/** @file * InnoTek Portable Runtime - Common C and C++ definitions. */ /* * Copyright (C) 2006 InnoTek Systemberatung GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License as published by the Free Software Foundation, * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE * distribution. VirtualBox OSE is distributed in the hope that it will * be useful, but WITHOUT ANY WARRANTY of any kind. * * If you received this file as part of a commercial VirtualBox * distribution, then only the terms of your commercial VirtualBox * license agreement apply instead of the previous paragraph. */ #ifndef __iprt_cdefs_h__ #define __iprt_cdefs_h__ /** @defgroup grp_rt_cdefs InnoTek Portable Runtime Common Definitions and Macros * @{ */ /* * Include sys/cdefs.h if present, if not define the stuff we need. */ #ifdef HAVE_SYS_CDEFS_H # if defined(__LINUX__) && defined(__KERNEL__) # error "oops" # endif # include #else /** @def __BEGIN_DECLS * Used to start a block of function declarations which are shared * between C and C++ program. */ /** @def __END_DECLS * Used to end a block of function declarations which are shared * between C and C++ program. */ #if defined(__cplusplus) # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS # define __END_DECLS #endif #endif /* * Shut up DOXYGEN warnings and guide it properly thru the code. */ #ifdef __DOXYGEN__ #define __AMD64__ #define __X86__ #define IN_RING0 #define IN_RING3 #define IN_GC #define IN_RT_GC #define IN_RT_R0 #define IN_RT_R3 #define RT_STRICT #define Breakpoint #define RT_NO_DEPRECATED_MACROS #define ARCH_BITS #define HC_ARCH_BITS #define R3_ARCH_BITS #define R0_ARCH_BITS #define GC_ARCH_BITS #endif /* __DOXYGEN__ */ /** @def __X86__ * Indicates that we're compiling for the X86 architecture. */ /** @def __AMD64__ * Indicates that we're compiling for the AMD64 architecture. */ #if !defined(__X86__) && !defined(__AMD64__) # if defined(__amd64__) || defined(__x86_64__) || defined(_M_X64) # define __AMD64__ # elif defined(__i386__) || defined(_M_IX86) # define __X86__ # else # error "Check what predefined stuff your compiler uses to indicate architecture." # endif #elif defined(__X86__) && defined(__AMD64__) # error "Both __X86__ and __AMD64__ cannot be defined at the same time!" #endif /** @def IN_RING0 * Used to indicate that we're compiling code which is running * in Ring-0 Host Context. */ /** @def IN_RING3 * Used to indicate that we're compiling code which is running * in Ring-3 Host Context. */ /** @def IN_GC * Used to indicate that we're compiling code which is running * in Guest Context (implies R0). */ #if !defined(IN_RING3) && !defined(IN_RING0) && !defined(IN_GC) # error "You must defined which context the compiled code should run in; IN_RING3, IN_RING0 or IN_GC" #endif #if (defined(IN_RING3) && (defined(IN_RING0) || defined(IN_GC)) ) \ || (defined(IN_RING0) && (defined(IN_RING3) || defined(IN_GC)) ) \ || (defined(IN_GC) && (defined(IN_RING3) || defined(IN_RING0)) ) # error "Only one of the IN_RING3, IN_RING0, IN_GC defines should be defined." #endif /** @def ARCH_BITS * Defines the bit count of the current context. */ #ifndef ARCH_BITS # if defined(__AMD64__) # define ARCH_BITS 64 # else # define ARCH_BITS 32 # endif #endif /** @def HC_ARCH_BITS * Defines the host architechture bit count. */ #ifndef HC_ARCH_BITS # ifndef IN_GC # define HC_ARCH_BITS ARCH_BITS # else # define HC_ARCH_BITS 32 # endif #endif /** @def R3_ARCH_BITS * Defines the host ring-3 architechture bit count. */ #ifndef R3_ARCH_BITS # ifdef IN_RING3 # define R3_ARCH_BITS ARCH_BITS # else # define R3_ARCH_BITS HC_ARCH_BITS # endif #endif /** @def R0_ARCH_BITS * Defines the host ring-0 architechture bit count. */ #ifndef R0_ARCH_BITS # ifdef IN_RING0 # define R0_ARCH_BITS ARCH_BITS # else # define R0_ARCH_BITS HC_ARCH_BITS # endif #endif /** @def GC_ARCH_BITS * Defines the guest architechture bit count. */ #ifndef GC_ARCH_BITS # ifdef IN_GC # define GC_ARCH_BITS ARCH_BITS # else # define GC_ARCH_BITS 32 # endif #endif /** @def CTXTYPE * Declare a type differently in GC, R3 and R0. * * @param GCType The GC type. * @param R3Type The R3 type. * @param R0Type The R0 type. * @remark For pointers used only in one context use GCPTRTYPE(), HCPTRTYPE(), R3PTRTYPE() or R0PTRTYPE(). */ #ifdef IN_GC # define CTXTYPE(GCType, R3Type, R0Type) GCType #elif defined(IN_RING3) # define CTXTYPE(GCType, R3Type, R0Type) R3Type #else # define CTXTYPE(GCType, R3Type, R0Type) R0Type #endif /** @def GCTYPE * Declare a type differently in GC and HC. * * @param GCType The GC type. * @param HCType The HC type. * @remark For pointers used only in one context use GCPTRTYPE(), HCPTRTYPE(), R3PTRTYPE() or R0PTRTYPE(). */ #define GCTYPE(GCType, HCType) CTXTYPE(GCType, HCType, HCType) /** @def