/** @file * IPRT - RTUINT128U & uint128_t methods. */ /* * Copyright (C) 2011-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ #ifndef IPRT_INCLUDED_uint128_h #define IPRT_INCLUDED_uint128_h #ifndef RT_WITHOUT_PRAGMA_ONCE # pragma once #endif #include #include #include #include RT_C_DECLS_BEGIN /** @defgroup grp_rt_uint128 RTUInt128 - 128-bit Unsigned Integer Methods * @ingroup grp_rt * @{ */ /** * Test if a 128-bit unsigned integer value is zero. * * @returns true if they are, false if they aren't. * @param pValue The input and output value. */ DECLINLINE(bool) RTUInt128IsZero(PCRTUINT128U pValue) { #if ARCH_BITS >= 64 return pValue->s.Hi == 0 && pValue->s.Lo == 0; #else return pValue->DWords.dw0 == 0 && pValue->DWords.dw1 == 0 && pValue->DWords.dw2 == 0 && pValue->DWords.dw3 == 0; #endif } /** * Set a 128-bit unsigned integer value to zero. * * @returns pResult * @param pResult The result variable. */ DECLINLINE(PRTUINT128U) RTUInt128SetZero(PRTUINT128U pResult) { #if ARCH_BITS >= 64 pResult->s.Hi = 0; pResult->s.Lo = 0; #else pResult->DWords.dw0 = 0; pResult->DWords.dw1 = 0; pResult->DWords.dw2 = 0; pResult->DWords.dw3 = 0; #endif return pResult; } /** * Set a 128-bit unsigned integer value to the maximum value. * * @returns pResult * @param pResult The result variable. */ DECLINLINE(PRTUINT128U) RTUInt128SetMax(PRTUINT128U pResult) { #if ARCH_BITS >= 64 pResult->s.Hi = UINT64_MAX; pResult->s.Lo = UINT64_MAX; #else pResult->DWords.dw0 = UINT32_MAX; pResult->DWords.dw1 = UINT32_MAX; pResult->DWords.dw2 = UINT32_MAX; pResult->DWords.dw3 = UINT32_MAX; #endif return pResult; } /** * Adds two 128-bit unsigned integer values. * * @returns pResult * @param pResult The result variable. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128Add(PRTUINT128U pResult, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { pResult->s.Hi = pValue1->s.Hi + pValue2->s.Hi; pResult->s.Lo = pValue1->s.Lo + pValue2->s.Lo; if (pResult->s.Lo < pValue1->s.Lo) pResult->s.Hi++; return pResult; } /** * Adds a 128-bit and a 64-bit unsigned integer values. * * @returns pResult * @param pResult The result variable. * @param pValue1 The first value. * @param uValue2 The second value, 64-bit. */ DECLINLINE(PRTUINT128U) RTUInt128AddU64(PRTUINT128U pResult, PCRTUINT128U pValue1, uint64_t uValue2) { pResult->s.Hi = pValue1->s.Hi; pResult->s.Lo = pValue1->s.Lo + uValue2; if (pResult->s.Lo < pValue1->s.Lo) pResult->s.Hi++; return pResult; } /** * Subtracts a 128-bit unsigned integer value from another. * * @returns pResult * @param pResult The result variable. * @param pValue1 The minuend value. * @param pValue2 The subtrahend value. */ DECLINLINE(PRTUINT128U) RTUInt128Sub(PRTUINT128U pResult, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { pResult->s.Lo = pValue1->s.Lo - pValue2->s.Lo; pResult->s.Hi = pValue1->s.Hi - pValue2->s.Hi; if (pResult->s.Lo > pValue1->s.Lo) pResult->s.Hi--; return pResult; } /** * Multiplies two 128-bit unsigned integer values. * * @returns pResult * @param pResult The result variable. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128Mul(PRTUINT128U pResult, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { RTUINT64U uTmp; /* multiply all dwords in v1 by v2.dw0. */ pResult->s.Lo = (uint64_t)pValue1->DWords.dw0 * pValue2->DWords.dw0; uTmp.u = (uint64_t)pValue1->DWords.dw1 * pValue2->DWords.dw0; pResult->DWords.dw3 = 0; pResult->DWords.dw2 = uTmp.DWords.dw1; pResult->DWords.dw1 += uTmp.DWords.dw0; if (pResult->DWords.dw1 < uTmp.DWords.dw0) if (pResult->DWords.dw2++ == UINT32_MAX) pResult->DWords.dw3++; pResult->s.Hi += (uint64_t)pValue1->DWords.dw2 * pValue2->DWords.dw0; pResult->DWords.dw3 += pValue1->DWords.dw3 * pValue2->DWords.dw0; /* multiply dw0, dw1 & dw2 in v1 by v2.dw1. */ uTmp.u = (uint64_t)pValue1->DWords.dw0 * pValue2->DWords.dw1; pResult->DWords.dw1 += uTmp.DWords.dw0; if (pResult->DWords.dw1 < uTmp.DWords.dw0) if (pResult->DWords.dw2++ == UINT32_MAX) pResult->DWords.dw3++; pResult->DWords.dw2 += uTmp.DWords.dw1; if (pResult->DWords.dw2 < uTmp.DWords.dw1) pResult->DWords.dw3++; pResult->s.Hi += (uint64_t)pValue1->DWords.dw1 * pValue2->DWords.dw1; pResult->DWords.dw3 += pValue1->DWords.dw2 * pValue2->DWords.dw1; /* multiply dw0 & dw1 in v1 by v2.dw2. */ pResult->s.Hi += (uint64_t)pValue1->DWords.dw0 * pValue2->DWords.dw2; pResult->DWords.dw3 += pValue1->DWords.dw1 * pValue2->DWords.dw2; /* multiply dw0 in v1 by v2.dw3. */ pResult->DWords.dw3 += pValue1->DWords.dw0 * pValue2->DWords.dw3; return