRESS CurAddr; if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR) DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off); else { rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr); if (RT_FAILURE(rc)) return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos); } DBGFFLOW hCfg; rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/, DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg); if (RT_SUCCESS(rc)) { /* Create a probe. */ DBGFFLOWTRACEPROBE hFlowTraceProbe = NULL; DBGFFLOWTRACEPROBE hFlowTraceProbeExit = NULL; DBGFFLOWTRACEPROBEENTRY Entry; DBGFFLOWTRACEMOD hFlowTraceMod = NULL; uint32_t iTraceModId = 0; RT_ZERO(Entry); Entry.enmType = DBGFFLOWTRACEPROBEENTRYTYPE_DEBUGGER; rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbe); if (RT_SUCCESS(rc)) rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbeExit); if (RT_SUCCESS(rc)) rc = DBGFR3FlowTraceProbeEntriesAdd(hFlowTraceProbeExit, &Entry, 1 /*cEntries*/); if (RT_SUCCESS(rc)) rc = DBGFR3FlowTraceModCreateFromFlowGraph(pUVM, VMCPUID_ANY, hCfg, NULL, hFlowTraceProbe, hFlowTraceProbe, hFlowTraceProbeExit, &hFlowTraceMod); if (RT_SUCCESS(rc)) rc = dbgcFlowTraceModAdd(pDbgc, hFlowTraceMod, hCfg, &iTraceModId); if (RT_SUCCESS(rc)) rc = DBGFR3FlowTraceModEnable(hFlowTraceMod, 0, 0); if (RT_SUCCESS(rc)) DBGCCmdHlpPrintf(pCmdHlp, "Enabled execution flow tracing %u at %RGv\n", iTraceModId, CurAddr.FlatPtr); if (hFlowTraceProbe) DBGFR3FlowTraceProbeRelease(hFlowTraceProbe); if (hFlowTraceProbeExit) DBGFR3FlowTraceProbeRelease(hFlowTraceProbeExit); } else rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos); NOREF(pCmd); return rc; } /** * Enumerates and prints all records contained in the given flow tarce module. * * @returns VBox status code. * @param pCmd The command. * @param pCmdHlp The command helpers. * @param hFlowTraceMod The flow trace module to print. * @param hFlow The control flow graph assoicated with the given module. * @param iFlowTraceMod The flow trace module identifier. */ static int dbgcCmdTraceFlowPrintOne(PDBGCCMDHLP pCmdHlp, PCDBGCCMD pCmd, DBGFFLOWTRACEMOD hFlowTraceMod, DBGFFLOW hFlow, uint32_t iFlowTraceMod) { RT_NOREF(hFlow); DBGFFLOWTRACEREPORT hFlowTraceReport; int rc = DBGFR3FlowTraceModQueryReport(hFlowTraceMod, &hFlowTraceReport); if (RT_SUCCESS(rc)) { uint32_t cRecords = DBGFR3FlowTraceReportGetRecordCount(hFlowTraceReport); DBGCCmdHlpPrintf(pCmdHlp, "Report for flow trace module %#x (%u records):\n", iFlowTraceMod, cRecords); PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cRecords * sizeof(DBGCFLOWBBDUMP)); if (RT_LIKELY(paDumpBb)) { /* Query the basic block referenced for each record and calculate the size. */ for (uint32_t i = 0; i < cRecords && RT_SUCCESS(rc); i++) { DBGFFLOWTRACERECORD hRec = NULL; rc = DBGFR3FlowTraceReportQueryRecord(hFlowTraceReport, i, &hRec); if (RT_SUCCESS(rc)) { DBGFADDRESS Addr; DBGFR3FlowTraceRecordGetAddr(hRec, &Addr); DBGFFLOWBB hFlowBb = NULL; rc = DBGFR3FlowQueryBbByAddress(hFlow, &Addr, &hFlowBb); if (RT_SUCCESS(rc)) dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[i]); DBGFR3FlowTraceRecordRelease(hRec); } } if (RT_SUCCESS(rc)) { /* Calculate the ASCII screen dimensions and create one. */ uint32_t cchWidth = 0; uint32_t cchHeight = 0; for (unsigned i = 0; i < cRecords; i++) { PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i]; cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth); cchHeight += pDumpBb->cchHeight; /* Incomplete blocks don't have a successor. */ if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR) continue; cchHeight += 2; /* For the arrow down to the next basic block. */ } DBGCSCREEN hScreen = NULL; rc = dbgcScreenAsciiCreate(&hScreen, cchWidth, cchHeight); if (RT_SUCCESS(rc)) { uint32_t uY = 0; /* Dump the basic blocks and connections to the immediate successor. */ for (unsigned i = 0; i < cRecords; i++) { paDumpBb[i].uStartX = (cchWidth - paDumpBb[i].cchWidth) / 2; paDumpBb[i].uStartY = uY; dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen); uY += paDumpBb[i].cchHeight; /* Incomplete blocks don't have a successor. */ if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR) continue; if (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb) != DBGFFLOWBBENDTYPE_EXIT) { /* Draw the arrow down to the next block. */ dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY, '|', DBGCSCREENCOLOR_BLUE_BRIGHT); uY++; dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY, 'V', DBGCSCREENCOLOR_BLUE_BRIGHT); uY++; } } rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, false /*fUseColor*/); dbgcScreenAsciiDestroy(hScreen); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to create virtual screen for flow trace module %#x", iFlowTraceMod); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query all records of flow trace module %#x", iFlowTraceMod); for (unsigned i = 0; i < cRecords; i++) { if (paDumpBb[i].hFlowBb) DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb); } RTMemTmpFree(paDumpBb); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to allocate memory for %u records", cRecords); DBGFR3FlowTraceReportRelease(hFlowTraceReport); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query report for flow trace module %#x", iFlowTraceMod); return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'tflowp' (print trace flow) command.} */ static DECLCALLBACK(int) dbgcCmdTraceFlowPrint(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Enumerate the arguments. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc = VINF_SUCCESS; for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number; if (iFlowTraceMod == paArgs[iArg].u.u64Number) { PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod); if (pFlowTrace) rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pFlowTrace->hTraceFlowMod, pFlowTrace->hFlow, pFlowTrace->iTraceFlowMod); else rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGCTFLOW pIt; RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow) { rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pIt->hTraceFlowMod, pIt->hFlow, pIt->iTraceFlowMod); if (RT_FAILURE(rc)) break; } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * @callback_method_impl{FNDBGCCMD, The 'tflowr' (reset trace flow) command.