GCPTRTYPE * Declare a pointer which is used in GC but appears in structure(s) used by * both HC and GC. The main purpose is to make sure structures have the same * size when built for different architectures. * * @param GCType The GC type. */ #define GCPTRTYPE(GCType) CTXTYPE(GCType, RTGCPTR, RTGCPTR) /** @def HCPTRTYPE * Declare a pointer which is used in HC but appears in structure(s) used by * both HC and GC. The main purpose is to make sure structures have the same * size when built for different architectures. * * @param HCType The HC type. */ #define HCPTRTYPE(HCType) CTXTYPE(RTHCPTR, HCType, HCType) /** @def R3PTRTYPE * Declare a pointer which is used in R3 but appears in structure(s) used by * both HC and GC. The main purpose is to make sure structures have the same * size when built for different architectures. * * @param R3Type The R3 type. */ #define R3PTRTYPE(R3Type) CTXTYPE(RTHCUINTPTR, R3Type, RTHCUINTPTR) /** @def R0PTRTYPE * Declare a pointer which is used in R0 but appears in structure(s) used by * both HC and GC. The main purpose is to make sure structures have the same * size when built for different architectures. * * @param R0Type The R0 type. */ #define R0PTRTYPE(R0Type) CTXTYPE(RTHCUINTPTR, RTHCUINTPTR, R0Type) /** @def CTXSUFF * Adds the suffix of the current context to the passed in * identifier name. The suffix is HC or GC. * * This is macro should only be used in shared code to avoid a forrest of ifdefs. * @param var Identifier name. */ /** @def OTHERCTXSUFF * Adds the suffix of the other context to the passed in * identifier name. The suffix is HC or GC. * * This is macro should only be used in shared code to avoid a forrest of ifdefs. * @param var Identifier name. */ #ifdef IN_GC # define CTXSUFF(var) var##GC # define OTHERCTXSUFF(var) var##HC #else # define CTXSUFF(var) var##HC # define OTHERCTXSUFF(var) var##GC #endif /** @def CTXALLSUFF * Adds the suffix of the current context to the passed in * identifier name. The suffix is R3, R0 or GC. * * This is macro should only be used in shared code to avoid a forrest of ifdefs. * @param var Identifier name. */ #ifdef IN_GC # define CTXALLSUFF(var) var##GC #elif defined(IN_RING0) # define CTXALLSUFF(var) var##R0 #else # define CTXALLSUFF(var) var##R3 #endif /** @def CTXMID * Adds the current context as a middle name of an identifier name * The middle name is HC or GC. * * This is macro should only be used in shared code to avoid a forrest of ifdefs. * @param first First name. * @param last Surname. */ /** @def OTHERCTXMID * Adds the other context as a middle name of an identifier name * The middle name is HC or GC. * * This is macro should only be used in shared code to avoid a forrest of ifdefs. * @param first First name. * @param last Surname. */ #ifdef IN_GC # define CTXMID(first, last) first##GC##last # define OTHERCTXMID(first, last) first##HC##last #else # define CTXMID(first, last) first##HC##last # define OTHERCTXMID(first, last) first##GC##last #endif /** @def CTXALLMID * Adds the current context as a middle name of an identifier name * The middle name is R3, R0 or GC. * * This is macro should only be used in shared code to avoid a forrest of ifdefs. * @param first First name. * @param last Surname. */ #ifdef IN_GC # define CTXALLMID(first, last) first##GC##last #elif defined(IN_RING0) # define CTXALLMID(first, last) first##R0##last #else # define CTXALLMID(first, last) first##R3##last #endif /** @def R3STRING * A macro which in GC and R0 will return a dummy string while in R3 it will return * the parameter. * * This is typically used to wrap description strings in structures shared * between R3, R0 and/or GC. The intention is to avoid the \#ifdef IN_RING3 mess. * * @param pR3String The R3 string. Only referenced in R3. * @see R0STRING and GCSTRING */ #ifdef IN_RING3 # define R3STRING(pR3String) (pR3String) #else # define R3STRING(pR3String) ("") #endif /** @def R0STRING * A macro which in GC and R3 will return a dummy string while in R0 it will return * the parameter. * * This is typically used to wrap description strings in structures shared * between R3, R0 and/or GC. The intention is to avoid the \#ifdef IN_RING0 mess. * * @param pR0String The R0 string. Only referenced in R0. * @see R3STRING and GCSTRING */ #ifdef IN_RING0 # define R0STRING(pR0String) (pR0String) #else # define R0STRING(pR0String) ("") #endif /** @def GCSTRING * A macro which in R3 and R0 will return a dummy string while in GC it will return * the parameter. * * This is typically used to wrap description strings in structures shared * between R3, R0 and/or GC. The intention is to avoid the \#ifdef IN_GC mess. * * @param pR0String The GC string. Only referenced in GC. * @see R3STRING, R0STRING */ #ifdef IN_GC # define GCSTRING(pR0String) (pGCString) #else # define GCSTRING(pR0String) ("") #endif /** @def HCSTRING * Macro which in GC will return a dummy string while in HC will return * the parameter. * * This is typically used to wrap description strings in structures shared * between HC and GC. The intention is to avoid the \#ifdef IN_GC kludge. * * @param pHCString The HC string. Only referenced in HC. * @deprecated Use R3STRING or R0STRING instead. */ #ifdef IN_GC # define HCSTRING(pHCString) ("") #else # define HCSTRING(pHCString) (pHCString) #endif /** @def RTCALL * The standard calling convention for the Runtime interfaces. */ #ifdef _MSC_VER # define RTCALL __cdecl #elif defined(__GNUC__) && defined(IN_RING0) && !