pResult; } /** * Multiplies an 128-bit unsigned integer by a 64-bit unsigned integer value. * * @returns pResult * @param pResult The result variable. * @param pValue1 The first value. * @param uValue2 The second value, 64-bit. */ #if defined(RT_ARCH_AMD64) RTDECL(PRTUINT128U) RTUInt128MulByU64(PRTUINT128U pResult, PCRTUINT128U pValue1, uint64_t uValue2); #else DECLINLINE(PRTUINT128U) RTUInt128MulByU64(PRTUINT128U pResult, PCRTUINT128U pValue1, uint64_t uValue2) { uint32_t const uLoValue2 = (uint32_t)uValue2; uint32_t const uHiValue2 = (uint32_t)(uValue2 >> 32); RTUINT64U uTmp; /* multiply all dwords in v1 by uLoValue1. */ pResult->s.Lo = (uint64_t)pValue1->DWords.dw0 * uLoValue2; uTmp.u = (uint64_t)pValue1->DWords.dw1 * uLoValue2; pResult->DWords.dw3 = 0; pResult->DWords.dw2 = uTmp.DWords.dw1; pResult->DWords.dw1 += uTmp.DWords.dw0; if (pResult->DWords.dw1 < uTmp.DWords.dw0) if (pResult->DWords.dw2++ == UINT32_MAX) pResult->DWords.dw3++; pResult->s.Hi += (uint64_t)pValue1->DWords.dw2 * uLoValue2; pResult->DWords.dw3 += pValue1->DWords.dw3 * uLoValue2; /* multiply dw0, dw1 & dw2 in v1 by uHiValue2. */ uTmp.u = (uint64_t)pValue1->DWords.dw0 * uHiValue2; pResult->DWords.dw1 += uTmp.DWords.dw0; if (pResult->DWords.dw1 < uTmp.DWords.dw0) if (pResult->DWords.dw2++ == UINT32_MAX) pResult->DWords.dw3++; pResult->DWords.dw2 += uTmp.DWords.dw1; if (pResult->DWords.dw2 < uTmp.DWords.dw1) pResult->DWords.dw3++; pResult->s.Hi += (uint64_t)pValue1->DWords.dw1 * uHiValue2; pResult->DWords.dw3 += pValue1->DWords.dw2 * uHiValue2; return pResult; } #endif /** * Multiplies two 64-bit unsigned integer values with 128-bit precision. * * @returns pResult * @param pResult The result variable. * @param uValue1 The first value. 64-bit. * @param uValue2 The second value, 64-bit. */ DECLINLINE(PRTUINT128U) RTUInt128MulU64ByU64(PRTUINT128U pResult, uint64_t uValue1, uint64_t uValue2) { #ifdef RT_ARCH_AMD64 pResult->s.Lo = ASMMult2xU64Ret2xU64(uValue1, uValue2, &pResult->s.Hi); #else uint32_t const uLoValue1 = (uint32_t)uValue1; uint32_t const uHiValue1 = (uint32_t)(uValue1 >> 32); uint32_t const uLoValue2 = (uint32_t)uValue2; uint32_t const uHiValue2 = (uint32_t)(uValue2 >> 32); RTUINT64U uTmp; /* Multiply uLoValue1 and uHiValue1 by uLoValue1. */ pResult->s.Lo = (uint64_t)uLoValue1 * uLoValue2; uTmp.u = (uint64_t)uHiValue1 * uLoValue2; pResult->DWords.dw3 = 0; pResult->DWords.dw2 = uTmp.DWords.dw1; pResult->DWords.dw1 += uTmp.DWords.dw0; if (pResult->DWords.dw1 < uTmp.DWords.dw0) if (pResult->DWords.dw2++ == UINT32_MAX) pResult->DWords.dw3++; /* Multiply uLoValue1 and uHiValue1 by uHiValue2. */ uTmp.u = (uint64_t)uLoValue1 * uHiValue2; pResult->DWords.dw1 += uTmp.DWords.dw0; if (pResult->DWords.dw1 < uTmp.DWords.dw0) if (pResult->DWords.dw2++ == UINT32_MAX) pResult->DWords.dw3++; pResult->DWords.dw2 += uTmp.DWords.dw1; if (pResult->DWords.dw2 < uTmp.DWords.dw1) pResult->DWords.dw3++; pResult->s.Hi += (uint64_t)uHiValue1 * uHiValue2; #endif return pResult; } /** * Multiplies an 128-bit unsigned integer by a 64-bit unsigned integer value, * returning a 256-bit result (top 64 bits are zero). * * @returns pResult * @param pResult The result variable. * @param pValue1 The first value. * @param uValue2 The second value, 64-bit. */ #if defined(RT_ARCH_AMD64) RTDECL(PRTUINT256U) RTUInt128MulByU64Ex(PRTUINT256U pResult, PCRTUINT128U pValue1, uint64_t uValue2); #else DECLINLINE(PRTUINT256U) RTUInt128MulByU64Ex(PRTUINT256U pResult, PCRTUINT128U pValue1, uint64_t uValue2) { /* multiply the two qwords in pValue1 by uValue2. */ uint64_t uTmp = 0; pResult->QWords.qw0 = ASMMult2xU64Ret2xU64(pValue1->s.Lo, uValue2, &uTmp); pResult->QWords.qw1 = ASMMult2xU64Ret2xU64(pValue1->s.Hi, uValue2, &pResult->QWords.qw2); pResult->QWords.qw3 = 0; pResult->QWords.qw1 += uTmp; if (pResult->QWords.qw1 < uTmp) pResult->QWords.qw2++; /* This cannot overflow AFAIK: 0xffff*0xffff = 0xFFFE0001 */ return pResult; } #endif /** * Multiplies two 128-bit unsigned integer values, returning a 256-bit result. * * @returns pResult * @param pResult The result variable. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(PRTUINT256U) RTUInt128MulEx(PRTUINT256U pResult, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { RTUInt128MulByU64Ex(pResult, pValue1, pValue2->s.Lo); if (pValue2->s.Hi) { /* Multiply the two qwords in pValue1 by the high part of uValue2. */ uint64_t uTmpHi = 0; uint64_t uTmpLo = ASMMult2xU64Ret2xU64(pValue1->s.Lo, pValue2->s.Hi, &uTmpHi); pResult->QWords.qw1 += uTmpLo; if (pResult->QWords.qw1 < uTmpLo) if (++pResult->QWords.qw2 == 0) pResult->QWords.qw3++; /* (cannot overflow, was == 0) */ pResult->QWords.qw2 += uTmpHi; if (pResult->QWords.qw2 < uTmpHi) pResult->QWords.qw3++; /* (cannot overflow, was <= 1) */ uTmpLo = ASMMult2xU64Ret2xU64(pValue1->s.Hi, pValue2->s.Hi, &uTmpHi); pResult->QWords.qw2 += uTmpLo; if (pResult->QWords.qw2 < uTmpLo) pResult->QWords.qw3++; /* (cannot overflow, was <= 2) */ pResult->QWords.qw3 += uTmpHi; } return pResult; } DECLINLINE(PRTUINT128U) RTUInt128DivRem(PRTUINT128U pQuotient, PRTUINT128U pRemainder, PCRTUINT128U pValue1, PCRTUINT128U pValue2); /** * Divides a 128-bit unsigned integer value by another. * * @returns pResult * @param pResult The result variable. * @param pValue1 The dividend value. * @param pValue2 The divisor value. */ DECLINLINE(PRTUINT128U) RTUInt128Div(PRTUINT128U pResult, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { RTUINT128U Ignored; return RTUInt128DivRem(pResult, &Ignored, pValue1, pValue2); } /** * Divides a 128-bit unsigned integer value by another, returning the remainder. * * @returns pResult * @param pResult The result variable (remainder). * @param pValue1 The dividend value. * @param pValue2 The divisor value. */ DECLINLINE(PRTUINT128U) RTUInt128Mod(PRTUINT128U pResult, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { RTUINT128U Ignored; RTUInt128DivRem(&Ignored, pResult, pValue1, pValue2); return pResult; } /** * Bitwise AND of two 128-bit unsigned integer values. * * @returns pResult * @param pResult The result variable. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128And(PRTUINT128U pResult, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { pResult->s.Hi = pValue1->s.Hi & pValue2->s.Hi; pResult->s.Lo = pValue1->s.Lo & pValue2->s.Lo; return pResult; } /** * Bitwise OR of two 128-bit unsigned integer values. * * @returns pResult * @param pResult The result variable. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128Or( PRTUINT128U pResult, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { pResult->s.Hi = pValue1->s.Hi | pValue2->s.Hi; pResult->s.Lo = pValue1->s.Lo | pValue2->s.Lo; return pResult; } /** * Bitwise XOR of two 128-bit unsigned integer values. * * @returns pResult * @param pResult The result variable. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128Xor(PRTUINT128U pResult, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { pResult->s.Hi = pValue1->s.Hi ^ pValue2->s.Hi; pResult->s.Lo = pValue1->s.Lo ^ pValue2->s.Lo; return pResult; } /** * Shifts a 128-bit unsigned integer value @a cBits to the left. * * @returns pResult * @param pResult The result variable. * @param pValue The value to shift. * @param cBits The number of bits to shift it. */ DECLINLINE(PRTUINT128U) RTUInt128ShiftLeft(PRTUINT128U pResult, PCRTUINT128U pValue, int cBits) { cBits &= 127; if (cBits < 64) { pResult->s.Lo = pValue->s.Lo << cBits; pResult->s.Hi = (pValue->s.Hi << cBits) | (pValue->s.Lo >> (64 - cBits)); } else { pResult->s.Lo = 0; pResult->s.Hi = pValue->s.Lo << (cBits - 64); } return pResult; } /** * Shifts a 128-bit unsigned integer value @a cBits to the right. * * @returns pResult * @param pResult The result variable. * @param pValue The value to shift. * @param cBits The number of bits to shift it. */ DECLINLINE(PRTUINT128U) RTUInt128ShiftRight(PRTUINT128U pResult, PCRTUINT128U pValue, int cBits) { cBits &= 127; if (cBits < 64) { pResult->s.Hi = pValue->s.Hi >> cBits; pResult->s.Lo = (pValue->s.Lo >> cBits) | (pValue->s.Hi << (64 - cBits)); } else { pResult->s.Hi = 0; pResult->s.Lo = pValue->s.Hi >> (cBits - 64); } return pResult; } /** * Boolean not (result 0 or 1). * * @returns pResult. * @param pResult The result variable. * @param pValue The value. */ DECLINLINE(PRTUINT128U) RTUInt128BooleanNot(PRTUINT128U pResult, PCRTUINT128U pValue) { pResult->s.Lo = pValue->s.Lo || pValue->s.Hi ? 