} */ static DECLCALLBACK(int) dbgcCmdTraceFlowReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); /* * Enumerate the arguments. */ PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp); int rc = VINF_SUCCESS; for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++) { if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING) { /* one */ uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number; if (iFlowTraceMod == paArgs[iArg].u.u64Number) { PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod); if (pFlowTrace) { rc = DBGFR3FlowTraceModClear(pFlowTrace->hTraceFlowMod); if (RT_FAILURE(rc)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", iFlowTraceMod); } else rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod); } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number); } else if (!strcmp(paArgs[iArg].u.pszString, "all")) { /* all */ PDBGCTFLOW pIt; RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow) { rc = DBGFR3FlowTraceModClear(pIt->hTraceFlowMod); if (RT_FAILURE(rc)) rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", pIt->iTraceFlowMod); } } else rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString); } return rc; } /** * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.} */ static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { RT_NOREF1(pUVM); AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); uint8_t b; int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL); if (RT_FAILURE(rc)) return rc; DBGCVAR_INIT_NUMBER(pResult, b); NOREF(pFunc); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.} */ static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { RT_NOREF1(pUVM); AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); uint16_t u16; int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL); if (RT_FAILURE(rc)) return rc; DBGCVAR_INIT_NUMBER(pResult, u16); NOREF(pFunc); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.} */ static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { RT_NOREF1(pUVM); AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); uint32_t u32; int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL); if (RT_FAILURE(rc)) return rc; DBGCVAR_INIT_NUMBER(pResult, u32); NOREF(pFunc); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.} */ static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { RT_NOREF1(pUVM); AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); uint64_t u64; int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL); if (RT_FAILURE(rc)) return rc; DBGCVAR_INIT_NUMBER(pResult, u64); NOREF(pFunc); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.} */ static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG); AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG); CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp); if (enmMode == CPUMMODE_LONG) return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult); return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult); } /** * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.} */ static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); uint16_t uHi; switch (paArgs[0].enmType) { case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break; case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break; case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break; case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break; case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break; case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break; default: AssertFailedReturn(VERR_DBGC_PARSE_BUG); } DBGCVAR_INIT_NUMBER(pResult, uHi); DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range); NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.} */ static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); uint16_t uLow; switch (paArgs[0].enmType) { case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break; case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break; case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break; case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break; case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break; case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break; default: AssertFailedReturn(VERR_DBGC_PARSE_BUG); } DBGCVAR_INIT_NUMBER(pResult, uLow); DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range); NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.} */ static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs, PDBGCVAR pResult) { AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG); NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM); return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]); } /** Generic pointer argument wo/ range. */ static const DBGCVARDESC g_aArgPointerWoRange[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." }, }; /** Generic pointer or number argument. */ static const DBGCVARDESC g_aArgPointerNumber[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." }, }; /** Function descriptors for the CodeView / WinDbg emulation. * The emulation isn't attempting to be identical, only somewhat similar. */ const DBGCFUNC g_aFuncsCodeView[] = { { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." }, { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." }, { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." }, { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." }, { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." }, { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." }, { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." }, { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." }, }; /** The number of functions in the CodeView/WinDbg emulation. */ const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);