(defined(__OS2__) || defined(__AMD64__)) /* the latter is kernel/gcc */ # define RTCALL __attribute__((cdecl,regparm(0))) #else # define RTCALL #endif /** @def DECLEXPORT * How to declare an exported function. * @param type The return type of the function declaration. */ #if defined(_MSC_VER) || defined(__OS2__) # define DECLEXPORT(type) __declspec(dllexport) type #else # define DECLEXPORT(type) type #endif /** @def DECLIMPORT * How to declare an imported function. * @param type The return type of the function declaration. */ #if defined(_MSC_VER) || defined(__OS2__) # define DECLIMPORT(type) __declspec(dllimport) type #else # define DECLIMPORT(type) type #endif /** @def DECLASM * How to declare an internal assembly function. * @param type The return type of the function declaration. */ #ifdef __cplusplus # ifdef _MSC_VER # define DECLASM(type) extern "C" type __cdecl # else # define DECLASM(type) extern "C" type # endif #else # ifdef _MSC_VER # define DECLASM(type) type __cdecl # else # define DECLASM(type) type # endif #endif /** @def DECLASMTYPE * How to declare an internal assembly function type. * @param type The return type of the function. */ #ifdef _MSC_VER # define DECLASMTYPE(type) type __cdecl #else # define DECLASMTYPE(type) type #endif /** @def DECLCALLBACK * How to declare an call back function type. * @param type The return type of the function declaration. */ #define DECLCALLBACK(type) type RTCALL /** @def DECLCALLBACKPTR * How to declare an call back function pointer. * @param type The return type of the function declaration. * @param name The name of the variable member. */ #define DECLCALLBACKPTR(type, name) type (RTCALL * name) /** @def DECLCALLBACKMEMBER * How to declare an call back function pointer member. * @param type The return type of the function declaration. * @param name The name of the struct/union/class member. */ #define DECLCALLBACKMEMBER(type, name) type (RTCALL * name) /** @def DECLR3CALLBACKMEMBER * How to declare an call back function pointer member - R3 Ptr. * @param type The return type of the function declaration. * @param name The name of the struct/union/class member. * @param args The argument list enclosed in parentheses. */ #ifdef IN_RING3 # define DECLR3CALLBACKMEMBER(type, name, args) type (RTCALL * name) args #else # define DECLR3CALLBACKMEMBER(type, name, args) RTHCPTR name #endif /** @def DECLGCCALLBACKMEMBER * How to declare an call back function pointer member - GC Ptr. * @param type The return type of the function declaration. * @param name The name of the struct/union/class member. * @param args The argument list enclosed in parentheses. */ #ifdef IN_GC # define DECLGCCALLBACKMEMBER(type, name, args) type (RTCALL * name) args #else # define DECLGCCALLBACKMEMBER(type, name, args) RTGCPTR name #endif /** @def DECLR0CALLBACKMEMBER * How to declare an call back function pointer member - R0 Ptr. * @param type The return type of the function declaration. * @param name The name of the struct/union/class member. * @param args The argument list enclosed in parentheses. */ #ifdef IN_RING0 # define DECLR0CALLBACKMEMBER(type, name, args) type (RTCALL * name) args #else # define DECLR0CALLBACKMEMBER(type, name, args) RTHCPTR name #endif /** @def DECLINLINE * How to declare a function as inline. * @param type The return type of the function declaration. */ #ifdef __GNUC__ # define DECLINLINE(type) static inline type #elif defined(__cplusplus) # define DECLINLINE(type) inline type #elif defined(_MSC_VER) # define DECLINLINE(type) _inline type #else # define DECLINLINE(type) inline type #endif /** @def IN_RT_R0 * Used to indicate whether we're inside the same link module as * the HC Ring-0 Runtime Library. */ /** @def RTR0DECL(type) * Runtime Library HC Ring-0 export or import declaration. * @param type The return type of the function declaration. */ #ifdef IN_RT_R0 # define RTR0DECL(type) DECLEXPORT(type) RTCALL #else # define RTR0DECL(type) DECLIMPORT(type) RTCALL #endif /** @def IN_RT_R3 * Used to indicate whether we're inside the same link module