0 : 1; pResult->s.Hi = 0; return pResult; } /** * Bitwise not (flips each bit of the 128 bits). * * @returns pResult. * @param pResult The result variable. * @param pValue The value. */ DECLINLINE(PRTUINT128U) RTUInt128BitwiseNot(PRTUINT128U pResult, PCRTUINT128U pValue) { pResult->s.Hi = ~pValue->s.Hi; pResult->s.Lo = ~pValue->s.Lo; return pResult; } /** * Assigns one 128-bit unsigned integer value to another. * * @returns pResult * @param pResult The result variable. * @param pValue The value to assign. */ DECLINLINE(PRTUINT128U) RTUInt128Assign(PRTUINT128U pResult, PCRTUINT128U pValue) { #if ARCH_BITS >= 64 pResult->s.Hi = pValue->s.Hi; pResult->s.Lo = pValue->s.Lo; #else pResult->DWords.dw0 = pValue->DWords.dw0; pResult->DWords.dw1 = pValue->DWords.dw1; pResult->DWords.dw2 = pValue->DWords.dw2; pResult->DWords.dw3 = pValue->DWords.dw3; #endif return pResult; } /** * Assigns a boolean value to 128-bit unsigned integer. * * @returns pValueResult * @param pValueResult The result variable. * @param fValue The boolean value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignBoolean(PRTUINT128U pValueResult, bool fValue) { #if ARCH_BITS >= 64 pValueResult->s.Lo = fValue; pValueResult->s.Hi = 0; #else pValueResult->DWords.dw0 = fValue; pValueResult->DWords.dw1 = 0; pValueResult->DWords.dw2 = 0; pValueResult->DWords.dw3 = 0; #endif return pValueResult; } /** * Assigns a 8-bit unsigned integer value to 128-bit unsigned integer. * * @returns pValueResult * @param pValueResult The result variable. * @param u8Value The 8-bit unsigned integer value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignU8(PRTUINT128U pValueResult, uint8_t u8Value) { #if ARCH_BITS >= 64 pValueResult->s.Lo = u8Value; pValueResult->s.Hi = 0; #else pValueResult->DWords.dw0 = u8Value; pValueResult->DWords.dw1 = 0; pValueResult->DWords.dw2 = 0; pValueResult->DWords.dw3 = 0; #endif return pValueResult; } /** * Assigns a 16-bit unsigned integer value to 128-bit unsigned integer. * * @returns pValueResult * @param pValueResult The result variable. * @param u16Value The 16-bit unsigned integer value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignU16(PRTUINT128U pValueResult, uint16_t u16Value) { #if ARCH_BITS >= 64 pValueResult->s.Lo = u16Value; pValueResult->s.Hi = 0; #else pValueResult->DWords.dw0 = u16Value; pValueResult->DWords.dw1 = 0; pValueResult->DWords.dw2 = 0; pValueResult->DWords.dw3 = 0; #endif return pValueResult; } /** * Assigns a 32-bit unsigned integer value to 128-bit unsigned integer. * * @returns pValueResult * @param pValueResult The result variable. * @param u32Value The 32-bit unsigned integer value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignU32(PRTUINT128U pValueResult, uint32_t u32Value) { #if ARCH_BITS >= 64 pValueResult->s.Lo = u32Value; pValueResult->s.Hi = 0; #else pValueResult->DWords.dw0 = u32Value; pValueResult->DWords.dw1 = 0; pValueResult->DWords.dw2 = 0; pValueResult->DWords.dw3 = 0; #endif return pValueResult; } /** * Assigns a 64-bit unsigned integer value to 128-bit unsigned integer. * * @returns pValueResult * @param pValueResult The result variable. * @param u64Value The 64-bit unsigned integer value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignU64(PRTUINT128U pValueResult, uint64_t u64Value) { pValueResult->s.Lo = u64Value; pValueResult->s.Hi = 0; return pValueResult; } /** * Adds two 128-bit unsigned integer values, storing the result in the first. * * @returns pValue1Result. * @param pValue1Result The first value and result. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignAdd(PRTUINT128U pValue1Result, PCRTUINT128U pValue2) { uint64_t const uTmp = pValue1Result->s.Lo; pValue1Result->s.Lo += pValue2->s.Lo; if (pValue1Result->s.Lo < uTmp) pValue1Result->s.Hi++; pValue1Result->s.Hi += pValue2->s.Hi; return pValue1Result; } /** * Adds a 64-bit unsigned integer value to a 128-bit unsigned integer values, * storing the result in the 128-bit one. * * @returns pValue1Result. * @param pValue1Result The first value and result. * @param uValue2 The second value, 64-bit. */ DECLINLINE(PRTUINT128U) RTUInt128AssignAddU64(PRTUINT128U pValue1Result, uint64_t uValue2) { pValue1Result->s.Lo += uValue2; if (pValue1Result->s.Lo < uValue2) pValue1Result->s.Hi++; return pValue1Result; } /** * Subtracts two 128-bit unsigned integer values, storing the result in the * first. * * @returns pValue1Result. * @param pValue1Result The minuend value and result. * @param pValue2 The subtrahend value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignSub(PRTUINT128U pValue1Result, PCRTUINT128U pValue2) { uint64_t const uTmp = pValue1Result->s.Lo; pValue1Result->s.Lo -= pValue2->s.Lo; if (pValue1Result->s.Lo > uTmp) pValue1Result->s.Hi--; pValue1Result->s.Hi -= pValue2->s.Hi; return pValue1Result; } /** * Negates a 128 number, storing the result in the input. * * @returns pValueResult. * @param pValueResult The value to negate. */ DECLINLINE(PRTUINT128U) RTUInt128AssignNeg(PRTUINT128U pValueResult) { /* result = 0 - value */ if (pValueResult->s.Lo != 0) { pValueResult->s.Lo = UINT64_C(0) - pValueResult->s.Lo; pValueResult->s.Hi = UINT64_MAX - pValueResult->s.Hi; } else pValueResult->s.Hi = UINT64_C(0) - pValueResult->s.Hi; return pValueResult; } /** * Multiplies two 128-bit unsigned integer values, storing the result in the * first. * * @returns pValue1Result. * @param pValue1Result The first value and result. