/** @file * innotek Portable Runtime - Assembly Functions. */ /* * Copyright (C) 2006-2007 innotek GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ #ifndef ___iprt_asm_h #define ___iprt_asm_h #include #include #include /** @todo #include for PAGE_SIZE. */ /** @def RT_INLINE_ASM_USES_INTRIN * Defined as 1 if we're using a _MSC_VER 1400. * Otherwise defined as 0. */ #ifdef _MSC_VER # if _MSC_VER >= 1400 # define RT_INLINE_ASM_USES_INTRIN 1 # include /* Emit the intrinsics at all optimization levels. */ # pragma intrinsic(_ReadWriteBarrier) # pragma intrinsic(__cpuid) # pragma intrinsic(_enable) # pragma intrinsic(_disable) # pragma intrinsic(__rdtsc) # pragma intrinsic(__readmsr) # pragma intrinsic(__writemsr) # pragma intrinsic(__outbyte) # pragma intrinsic(__outword) # pragma intrinsic(__outdword) # pragma intrinsic(__inbyte) # pragma intrinsic(__inword) # pragma intrinsic(__indword) # pragma intrinsic(__invlpg) # pragma intrinsic(__stosd) # pragma intrinsic(__stosw) # pragma intrinsic(__stosb) # pragma intrinsic(__readcr0) # pragma intrinsic(__readcr2) # pragma intrinsic(__readcr3) # pragma intrinsic(__readcr4) # pragma intrinsic(__writecr0) # pragma intrinsic(__writecr3) # pragma intrinsic(__writecr4) # pragma intrinsic(_BitScanForward) # pragma intrinsic(_BitScanReverse) # pragma intrinsic(_bittest) # pragma intrinsic(_bittestandset) # pragma intrinsic(_bittestandreset) # pragma intrinsic(_bittestandcomplement) # pragma intrinsic(_byteswap_ushort) # pragma intrinsic(_byteswap_ulong) # pragma intrinsic(_interlockedbittestandset) # pragma intrinsic(_interlockedbittestandreset) # pragma intrinsic(_InterlockedAnd) # pragma intrinsic(_InterlockedOr) # pragma intrinsic(_InterlockedIncrement) # pragma intrinsic(_InterlockedDecrement) # pragma intrinsic(_InterlockedExchange) # pragma intrinsic(_InterlockedCompareExchange) # pragma intrinsic(_InterlockedCompareExchange64) # ifdef RT_ARCH_AMD64 # pragma intrinsic(__stosq) # pragma intrinsic(__readcr8) # pragma intrinsic(__writecr8) # pragma intrinsic(_byteswap_uint64) # pragma intrinsic(_InterlockedExchange64) # endif # endif #endif #ifndef RT_INLINE_ASM_USES_INTRIN # define RT_INLINE_ASM_USES_INTRIN 0 #endif /** @defgroup grp_asm ASM - Assembly Routines * @ingroup grp_rt * * @remarks The difference between ordered and unordered atomic operations are that * the former will complete outstanding reads and writes before continuing * while the latter doesn't make any promisses about the order. Ordered * operations doesn't, it seems, make any 100% promise wrt to whether * the operation will complete before any subsequent memory access. * (please, correct if wrong.) * * ASMAtomicSomething operations are all ordered, while ASMAtomicUoSomething * are unordered (note the Uo). * * @{ */ /** @def RT_INLINE_ASM_EXTERNAL * Defined as 1 if the compiler does not support inline assembly. * The ASM* functions will then be implemented in an external .asm file. * * @remark At the present time it's unconfirmed whether or not Microsoft skipped * inline assmebly in their AMD64 compiler. */ #if defined(_MSC_VER) && defined(RT_ARCH_AMD64) # define RT_INLINE_ASM_EXTERNAL 1 #else # define RT_INLINE_ASM_EXTERNAL 0 #endif /** @def RT_INLINE_ASM_GNU_STYLE * Defined as 1 if the compiler understand GNU style inline assembly. */ #if defined(_MSC_VER) # define RT_INLINE_ASM_GNU_STYLE 0 #else # define RT_INLINE_ASM_GNU_STYLE 1 #endif /** @todo