as * the HC Ring-3 Runtime Library. */ /** @def RTR3DECL(type) * Runtime Library HC Ring-3 export or import declaration. * @param type The return type of the function declaration. */ #ifdef IN_RT_R3 # define RTR3DECL(type) DECLEXPORT(type) RTCALL #else # define RTR3DECL(type) DECLIMPORT(type) RTCALL #endif /** @def IN_RT_GC * Used to indicate whether we're inside the same link module as * the GC Runtime Library. */ /** @def RTGCDECL(type) * Runtime Library HC Ring-3 export or import declaration. * @param type The return type of the function declaration. */ #ifdef IN_RT_GC # define RTGCDECL(type) DECLEXPORT(type) RTCALL #else # define RTGCDECL(type) DECLIMPORT(type) RTCALL #endif /** @def RTDECL(type) * Runtime Library export or import declaration. * Functions declared using this macro exists in all contexts. * @param type The return type of the function declaration. */ #if defined(IN_RT_R3) || defined(IN_RT_GC) || defined(IN_RT_R0) # define RTDECL(type) DECLEXPORT(type) RTCALL #else # define RTDECL(type) DECLIMPORT(type) RTCALL #endif /** @def RTDATADECL(type) * Runtime Library export or import declaration. * Data declared using this macro exists in all contexts. * @param type The return type of the function declaration. */ #if defined(IN_RT_R3) || defined(IN_RT_GC) || defined(IN_RT_R0) # define RTDATADECL(type) DECLEXPORT(type) #else # define RTDATADECL(type) DECLIMPORT(type) #endif /** @def RT_NOCRT * Symbol name wrapper for the No-CRT bits. * * In order to coexist in the same process as other CRTs, we need to * decorate the symbols such that they don't conflict the ones in the * other CRTs. The result of such conflicts / duplicate symbols can * confuse the dynamic loader on unix like systems. * * Define RT_WITHOUT_NOCRT_WRAPPERS to drop the wrapping. */ /** @def RT_NOCRT_STR * Same as RT_NOCRT only it'll return a double quoted string of the result. */ #ifndef RT_WITHOUT_NOCRT_WRAPPERS # define RT_NOCRT(name) nocrt_ ## name # define RT_NOCRT_STR(name) "nocrt_" # name #else # define RT_NOCRT(name) name # define RT_NOCRT_STR(name) #name #endif /** @def RT_LIKELY * Give the compiler a hint that an expression is very likely to hold true. * * Some compilers support explicit branch prediction so that the CPU backend * can hint the processor and also so that code blocks can be reordered such * that the predicted path sees a more linear flow, thus improving cache * behaviour, etc. * * IPRT provides the macros RT_LIKELY() and RT_UNLIKELY() as a way to utilize * this compiler feature when present. * * A few notes about the usage: * * - Generally, use RT_UNLIKELY() with error condition checks (unless you * have some _strong_ reason to do otherwise, in which case document it), * and/or RT_LIKELY() with success condition checks, assuming you want * to optimize for the success path. * * - Other than that, if you don't know the likelihood of a test succeeding * from empirical or other 'hard' evidence, don't make predictions unless * you happen to be a Dirk Gently. * * - These macros are meant to be used in places that get executed a lot. It * is wasteful to make predictions in code that is executed seldomly (e.g. * at subsystem initialization time) as the basic block reording that this * affecs can often generate larger code. * * - Note that RT_SUCCESS() and RT_FAILURE() already makes use of RT_LIKELY() * and RT_UNLIKELY(). Should you wish for prediction free status checks, * use the RT_SUCCESS_NP() and RT_FAILURE_NP() macros instead. * * * @returns the boolean result of the expression. * @param expr The expression that's very likely to be true. * @see RT_UNLIKELY */ /** @def RT_UNLIKELY * Give the compiler a hint that an expression is highly unlikely hold true. * * See the usage instructions give in the RT_LIKELY() docs. * * @returns the boolean result of the expression. * @param expr The expression that's very unlikely to be true. * @see RT_LIKELY */ #if defined(__GNUC__) # if __GNUC__ >= 3 # define RT_LIKELY(expr) __builtin_expect(!!(expr), 1) # define RT_UNLIKELY(expr) __builtin_expect(!!(expr), 0) # else # define RT_LIKELY(expr) (expr) # define RT_UNLIKELY(expr) (expr) # endif #else # define RT_LIKELY(expr) (expr) # define RT_UNLIKELY(expr) (expr) #endif /** @def RT_BIT * Make a bitmask for one integer sized bit. * @param bit Bit number. */ #define RT_BIT(bit) (1U << (bit)) /** @def RT_BIT_32 * Make a 32-bit bitmask for one bit. * @param bit Bit number. */ #define RT_BIT_32(bit) (UINT32_C(1) << (bit)) /** @def RT_BIT_64 * Make a 64-bit bitmask for one bit. * @param bit Bit number. */ #define RT_BIT_64(bit) (UINT64_C(1) << (bit)) /** @def RT_ALIGN * Align macro. * @param u Value to align. * @param uAlignment The alignment. Power of two! * * @remark Be extremely careful when using this macro with type which sizeof != sizeof int. * When possible use any of the other RT_ALIGN_* macros. And when that's not * possible, make 101% sure that uAlignment is specified with a right sized type. * * Specifying an unsigned 32-bit alignment constant with a 64-bit value will give * you a 32-bit return value! * * In short: Don't use this macro. Use RT_ALIGN_T() instead. */ #define RT_ALIGN(u, uAlignment) ( ((u) + ((uAlignment) - 1)) & ~((uAlignment) - 1) ) /** @def RT_ALIGN_T * Align macro. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param type Integer type to use while aligning. * @remark This macro is the prefered alignment macro, it doesn't have any of the pitfalls RT_ALIGN has. */ #define RT_ALIGN_T(u, uAlignment, type) ( ((type)(u) + ((uAlignment) - 1)) & ~(type)((uAlignment) - 1) ) /** @def RT_ALIGN_32 * Align macro for a 32-bit value. * @param u32 Value to align. * @param uAlignment The alignment. Power of two! */ #define RT_ALIGN_32(u32, uAlignment) RT_ALIGN_T(u32, uAlignment, uint32_t) /** @def RT_ALIGN_64 * Align macro for a 64-bit value. * @param u64 Value to align. * @param uAlignment The alignment. Power of two! */ #define RT_ALIGN_64(u64, uAlignment) RT_ALIGN_T(u64, uAlignment, uint64_t) /** @def RT_ALIGN_Z * Align macro for size_t. * @param cb Value to align. * @param uAlignment The alignment. Power of two! */ #define RT_ALIGN_Z(cb, uAlignment) RT_ALIGN_T(cb, uAlignment, size_t) /** @def RT_ALIGN_P * Align macro for pointers. * @param pv Value to align. * @param uAlignment The alignment. Power of two! */ #define RT_ALIGN_P(pv, uAlignment) RT_ALIGN_PT(pv, uAlignment, void *) /** @def RT_ALIGN_PT * Align macro for pointers with type cast. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param CastType The type to cast the result to. */ #define RT_ALIGN_PT(u, uAlignment, CastType) ((CastType)RT_ALIGN_T(u, uAlignment, uintptr_t)) /** @def RT_ALIGN_R3PT * Align macro for ring-3 pointers with type cast. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param CastType The type to cast the result to. */ #define RT_ALIGN_R3PT(u, uAlignment, CastType) ((CastType)RT_ALIGN_T(u, uAlignment, RTR3UINTPTR)) /** @def RT_ALIGN_R0PT * Align macro for ring-0 pointers with type cast. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param CastType The type to cast the result to. */ #define RT_ALIGN_R0PT(u, uAlignment, CastType) ((CastType)RT_ALIGN_T(u, uAlignment, RTR0UINTPTR)) /** @def RT_ALIGN_GCPT * Align macro for GC pointers with type cast. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param CastType The type to cast the result to. */ #define RT_ALIGN_GCPT(u, uAlignment, CastType) ((CastType)RT_ALIGN_T(u, uAlignment, RTGCUINTPTR)) /** @def RT_OFFSETOF * Our own special offsetof() variant. * * This differs from the usual offsetof() in that it's not relying on builtin * compiler stuff and thus can use variables in arrays the structure may * contain. If in this usful to determin the sizes of structures ending * with a variable length field. * * @returns offset into the structure of the specified member. * @param type Structure type. * @param member Member. */ #if defined(__GNUC__) && defined(__cplusplus) # define RT_OFFSETOF(type, member) ( (int)__builtin_offsetof(type, member) ) #else # define RT_OFFSETOF(type, member) ( (int)(uintptr_t)&( ((type *)(void *)0)->member) ) #endif /** @def RT_SIZEOFMEMB * Get the size of a structure member. * * @returns size of the structure member. * @param type Structure type. * @param member Member. */ #define RT_SIZEOFMEMB(type, member) ( sizeof(((type *)(void *)0)->member) ) /** @def RT_ELEMENTS * Calcs the number of elements in an array. * @returns Element count. * @param aArray Array in question. */ #define RT_ELEMENTS(aArray) ( sizeof(aArray) / sizeof((aArray)[0]) ) /** @def RT_MAX * Finds the maximum value. * @returns The higher of the two. * @param Value1 Value 1 * @param Value2 Value 2 */ #define RT_MAX(Value1, Value2) ((Value1) >= (Value2) ? (Value1) : (Value2)) /** @def RT_MIN * Finds the minimum value. * @returns The lower of the two. * @param Value1 Value 1 * @param Value2 Value 2 */ #define RT_MIN(Value1, Value2) ((Value1) <= (Value2) ? (Value1) : (Value2)) /** @def RT_ABS * Get the absolute (non-negative) value. * @returns The absolute value of Value. * @param Value The value. */ #define RT_ABS(Value) ((Value) >= 0 ? (Value) : -(Value)) /** @def RT_LOWORD * Gets the low word (=uint16_t) of something. */ #define RT_LOWORD(a) ((a) & 0xffff) /** @def RT_HIWORD * Gets the high word (=uint16_t) of a 32 bit something. */ #define RT_HIWORD(a) ((a) >> 16) /** @def RT_LOBYTE * Gets the low byte of something. */ #define RT_LOBYTE(a) ((a) & 0xff) /** @def RT_HIBYTE * Gets the low byte of a 16 bit something. */ #define RT_HIBYTE(a) ((a) >> 