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignMul(PRTUINT128U pValue1Result, PCRTUINT128U pValue2) { RTUINT128U Result; RTUInt128Mul(&Result, pValue1Result, pValue2); *pValue1Result = Result; return pValue1Result; } /** * Divides a 128-bit unsigned integer value by another, storing the result in * the first. * * @returns pValue1Result. * @param pValue1Result The dividend value and result. * @param pValue2 The divisor value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignDiv(PRTUINT128U pValue1Result, PCRTUINT128U pValue2) { RTUINT128U Result; RTUINT128U Ignored; RTUInt128DivRem(&Result, &Ignored, pValue1Result, pValue2); *pValue1Result = Result; return pValue1Result; } /** * Divides a 128-bit unsigned integer value by another, storing the remainder in * the first. * * @returns pValue1Result. * @param pValue1Result The dividend value and result (remainder). * @param pValue2 The divisor value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignMod(PRTUINT128U pValue1Result, PCRTUINT128U pValue2) { RTUINT128U Ignored; RTUINT128U Result; RTUInt128DivRem(&Ignored, &Result, pValue1Result, pValue2); *pValue1Result = Result; return pValue1Result; } /** * Performs a bitwise AND of two 128-bit unsigned integer values and assigned * the result to the first one. * * @returns pValue1Result. * @param pValue1Result The first value and result. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignAnd(PRTUINT128U pValue1Result, PCRTUINT128U pValue2) { #if ARCH_BITS >= 64 pValue1Result->s.Hi &= pValue2->s.Hi; pValue1Result->s.Lo &= pValue2->s.Lo; #else pValue1Result->DWords.dw0 &= pValue2->DWords.dw0; pValue1Result->DWords.dw1 &= pValue2->DWords.dw1; pValue1Result->DWords.dw2 &= pValue2->DWords.dw2; pValue1Result->DWords.dw3 &= pValue2->DWords.dw3; #endif return pValue1Result; } /** * Performs a bitwise AND of a 128-bit unsigned integer value and a mask made * up of the first N bits, assigning the result to the the 128-bit value. * * @returns pValueResult. * @param pValueResult The value and result. * @param cBits The number of bits to AND (counting from the first * bit). */ DECLINLINE(PRTUINT128U) RTUInt128AssignAndNFirstBits(PRTUINT128U pValueResult, unsigned cBits) { if (cBits <= 64) { if (cBits != 64) pValueResult->s.Lo &= (RT_BIT_64(cBits) - 1); pValueResult->s.Hi = 0; } else if (cBits < 128) pValueResult->s.Hi &= (RT_BIT_64(cBits - 64) - 1); /** @todo \#if ARCH_BITS >= 64 */ return pValueResult; } /** * Performs a bitwise OR of two 128-bit unsigned integer values and assigned * the result to the first one. * * @returns pValue1Result. * @param pValue1Result The first value and result. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignOr(PRTUINT128U pValue1Result, PCRTUINT128U pValue2) { #if ARCH_BITS >= 64 pValue1Result->s.Hi |= pValue2->s.Hi; pValue1Result->s.Lo |= pValue2->s.Lo; #else pValue1Result->DWords.dw0 |= pValue2->DWords.dw0; pValue1Result->DWords.dw1 |= pValue2->DWords.dw1; pValue1Result->DWords.dw2 |= pValue2->DWords.dw2; pValue1Result->DWords.dw3 |= pValue2->DWords.dw3; #endif return pValue1Result; } /** * ORs in a bit and assign the result to the input value. * * @returns pValue1Result. * @param pValue1Result The first value and result. * @param iBit The bit to set (0 based). */ DECLINLINE(PRTUINT128U) RTUInt128AssignOrBit(PRTUINT128U pValue1Result, uint32_t iBit) { #if ARCH_BITS >= 64 if (iBit >= 64) pValue1Result->s.Hi |= RT_BIT_64(iBit - 64); else pValue1Result->s.Lo |= RT_BIT_64(iBit); #else if (iBit >= 64) { if (iBit >= 96) pValue1Result->DWords.dw3 |= RT_BIT_32(iBit - 96); else pValue1Result->DWords.dw2 |= RT_BIT_32(iBit - 64); } else { if (iBit >= 32) pValue1Result->DWords.dw1 |= RT_BIT_32(iBit - 32); else pValue1Result->DWords.dw0 |= RT_BIT_32(iBit); } #endif return pValue1Result; } /** * Performs a bitwise XOR of two 128-bit unsigned integer values and assigned * the result to the first one. * * @returns pValue1Result. * @param pValue1Result The first value and result. * @param pValue2 The second value. */ DECLINLINE(PRTUINT128U) RTUInt128AssignXor(PRTUINT128U pValue1Result, PCRTUINT128U pValue2) { #if ARCH_BITS >= 64 pValue1Result->s.Hi ^= pValue2->s.Hi; pValue1Result->s.Lo ^= pValue2->s.Lo; #else pValue1Result->DWords.dw0 ^= pValue2->DWords.dw0; pValue1Result->DWords.dw1 ^= pValue2->DWords.dw1; pValue1Result->DWords.dw2 ^= pValue2->DWords.dw2; pValue1Result->DWords.dw3 ^= pValue2->DWords.dw3; #endif return pValue1Result; } /** * Performs a bitwise left shift on a 128-bit unsigned integer value, assigning * the result to it. * * @returns pValueResult. * @param pValueResult The first value and result. * @param cBits The number of bits to shift. */ DECLINLINE(PRTUINT128U) RTUInt128AssignShiftLeft(PRTUINT128U pValueResult, int cBits) { RTUINT128U const InVal = *pValueResult; /** @todo \#if ARCH_BITS >= 64 */ if (cBits > 0) { /* (left shift) */ if (cBits >= 128) RTUInt128SetZero(pValueResult); else if (cBits >= 64) { pValueResult->s.Lo = 0; pValueResult->s.Hi = InVal.s.Lo << (cBits - 64); } else { pValueResult->s.Hi = InVal.s.Hi << cBits; pValueResult->s.Hi |= InVal.s.Lo >> (64 - cBits); pValueResult->s.Lo = InVal.s.Lo << cBits; } } else if (cBits < 0) { /* (right shift) */ cBits = -cBits; if (cBits >= 128) RTUInt128SetZero(pValueResult); else if (cBits >= 64) { pValueResult->s.Hi = 0; pValueResult->s.Lo = InVal.s.Hi >> (cBits - 64); } else { pValueResult->s.Lo = InVal.s.Lo >> cBits; pValueResult->s.Lo |= InVal.s.Hi << (64 - cBits); pValueResult->s.Hi = InVal.s.Hi >> cBits; } } return pValueResult; } /** * Performs a bitwise left shift on a 128-bit unsigned integer value, assigning * the result to it. * * @returns pValueResult. * @param pValueResult The first value and result. * @param cBits The number of bits to shift. */ DECLINLINE(PRTUINT128U) RTUInt128AssignShiftRight(PRTUINT128U pValueResult, int cBits) { return RTUInt128AssignShiftLeft(pValueResult, -cBits); } /** * Performs a bitwise NOT on a 128-bit unsigned integer value, assigning the * result to it. * * @returns pValueResult * @param pValueResult The value and result. */ DECLINLINE(PRTUINT128U) RTUInt128AssignBitwiseNot(PRTUINT128U pValueResult) { #if ARCH_BITS >= 64 pValueResult->s.Hi = ~pValueResult->s.Hi; pValueResult->s.Lo = ~pValueResult->s.Lo; #else pValueResult->DWords.dw0 = ~pValueResult->DWords.dw0; pValueResult->DWords.dw1 = ~pValueResult->DWords.dw1; pValueResult->DWords.dw2 = ~pValueResult->DWords.dw2; pValueResult->DWords.dw3 = ~pValueResult->DWords.dw3; #endif return pValueResult; } /** * Performs a boolean NOT on a 128-bit unsigned integer value, assigning the * result to it. * * @returns pValueResult * @param pValueResult The value and result. */ DECLINLINE(PRTUINT128U) RTUInt128AssignBooleanNot(PRTUINT128U pValueResult) { return RTUInt128AssignBoolean(pValueResult, RTUInt128IsZero(pValueResult)); } /** * Compares two 128-bit unsigned integer values. * * @retval 0 if equal. * @retval -1 if the first value is smaller than the second. * @retval 1 if the first value is larger than the second. * * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(int) RTUInt128Compare(PCRTUINT128U pValue1, PCRTUINT128U pValue2) { #if ARCH_BITS >= 64 if (pValue1->s.Hi != pValue2->s.Hi) return pValue1->s.Hi > pValue2->s.Hi ? 1 : -1; if (pValue1->s.Lo != pValue2->s.Lo) return pValue1->s.Lo > pValue2->s.Lo ? 1 : -1; return 0; #else if (pValue1->DWords.dw3 != pValue2->DWords.dw3) return pValue1->DWords.dw3 > pValue2->DWords.dw3 ? 1 : -1; if (pValue1->DWords.dw2 != pValue2->DWords.dw2) return pValue1->DWords.dw2 > pValue2->DWords.dw2 ? 1 : -1; if (pValue1->DWords.dw1 != pValue2->DWords.dw1) return pValue1->DWords.dw1 > pValue2->DWords.dw1 ? 1 : -1; if (pValue1->DWords.dw0 != pValue2->DWords.dw0) return pValue1->DWords.dw0 > pValue2->DWords.dw0 ? 1 : -1; return 0; #endif } /** * Tests if a 128-bit unsigned integer value is smaller than another. * * @returns true if the first value is smaller, false if not. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(bool) RTUInt128IsSmaller(PCRTUINT128U pValue1, PCRTUINT128U pValue2) { #if ARCH_BITS >= 64 return pValue1->s.Hi < pValue2->s.Hi || ( pValue1->s.Hi == pValue2->s.Hi && pValue1->s.Lo < pValue2->s.Lo); #else return pValue1->DWords.dw3 < pValue2->DWords.dw3 || ( pValue1->DWords.dw3 == pValue2->DWords.dw3 && ( pValue1->DWords.dw2 < pValue2->DWords.dw2 || ( pValue1->DWords.dw2 == pValue2->DWords.dw2 && ( pValue1->DWords.dw1 < pValue2->DWords.dw1 || ( pValue1->DWords.dw1 == pValue2->DWords.dw1 && pValue1->DWords.dw0 < pValue2->DWords.dw0))))); #endif } /** * Tests if a 128-bit unsigned integer value is larger than another. * * @returns true if the first value is larger, false if not. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(bool) RTUInt128IsLarger(PCRTUINT128U pValue1, PCRTUINT128U pValue2) { #if ARCH_BITS >= 64 return pValue1->s.Hi > pValue2->s.Hi || ( pValue1->s.Hi == pValue2->s.Hi && pValue1->s.Lo > pValue2->s.Lo); #else return pValue1->DWords.dw3 > pValue2->DWords.dw3 || ( pValue1->DWords.dw3 == pValue2->DWords.dw3 && ( pValue1->DWords.dw2 > pValue2->DWords.dw2 || ( pValue1->DWords.dw2 == pValue2->DWords.dw2 && ( pValue1->DWords.dw1 > pValue2->DWords.dw1 || ( pValue1->DWords.dw1 == pValue2->DWords.dw1 && pValue1->DWords.dw0 > pValue2->DWords.dw0))))); #endif } /** * Tests if a 128-bit unsigned integer value is larger or equal than another. * * @returns true if the first value is larger or equal, false if not. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(bool) RTUInt128IsLargerOrEqual(PCRTUINT128U pValue1, PCRTUINT128U pValue2) { #if ARCH_BITS >= 64 return pValue1->s.Hi > pValue2->s.Hi || ( pValue1->s.Hi == pValue2->s.Hi && pValue1->s.Lo >= pValue2->s.Lo); #else return pValue1->DWords.dw3 > pValue2->DWords.dw3 || ( pValue1->DWords.dw3 == pValue2->DWords.dw3 && ( pValue1->DWords.dw2 > pValue2->DWords.dw2 || ( pValue1->DWords.dw2 == pValue2->DWords.dw2 && ( pValue1->DWords.dw1 > pValue2->DWords.dw1 || ( pValue1->DWords.dw1 == pValue2->DWords.dw1 && pValue1->DWords.dw0 >= pValue2->DWords.dw0))))); #endif } /** * Tests if two 128-bit unsigned integer values not equal. * * @returns true if equal, false if not equal. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(bool) RTUInt128IsEqual(PCRTUINT128U pValue1, PCRTUINT128U pValue2) { #if ARCH_BITS >= 64 return pValue1->s.Hi == pValue2->s.Hi && pValue1->s.Lo == pValue2->s.Lo; #else return pValue1->DWords.dw0 == pValue2->DWords.dw0 && pValue1->DWords.dw1 == pValue2->DWords.dw1 && pValue1->DWords.dw2 == pValue2->DWords.dw2 && pValue1->DWords.dw3 == pValue2->DWords.dw3; #endif } /** * Tests if two 128-bit unsigned integer values are not equal. * * @returns true if not equal, false if equal. * @param pValue1 The first value. * @param pValue2 The second value. */ DECLINLINE(bool) RTUInt128IsNotEqual(PCRTUINT128U pValue1, PCRTUINT128U pValue2) { return !RTUInt128IsEqual(pValue1, pValue2); } /** * Sets a bit in a 128-bit unsigned integer type. * * @returns pValueResult. * @param pValueResult The input and output value. * @param iBit The bit to set. */ DECLINLINE(PRTUINT128U) RTUInt128BitSet(PRTUINT128U pValueResult, unsigned iBit) { if (iBit < 64) { #if ARCH_BITS >= 64 pValueResult->s.Lo |= RT_BIT_64(iBit); #else if (iBit < 32) pValueResult->DWords.dw0 |= RT_BIT_32(iBit); else pValueResult->DWords.dw1 |= RT_BIT_32(iBit - 32); #endif } else if (iBit < 128) { #if ARCH_BITS >= 64 pValueResult->s.Hi |= RT_BIT_64(iBit - 64); #else if (iBit < 96) pValueResult->DWords.dw2 |= RT_BIT_32(iBit - 64); else pValueResult->DWords.dw3 |= RT_BIT_32(iBit - 96); #endif } return pValueResult; } /** * Sets a bit in a 128-bit unsigned integer type. * * @returns pValueResult. * @param pValueResult The input and output value. * @param iBit The bit to set. */ DECLINLINE(PRTUINT128U) RTUInt128BitClear(PRTUINT128U pValueResult, unsigned iBit) { if (iBit < 64) { #if ARCH_BITS >= 64 pValueResult->s.Lo &= ~RT_BIT_64(iBit); #else if (iBit < 32) pValueResult->DWords.dw0 &= ~RT_BIT_32(iBit); else pValueResult->DWords.dw1 &= ~RT_BIT_32(iBit - 32); #endif } else if (iBit < 128) { #if ARCH_BITS >= 64 pValueResult->s.Hi &= ~RT_BIT_64(iBit - 64); #else if (iBit < 96) pValueResult->DWords.dw2 &= ~RT_BIT_32(iBit - 64); else pValueResult->DWords.dw3 &= ~RT_BIT_32(iBit - 96); #endif } return pValueResult; } /** * Tests if a bit in a 128-bit unsigned integer value is set. * * @returns pValueResult. * @param pValueResult The input and output value. * @param iBit The bit to test. */ DECLINLINE(bool) RTUInt128BitTest(PRTUINT128U pValueResult, unsigned iBit) { bool fRc; if (iBit < 64) { #if ARCH_BITS >= 64 fRc = RT_BOOL(pValueResult->s.Lo & RT_BIT_64(iBit)); #else if (iBit < 32) fRc = RT_BOOL(pValueResult->DWords.dw0 & RT_BIT_32(iBit)); else fRc = RT_BOOL(pValueResult->DWords.dw1 & RT_BIT_32(iBit - 32)); #endif } else if (iBit < 128) { #if ARCH_BITS >= 64 fRc = RT_BOOL(pValueResult->s.Hi & RT_BIT_64(iBit - 64)); #else if (iBit < 96) fRc = RT_BOOL(pValueResult->DWords.dw2 & RT_BIT_32(iBit - 64)); else fRc = RT_BOOL(pValueResult->DWords.dw3 & RT_BIT_32(iBit - 96)); #endif } else fRc = false; return fRc; } /** * Set a range of bits a 128-bit unsigned integer value. * * @returns