8) /** @def RT_BYTE1 * Gets first byte of something. */ #define RT_BYTE1(a) ((a) & 0xff) /** @def RT_BYTE2 * Gets second byte of something. */ #define RT_BYTE2(a) (((a) >> 8) & 0xff) /** @def RT_BYTE3 * Gets second byte of something. */ #define RT_BYTE3(a) (((a) >> 16) & 0xff) /** @def RT_BYTE4 * Gets fourth byte of something. */ #define RT_BYTE4(a) (((a) >> 24) & 0xff) /** @def RT_MAKE_U64 * Constructs a uint64_t value from two uint32_t values. */ #define RT_MAKE_U64(Lo, Hi) ( (uint64_t)((uint32_t)(Hi)) << 32 | (uint32_t)(Lo) ) /** @def RT_MAKE_U64_FROM_U16 * Constructs a uint64_t value from four uint16_t values. */ #define RT_MAKE_U64_FROM_U16(w0, w1, w2, w3) \ ( (uint64_t)((uint16_t)(w3)) << 48 \ | (uint64_t)((uint16_t)(w2)) << 32 \ | (uint32_t)((uint16_t)(w1)) << 16 \ | (uint16_t)(w0) ) /** @def RT_MAKE_U64_FROM_U8 * Constructs a uint64_t value from eight uint8_t values. */ #define RT_MAKE_U64_FROM_U8(b0, b1, b2, b3, b4, b5, b6, b7) \ ( (uint64_t)((uint8_t)(b7)) << 56 \ | (uint64_t)((uint8_t)(b6)) << 48 \ | (uint64_t)((uint8_t)(b5)) << 40 \ | (uint64_t)((uint8_t)(b4)) << 32 \ | (uint32_t)((uint8_t)(b3)) << 24 \ | (uint32_t)((uint8_t)(b2)) << 16 \ | (uint16_t)((uint8_t)(b1)) << 8 \ | (uint8_t)(b0) ) /** @def RT_MAKE_U32 * Constructs a uint32_t value from two uint16_t values. */ #define RT_MAKE_U32(Lo, Hi) ( (uint32_t)((uint16_t)(Hi)) << 16 | (uint16_t)(Lo) ) /** @def RT_MAKE_U32_FROM_U8 * Constructs a uint32_t value from four uint8_t values. */ #define RT_MAKE_U32_FROM_U8(b0, b1, b2, b3) \ ( (uint32_t)((uint8_t)(b3)) << 24 \ | (uint32_t)((uint8_t)(b2)) << 16 \ | (uint16_t)((uint8_t)(b1)) << 8 \ | (uint8_t)(b0) ) /** @todo remove this after uses in VUSBUrb.cpp has been corrected. */ #define MAKE_U32_FROM_U8(b0,b1,b2,b3) RT_MAKE_U32_FROM_U8(b0,b1,b2,b3) /** @def RT_MAKE_U16 * Constructs a uint32_t value from two uint16_t values. */ #define RT_MAKE_U16(Lo, Hi) ( (uint16_t)((uint8_t)(Hi)) << 8 | (uint8_t)(Lo) ) /** @def RT_H2LE_U32 * Converts uint32_t value from host to little endian byte order. */ #define RT_H2LE_U32(u32) (u32) /** @def RT_H2LE_U16 * Converts uint16_t value from host to little endian byte order. */ #define RT_H2LE_U16(u16) (u16) /** @def RT_LE2H_U32 * Converts uint32_t value from little endian to host byte order. */ #define RT_LE2H_U32(u32) (u32) /** @def RT_LE2H_U16 * Converts uint16_t value from little endian to host byte order. */ #define RT_LE2H_U16(u16) (u16) /** @def RT_H2BE_U32 * Converts uint32_t value from host to big endian byte order. */ #define RT_H2BE_U32(u32) (RT_BYTE4(u32) | (RT_BYTE3(u32) << 8) | (RT_BYTE2(u32) << 16) | (RT_BYTE1(u32) << 24)) /** @def RT_H2BE_U16 * Converts uint16_t value from host to big endian byte order. */ #define RT_H2BE_U16(u16) (RT_HIBYTE(u16) | (RT_LOBYTE(u16) << 8)) /** @def RT_BE2H_U32 * Converts uint32_t value from big endian to host byte order. */ #define RT_BE2H_U32(u32) (RT_BYTE4(u32) | (RT_BYTE3(u32) << 8) | (RT_BYTE2(u32) << 16) | (RT_BYTE1(u32) << 24)) /** @def RT_BE2H_U16 * Converts uint16_t value from big endian to host byte order. */ #define RT_BE2H_U16(u16) (RT_HIBYTE(u16) | (RT_LOBYTE(u16) << 8)) /** @def RT_H2N_U32 * Converts uint32_t value from host to network byte order. */ #define RT_H2N_U32(u32) RT_H2BE_U32(u32) /** @def RT_H2N_U16 * Converts uint16_t value from host to network byte order. */ #define RT_H2N_U16(u16) RT_H2BE_U16(u16) /** @def RT_N2H_U32 * Converts uint32_t value from network to host byte order. */ #define RT_N2H_U32(u32) RT_BE2H_U32(u32) /** @def RT_N2H_U16 * Converts uint16_t value from network to host byte order. */ #define RT_N2H_U16(u16) RT_BE2H_U16(u16) /** @def RT_NO_DEPRECATED_MACROS * Define RT_NO_DEPRECATED_MACROS to not define deprecated macros. */ #ifndef RT_NO_DEPRECATED_MACROS /** @copydoc BIT * @deprecated Use RT_BIT. */ # define BIT(bit) RT_BIT(bit) /** @deprecated Use RT_BIT64. */ # define BIT64(bit) (1ULL << (bit)) /** @copydoc RT_ALIGN_P * @deprecated use RT_ALIGN_P. */ # define ALIGNP(pv, uAlignment) RT_ALIGN_P(pv, uAlignment) /** @copydoc RT_SIZEOFMEMB * @deprecated Use RT_SIZEOFMEMB. */ # define SIZEOFMEMB(type, member) RT_SIZEOFMEMB(type, member) /** @copydoc RT_ELEMENTS * @deprecated use RT_ELEMENTS. */ # define ELEMENTS(aArray) RT_ELEMENTS(aArray) #endif /* * The BSD sys/param.h + machine/param.h file is a major source of * namespace pollution. Kill off some of the worse ones unless we're * compiling kernel code. */ #if defined(__DARWIN__) \ && !defined(KERNEL) \ && !defined(RT_NO_BSD_PARAM_H_UNDEFING) \ && ( defined(_SYS_PARAM_H_) || defined(_I386_PARAM_H_) ) /* sys/param.h: */ # undef PSWP # undef PVM # undef PINOD # undef PRIBO # undef PVFS # undef PZERO # undef PSOCK # undef PWAIT # undef PLOCK # undef PPAUSE # undef PUSER # undef PRIMASK # undef MINBUCKET # undef MAXALLOCSAVE # undef FSHIFT # undef FSCALE /* i386/machine.h: */ # undef ALIGN # undef ALIGNBYTES # undef DELAY # undef STATUS_WORD # undef USERMODE # undef BASEPRI # undef MSIZE # undef CLSIZE # undef CLSIZELOG2 #endif /** @def NULL * NULL pointer. */ #ifndef NULL # ifdef __cplusplus # define NULL 0 # else # define NULL ((void*)0) # endif #endif /** @def NIL_OFFSET * NIL offset. * Whenever we use offsets instead of pointers to save space and relocation effort * NIL_OFFSET shall be used as the equivalent to NULL. */ #define NIL_OFFSET (~0U) /** @def NOREF * Keeps the compiler from bitching about an unused parameters. */ #define NOREF(var) (void)(var) /** @def Breakpoint * Emit a debug breakpoint instruction. * * Use this for instrumenting a debugging session only! * No comitted code shall use Breakpoint(). */ #ifdef __GNUC__ # define Breakpoint() __asm__ __volatile__("int $3\n\t") #endif #ifdef _MSC_VER # define Breakpoint() __asm int 3 #endif #ifndef Breakpoint # error "This compiler is not supported!" #endif /** Size Constants * (Of course, these are binary computer terms, not SI.) * @{ */ /** 1 K (Kilo) (1 024). */ #define _1K 0x00000400 /** 4 K (Kilo) (4 096). */ #define _4K 0x00001000 /** 32 K (Kilo) (32 678). */ #define _32K 0x00008000 /** 64 K (Kilo) (65 536). */ #define _64K 0x00010000 /** 128 K (Kilo) (131 072). */ #define _128K 0x00020000 /** 256 K (Kilo) (262 144). */ #define _256K 0x00040000 /** 512 K (Kilo) (524 288). */ #define _512K 0x00080000 /** 1 M (Mega) (1 048 576). */ #define _1M 0x00100000 /** 2 M (Mega) (2 097 152). */ #define _2M 0x00200000 /** 4 M (Mega) (4 194 304). */ #define _4M 0x00400000 /** 1 G (Giga) (1 073 741 824). */ #define _1G 0x40000000 /** 2 G (Giga) (2 147 483 648). (32-bit) */ #define _2G32 0x80000000U /** 2 G (Giga) (2 147 483 648). (64-bit) */ #define _2G 0x0000000080000000LL /** 4 G (Giga) (4 294 967 296). */ #define _4G 0x0000000100000000LL /** 1 T (Tera) (1 099 511 627 776). */ #define _1T 0x0000010000000000LL /** 1 P (Peta) (1 125 899 906 842 624). */ #define _1P 0x0004000000000000LL /** 1 E (Exa) (1 152 921 504 606 846 976). */ #define _1E 0x1000000000000000LL /** 2 E (Exa) (2 305 843 009 213 693 952). */ #define _2E 0x2000000000000000ULL /** @} */ /** @def VALID_PTR * Pointer validation macro. * @param ptr */ #if defined(__AMD64__) # ifdef IN_RING3 # if defined(__DARWIN__) /* first 4GB is reserved for legacy kernel. */ # define VALID_PTR(ptr) ( (uintptr_t)(ptr) >= _4G \ && !((uintptr_t)(ptr) & 0xffff800000000000ULL) ) # else # define VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x1000U >= 0x2000U \ && !((uintptr_t)(ptr) & 0xffff800000000000ULL) ) # endif # else /* !IN_RING3 */ # define VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x1000U >= 0x2000U \ && ( ((uintptr_t)(ptr) & 0xffff800000000000ULL) == 0xffff800000000000ULL \ || ((uintptr_t)(ptr) & 0xffff800000000000ULL) == 0) ) # endif /* !IN_RING3 */ #elif defined(__X86__) # define VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x1000U >= 0x2000U ) #else # error "Architecture identifier missing / not implemented." #endif /** @def N_ * The \#define N_ is used mark a string for translation. This is usable in * any part of the code, as it is only used by the tools that create message * catalogs. This macro is a no-op as far as the compiler and code generation * is concerned. * * If you want to both mark a string for translation and translate it, use _. */ #define N_(s) (s) /** @def _ * The \#define _ is used mark a string for translation and to translate it in * one step. * * If you want to only mark a string for translation, use N_. */ #define _(s) gettext(s) /** @def __PRETTY_FUNCTION__ * With GNU C we'd like to use the builtin __PRETTY_FUNCTION__, so define that for the other compilers. */ #if !defined(__GNUC__) && !defined(__PRETTY_FUNCTION__) # define __PRETTY_FUNCTION__ __FUNCTION__ #endif /** @def RT_STRICT * The \#define RT_STRICT controls whether or not assertions and other runtime checks * should be compiled in or not. * * If you want assertions which are not a subject to compile time options use * the AssertRelease*() flavors. */ #if !defined(RT_STRICT) && defined(DEBUG) # define RT_STRICT #endif /** Source position. */ #define RT_SRC_POS __FILE__, __LINE__, __PRETTY_FUNCTION__ /** Source position declaration. */ #define RT_SRC_POS_DECL const char *pszFile, unsigned iLine, const char *pszFunction /** Source position arguments. */ #define RT_SRC_POS_ARGS pszFile, iLine, pszFunction /** @} */ /** @defgroup grp_rt_cdefs_cpp Special Macros for C++ * @ingroup grp_rt_cdefs * @{ */ #ifdef __cplusplus /** @def WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP * Macro to work around error C2593 of the not-so-smart MSVC 7.x ambiguity * resolver. The following snippet clearly demonstrates the code causing this * error: * @code * class A * { * public: * operator bool() const { return false; } * operator int*() const { return NULL; } * }; * int main() * { * A a; * if (!a); * if (a && 0); * return 0; * } * @endcode * The code itself seems pretty valid to me and GCC thinks the same. * * This macro fixes the compiler error by explicitly overloading implicit * global operators !, && and || that take the given class instance as one of * their arguments. * * The best is to use this macro right after the class declaration. * * @note The macro expands to nothing for compilers other than MSVC. * * @param Cls Class to apply the workaround to */ #if defined(_MSC_VER) # define WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP(Cls) \ inline bool operator! (const Cls &that) { return !bool (that); } \ inline bool operator&& (const Cls &that, bool b) { return bool (that) && b; } \ inline bool operator|| (const Cls &that, bool b) { return bool (that) || b; } \ inline bool operator&& (bool b, const Cls &that) { return b && bool (that); } \ inline bool operator|| (bool b, const Cls &that) { return b || bool (that); } #else # define WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP(Cls) #endif /** @def WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP_TPL * Version of WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP for template classes. * * @param Tpl Name of the template class to apply the workaround to * @param ArgsDecl arguments of the template, as declared in |<>| after the * |template| keyword, including |<>| * @param Args arguments of the template, as specified in |<>| after the * template class name when using the, including |<>| * * Example: * @code * // template class declaration * template * class Foo { ... }; * // applied workaround * WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP_TPL (Foo, , ) * @endcode */ #if defined(_MSC_VER) # define WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP_TPL(Tpl, ArgsDecl, Args) \ template ArgsDecl \ inline bool operator! (const Tpl Args &that) { return !bool (that); } \ template ArgsDecl \ inline bool operator&& (const Tpl Args &that, bool b) { return bool (that) && b; } \ template ArgsDecl \ inline bool operator|| (const Tpl Args &that, bool b) { return bool (that) || b; } \ template ArgsDecl \ inline bool operator&& (bool b, const Tpl Args &that) { return b && bool (that); } \ template ArgsDecl \ inline bool operator|| (bool b, const Tpl Args &that) { return b || bool (that); } #else # define WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP_TPL(Tpl, ArgsDecl, Args) #endif /** @def DECLARE_CLS_COPY_CTOR_ASSIGN_NOOP * Declares the copy constructor and the assignment operation as inlined no-ops * (non-existent functions) for the given class. Use this macro inside the * private section if you want to effectively disable these operations for your * class. * * @param Cls class name to declare for */ #define DECLARE_CLS_COPY_CTOR_ASSIGN_NOOP(Cls) \ inline Cls (Cls &); \ inline Cls &operator= (Cls &); /** @def DECLARE_CLS_NEW_DELETE_NOOP * Declares the new and delete operations as no-ops (non-existent functions) * for the given class. Use this macro inside the private section if you want * to effectively limit creating class instances on the stack only. * * @note The destructor of the given class must not be virtual, otherwise a * compile time error will occur. Note that this is not a drawback: having * the virtual destructor for a stack-based class is absolutely useless * (the real class of the stack-based instance is always known to the compiler * at compile time, so it will always call the correct destructor). * * @param Cls class name to declare for */ #define DECLARE_CLS_NEW_DELETE_NOOP(Cls) \ inline static void *operator new (size_t); \ inline static void operator delete (void *); /** * Shortcut to |const_cast()| that automatically derives the correct * type (class) for the const_cast template's argument from its own argument. * Can be used to temporarily cancel the |const| modifier on the left-hand side * of assignment expressions, like this: * @code * const Class that; * ... * unconst (that) = some_value; * @endcode */ template inline C &unconst (const C &that) { return const_cast (that); } /** * Shortcut to |const_cast()| that automatically derives the correct * type (class) for the const_cast template's argument from its own argument. * Can be used to temporarily cancel the |const| modifier on the left-hand side * of assignment expressions, like this: * @code * const Class *that; * ... * unconst (that) = some_value; * @endcode */ template inline C *unconst (const C *that) { return const_cast (that); } #endif /* defined(__cplusplus) */ /** @} */ #endif