pValueResult. * @param pValueResult The input and output value. * @param iFirstBit The first bit to test. * @param cBits The number of bits to set. */ DECLINLINE(PRTUINT128U) RTUInt128BitSetRange(PRTUINT128U pValueResult, unsigned iFirstBit, unsigned cBits) { /* bounds check & fix. */ if (iFirstBit < 128) { if (iFirstBit + cBits > 128) cBits = 128 - iFirstBit; #if ARCH_BITS >= 64 if (iFirstBit + cBits < 64) pValueResult->s.Lo |= (RT_BIT_64(cBits) - 1) << iFirstBit; else if (iFirstBit + cBits < 128 && iFirstBit >= 64) pValueResult->s.Hi |= (RT_BIT_64(cBits) - 1) << (iFirstBit - 64); else #else if (iFirstBit + cBits < 32) pValueResult->DWords.dw0 |= (RT_BIT_32(cBits) - 1) << iFirstBit; else if (iFirstBit + cBits < 64 && iFirstBit >= 32) pValueResult->DWords.dw1 |= (RT_BIT_32(cBits) - 1) << (iFirstBit - 32); else if (iFirstBit + cBits < 96 && iFirstBit >= 64) pValueResult->DWords.dw2 |= (RT_BIT_32(cBits) - 1) << (iFirstBit - 64); else if (iFirstBit + cBits < 128 && iFirstBit >= 96) pValueResult->DWords.dw3 |= (RT_BIT_32(cBits) - 1) << (iFirstBit - 96); else #endif while (cBits-- > 0) RTUInt128BitSet(pValueResult, iFirstBit++); } return pValueResult; } /** * Test if all the bits of a 128-bit unsigned integer value are set. * * @returns true if they are, false if they aren't. * @param pValue The input and output value. */ DECLINLINE(bool) RTUInt128BitAreAllSet(PRTUINT128U pValue) { #if ARCH_BITS >= 64 return pValue->s.Hi == UINT64_MAX && pValue->s.Lo == UINT64_MAX; #else return pValue->DWords.dw0 == UINT32_MAX && pValue->DWords.dw1 == UINT32_MAX && pValue->DWords.dw2 == UINT32_MAX && pValue->DWords.dw3 == UINT32_MAX; #endif } /** * Test if all the bits of a 128-bit unsigned integer value are clear. * * @returns true if they are, false if they aren't. * @param pValue The input and output value. */ DECLINLINE(bool) RTUInt128BitAreAllClear(PRTUINT128U pValue) { #if ARCH_BITS >= 64 return pValue->s.Hi == 0 && pValue->s.Lo == 0; #else return pValue->DWords.dw0 == 0 && pValue->DWords.dw1 == 0 && pValue->DWords.dw2 == 0 && pValue->DWords.dw3 == 0; #endif } /** * Number of significant bits in the value. * * This is the same a ASMBitLastSetU64 and ASMBitLastSetU32. * * @returns 0 if zero, 1-base index of the last bit set. * @param pValue The value to examine. */ DECLINLINE(uint32_t) RTUInt128BitCount(PCRTUINT128U pValue) { uint32_t cBits; if (pValue->s.Hi != 0) { if (pValue->DWords.dw3) cBits = 96 + ASMBitLastSetU32(pValue->DWords.dw3); else cBits = 64 + ASMBitLastSetU32(pValue->DWords.dw2); } else { if (pValue->DWords.dw1) cBits = 32 + ASMBitLastSetU32(pValue->DWords.dw1); else cBits = 0 + ASMBitLastSetU32(pValue->DWords.dw0); } return cBits; } /** * Divides a 128-bit unsigned integer value by another, returning both quotient * and remainder. * * @returns pQuotient, NULL if pValue2 is 0. * @param pQuotient Where to return the quotient. * @param pRemainder Where to return the remainder. * @param pValue1 The dividend value. * @param pValue2 The divisor value. */ DECLINLINE(PRTUINT128U) RTUInt128DivRem(PRTUINT128U pQuotient, PRTUINT128U pRemainder, PCRTUINT128U pValue1, PCRTUINT128U pValue2) { int iDiff; /* * Sort out all the special cases first. */ /* Divide by zero or 1? */ if (!pValue2->s.Hi) { if (!pValue2->s.Lo) return NULL; if (pValue2->s.Lo == 1) { RTUInt128SetZero(pRemainder); *pQuotient = *pValue1; return pQuotient; } /** @todo RTUint128DivModBy64 */ } /* Dividend is smaller? */ iDiff = RTUInt128Compare(pValue1, pValue2); if (iDiff < 0) { *pRemainder = *pValue1; RTUInt128SetZero(pQuotient); } /* The values are equal? */ else if (iDiff == 0) { RTUInt128SetZero(pRemainder); RTUInt128AssignU64(pQuotient, 1); } else { /* * Prepare. */ uint32_t iBitAdder = RTUInt128BitCount(pValue1) - RTUInt128BitCount(pValue2); RTUINT128U NormDivisor = *pValue2; if (iBitAdder) { RTUInt128ShiftLeft(&NormDivisor, pValue2, iBitAdder); if (RTUInt128IsLarger(&NormDivisor, pValue1)) { RTUInt128AssignShiftRight(&NormDivisor, 1); iBitAdder--; } } else NormDivisor = *pValue2; RTUInt128SetZero(pQuotient); *pRemainder = *pValue1; /* * Do the division. */ if (RTUInt128IsLargerOrEqual(pRemainder, pValue2)) { for (;;) { if (RTUInt128IsLargerOrEqual(pRemainder, &NormDivisor)) { RTUInt128AssignSub(pRemainder, &NormDivisor); RTUInt128AssignOrBit(pQuotient, iBitAdder); } if (RTUInt128IsSmaller(pRemainder, pValue2)) break; RTUInt128AssignShiftRight(&NormDivisor, 1); iBitAdder--; } } } return pQuotient; } /** @} */ RT_C_DECLS_END #endif /* !IPRT_INCLUDED_uint128_h */