find a more proper place for this structure? */ #pragma pack(1) /** IDTR */ typedef struct RTIDTR { /** Size of the IDT. */ uint16_t cbIdt; /** Address of the IDT. */ uintptr_t pIdt; } RTIDTR, *PRTIDTR; #pragma pack() #pragma pack(1) /** GDTR */ typedef struct RTGDTR { /** Size of the GDT. */ uint16_t cbGdt; /** Address of the GDT. */ uintptr_t pGdt; } RTGDTR, *PRTGDTR; #pragma pack() /** @def ASMReturnAddress * Gets the return address of the current (or calling if you like) function or method. */ #ifdef _MSC_VER # ifdef __cplusplus extern "C" # endif void * _ReturnAddress(void); # pragma intrinsic(_ReturnAddress) # define ASMReturnAddress() _ReturnAddress() #elif defined(__GNUC__) || defined(__DOXYGEN__) # define ASMReturnAddress() __builtin_return_address(0) #else # error "Unsupported compiler." #endif /** * Gets the content of the IDTR CPU register. * @param pIdtr Where to store the IDTR contents. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(void) ASMGetIDTR(PRTIDTR pIdtr); #else DECLINLINE(void) ASMGetIDTR(PRTIDTR pIdtr) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("sidt %0" : "=m" (*pIdtr)); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pIdtr] sidt [rax] # else mov eax, [pIdtr] sidt [eax] # endif } # endif } #endif /** * Sets the content of the IDTR CPU register. * @param pIdtr Where to load the IDTR contents from */ #if RT_INLINE_ASM_EXTERNAL DECLASM(void) ASMSetIDTR(const RTIDTR *pIdtr); #else DECLINLINE(void) ASMSetIDTR(const RTIDTR *pIdtr) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("lidt %0" : : "m" (*pIdtr)); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pIdtr] lidt [rax] # else mov eax, [pIdtr] lidt [eax] # endif } # endif } #endif /** * Gets the content of the GDTR CPU register. * @param pGdtr Where to store the GDTR contents. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(void) ASMGetGDTR(PRTGDTR pGdtr); #else DECLINLINE(void) ASMGetGDTR(PRTGDTR pGdtr) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("sgdt %0" : "=m" (*pGdtr)); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pGdtr] sgdt [rax] # else mov eax, [pGdtr] sgdt [eax] # endif } # endif } #endif /** * Get the cs register. * @returns cs. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTSEL) ASMGetCS(void); #else DECLINLINE(RTSEL) ASMGetCS(void) { RTSEL SelCS; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("movw %%cs, %0\n\t" : "=r" (SelCS)); # else __asm { mov ax, cs mov [SelCS], ax } # endif return SelCS; } #endif /** * Get the DS register. * @returns DS. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTSEL) ASMGetDS(void); #else DECLINLINE(RTSEL) ASMGetDS(void) { RTSEL SelDS; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("movw %%ds, %0\n\t" : "=r" (SelDS)); # else __asm { mov ax, ds mov [SelDS], ax } # endif return SelDS; } #endif /** * Get the ES register. * @returns ES. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTSEL) ASMGetES(void); #else DECLINLINE(RTSEL) ASMGetES(void) { RTSEL SelES; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("movw %%es, %0\n\t" : "=r" (SelES)); # else __asm { mov ax, es mov [SelES], ax } # endif return SelES; } #endif /** * Get the FS register. * @returns FS. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTSEL) ASMGetFS(void); #else DECLINLINE(RTSEL) ASMGetFS(void) { RTSEL SelFS; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("movw %%fs, %0\n\t" : "=r" (SelFS)); # else __asm { mov ax, fs mov [SelFS], ax } # endif return SelFS; } # endif /** * Get the GS register. * @returns GS. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTSEL) ASMGetGS(void); #else DECLINLINE(RTSEL) ASMGetGS(void) { RTSEL SelGS; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("movw %%gs, %0\n\t" : "=r" (SelGS)); # else __asm { mov ax, gs mov [SelGS], ax } # endif return SelGS; } #endif /** * Get the SS register. * @returns SS. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTSEL) ASMGetSS(void); #else DECLINLINE(RTSEL) ASMGetSS(void) { RTSEL SelSS; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("movw %%ss, %0\n\t" : "=r" (SelSS)); # else __asm { mov ax, ss mov [SelSS], ax } # endif return SelSS; } #endif /** * Get the TR register. * @returns TR. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTSEL) ASMGetTR(void); #else DECLINLINE(RTSEL) ASMGetTR(void) { RTSEL SelTR; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("str %w0\n\t" : "=r" (SelTR)); # else __asm { str ax mov [SelTR], ax } # endif return SelTR; } #endif /** * Get the [RE]FLAGS register. * @returns [RE]FLAGS. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTCCUINTREG) ASMGetFlags(void); #else DECLINLINE(RTCCUINTREG) ASMGetFlags(void) { RTCCUINTREG uFlags; # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ __volatile__("pushfq\n\t" "popq %0\n\t" : "=g" (uFlags)); # else __asm__ __volatile__("pushfl\n\t" "popl %0\n\t" : "=g" (uFlags)); # endif # else __asm { # ifdef RT_ARCH_AMD64 pushfq pop [uFlags] # else pushfd pop [uFlags] # endif } # endif return uFlags; } #endif /** * Set the [RE]FLAGS register. * @param uFlags The new [RE]FLAGS value. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(void) ASMSetFlags(RTCCUINTREG uFlags); #else DECLINLINE(void) ASMSetFlags(RTCCUINTREG uFlags) { # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ __volatile__("pushq %0\n\t" "popfq\n\t" : : "g" (uFlags)); # else __asm__ __volatile__("pushl %0\n\t" "popfl\n\t" : : "g" (uFlags)); # endif # else __asm { # ifdef RT_ARCH_AMD64 push [uFlags] popfq # else push [uFlags] popfd # endif } # endif } #endif /** * Gets the content of the CPU timestamp counter register. * * @returns TSC. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint64_t) ASMReadTSC(void); #else DECLINLINE(uint64_t) ASMReadTSC(void) { RTUINT64U u; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("rdtsc\n\t" : "=a" (u.s.Lo), "=d" (u.s.Hi)); # else # if RT_INLINE_ASM_USES_INTRIN u.u = __rdtsc(); # else __asm { rdtsc mov [u.s.Lo], eax mov [u.s.Hi], edx } # endif # endif return u.u; } #endif /** * Performs the cpuid instruction returning all registers. * * @param uOperator CPUID operation (eax). * @param pvEAX Where to store eax. * @param pvEBX Where to store ebx. * @param pvECX Where to store ecx. * @param pvEDX Where to store edx. * @remark We're using void pointers to ease the use of special bitfield structures and such. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMCpuId(uint32_t uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX); #else DECLINLINE(void) ASMCpuId(uint32_t uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX) { # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 RTCCUINTREG uRAX, uRBX, uRCX, uRDX; __asm__ ("cpuid\n\t" : "=a" (uRAX), "=b" (uRBX), "=c" (uRCX), "=d" (uRDX) : "0" (uOperator)); *(uint32_t *)pvEAX = (uint32_t)uRAX; *(uint32_t *)pvEBX = (uint32_t)uRBX; *(uint32_t *)pvECX = (uint32_t)uRCX; *(uint32_t *)pvEDX = (uint32_t)uRDX; # else __asm__ ("xchgl %%ebx, %1\n\t" "cpuid\n\t" "xchgl %%ebx, %1\n\t" : "=a" (*(uint32_t *)pvEAX), "=r" (*(uint32_t *)pvEBX), "=c" (*(uint32_t *)pvECX), "=d" (*(uint32_t *)pvEDX) : "0" (uOperator)); # endif # elif RT_INLINE_ASM_USES_INTRIN int aInfo[4]; __cpuid(aInfo, uOperator); *(uint32_t *)pvEAX = aInfo[0]; *(uint32_t *)pvEBX = aInfo[1]; *(uint32_t *)pvECX = aInfo[2]; *(uint32_t *)pvEDX = aInfo[3]; # else uint32_t uEAX; uint32_t uEBX; uint32_t uECX; uint32_t uEDX; __asm { push ebx mov eax, [uOperator] cpuid mov [uEAX], eax mov [uEBX], ebx mov [uECX], ecx mov [uEDX], edx pop ebx } *(uint32_t *)pvEAX = uEAX; *(uint32_t *)pvEBX = uEBX; *(uint32_t *)pvECX = uECX; *(uint32_t *)pvEDX = uEDX; # endif } #endif /** * Performs the cpuid instruction returning all registers. * Some subfunctions of cpuid take ECX as additional parameter (currently known for EAX=4) * * @param uOperator CPUID operation (eax). * @param uIdxECX ecx index * @param pvEAX Where to store eax. * @param pvEBX Where to store ebx. * @param pvECX Where to store ecx. * @param pvEDX Where to store edx. * @remark We're using void pointers to ease the use of special bitfield structures and such. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMCpuId_Idx_ECX(uint32_t uOperator, uint32_t uIdxECX, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX); #else DECLINLINE(void) ASMCpuId_Idx_ECX(uint32_t uOperator, uint32_t uIdxECX, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX) { # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 RTCCUINTREG uRAX, uRBX, uRCX, uRDX; __asm__ ("cpuid\n\t" : "=a" (uRAX), "=b" (uRBX), "=c" (uRCX), "=d" (uRDX) : "0" (uOperator), "2" (uIdxECX)); *(uint32_t *)pvEAX = (uint32_t)uRAX; *(uint32_t *)pvEBX = (uint32_t)uRBX; *(uint32_t *)pvECX = (uint32_t)uRCX; *(uint32_t *)pvEDX = (uint32_t)uRDX; # else __asm__ ("xchgl %%ebx, %1\n\t" "cpuid\n\t" "xchgl %%ebx, %1\n\t" : "=a" (*(uint32_t *)pvEAX), "=r" (*(uint32_t *)pvEBX), "=c" (*(uint32_t *)pvECX), "=d" (*(uint32_t *)pvEDX) : "0" (uOperator), "2" (uIdxECX)); # endif # elif RT_INLINE_ASM_USES_INTRIN int aInfo[4]; /* ??? another intrinsic ??? */ __cpuid(aInfo, uOperator); *(uint32_t *)pvEAX = aInfo[0]; *(uint32_t *)pvEBX = aInfo[1]; *(uint32_t *)pvECX = aInfo[2]; *(uint32_t *)pvEDX = aInfo[3]; # else uint32_t uEAX; uint32_t uEBX; uint32_t uECX; uint32_t uEDX; __asm { push ebx mov eax, [uOperator] mov ecx, [uIdxECX] cpuid mov [uEAX], eax mov [uEBX], ebx mov [uECX], ecx mov [uEDX], edx pop ebx } *(uint32_t *)pvEAX = uEAX; *(uint32_t *)pvEBX = uEBX; *(uint32_t *)pvECX = uECX; *(uint32_t *)pvEDX = uEDX; # endif } #endif /** * Performs the cpuid instruction returning ecx and edx. * * @param uOperator CPUID operation (eax). * @param pvECX Where to store ecx. * @param pvEDX Where to store edx. * @remark We're using void pointers to ease the use of special bitfield structures and such. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMCpuId_ECX_EDX(uint32_t uOperator, void *pvECX, void *pvEDX); #else DECLINLINE(void) ASMCpuId_ECX_EDX(uint32_t uOperator, void *pvECX, void *pvEDX) { uint32_t uEBX; ASMCpuId(uOperator, &uOperator, &uEBX, pvECX, pvEDX); } #endif /** * Performs the cpuid instruction returning edx. * * @param uOperator CPUID operation (eax). * @returns EDX after cpuid operation. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMCpuId_EDX(uint32_t uOperator); #else DECLINLINE(uint32_t) ASMCpuId_EDX(uint32_t uOperator) { RTCCUINTREG xDX; # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 RTCCUINTREG uSpill; __asm__ ("cpuid" : "=a" (uSpill), "=d" (xDX) : "0" (uOperator) : "rbx", "rcx"); # elif (defined(PIC) || defined(RT_OS_DARWIN)) && defined(__i386__) /* darwin: PIC by default. */ __asm__ ("push %%ebx\n\t" "cpuid\n\t" "pop %%ebx\n\t" : "=a" (uOperator), "=d" (xDX) : "0" (uOperator) : "ecx"); # else __asm__ ("cpuid" : "=a" (uOperator), "=d" (xDX) : "0" (uOperator) : "ebx", "ecx"); # endif # elif RT_INLINE_ASM_USES_INTRIN int aInfo[4]; __cpuid(aInfo, uOperator); xDX = aInfo[3]; # else __asm { push ebx mov eax, [uOperator] cpuid mov [xDX], edx pop ebx } # endif return (uint32_t)xDX; } #endif /** * Performs the cpuid instruction returning ecx. * * @param uOperator CPUID operation (eax). * @returns ECX after cpuid operation. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMCpuId_ECX(uint32_t uOperator); #else DECLINLINE(uint32_t) ASMCpuId_ECX(uint32_t uOperator) { RTCCUINTREG xCX; # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 RTCCUINTREG uSpill; __asm__ ("cpuid" : "=a" (uSpill), "=c" (xCX) : "0" (uOperator) : "rbx", "rdx"); # elif (defined(PIC) || defined(RT_OS_DARWIN)) && defined(__i386__) /* darwin: 4.0.1 compiler option / bug? */ __asm__ ("push %%ebx\n\t" "cpuid\n\t" "pop %%ebx\n\t" : "=a" (uOperator), "=c" (xCX) : "0" (uOperator) : "edx"); # else __asm__ ("cpuid" : "=a" (uOperator), "=c" (xCX) : "0" (uOperator) : "ebx", "edx"); # endif # elif RT_INLINE_ASM_USES_INTRIN int aInfo[4]; __cpuid(aInfo, uOperator); xCX = aInfo[2]; # else __asm { push ebx mov eax, [uOperator] cpuid mov [xCX], ecx pop ebx } # endif return (uint32_t)xCX; } #endif /** * Checks if the current CPU supports CPUID. * * @returns true if CPUID is supported. */ DECLINLINE(bool) ASMHasCpuId(void) { #ifdef RT_ARCH_AMD64 return true; /* ASSUME that all amd64 compatible CPUs have cpuid. */ #else /* !RT_ARCH_AMD64 */ bool fRet = false; # if RT_INLINE_ASM_GNU_STYLE uint32_t u1; uint32_t u2; __asm__ ("pushf\n\t" "pop %1\n\t" "mov %1, %2\n\t" "xorl $0x200000, %1\n\t" "push %1\n\t" "popf\n\t" "pushf\n\t" "pop %1\n\t" "cmpl %1, %2\n\t" "setne %0\n\t" "push %2\n\t" "popf\n\t" : "=m" (fRet), "=r" (u1), "=r" (u2)); # else __asm { pushfd pop eax mov ebx, eax xor eax, 0200000h push eax popfd pushfd pop eax cmp eax, ebx setne fRet push ebx popfd } # endif return fRet; #endif /* !RT_ARCH_AMD64 */ } /** * Gets the APIC ID of the current CPU. * * @returns the APIC ID. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint8_t) ASMGetApicId(void); #else DECLINLINE(uint8_t) ASMGetApicId(void) { RTCCUINTREG xBX; # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 RTCCUINTREG uSpill; __asm__ ("cpuid" : "=a" (uSpill), "=b" (xBX) : "0" (1) : "rcx", "rdx"); # elif (defined(PIC) || defined(RT_OS_DARWIN)) && defined(__i386__) RTCCUINTREG uSpill; __asm__ ("mov %%ebx,%1\n\t" "cpuid\n\t" "xchgl %%ebx,%1\n\t" : "=a" (uSpill), "=r" (xBX) : "0" (1) : "ecx", "edx"); # else RTCCUINTREG uSpill; __asm__ ("cpuid" : "=a" (uSpill), "=b" (xBX) : "0" (1) : "ecx", "edx"); # endif # elif RT_INLINE_ASM_USES_INTRIN int aInfo[4]; __cpuid(aInfo, 1); xBX = aInfo[1]; # else __asm { push ebx mov eax, 1 cpuid mov [xBX], ebx pop ebx } # endif return (uint8_t)(xBX >> 24); } #endif /** * Get cr0. * @returns cr0. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(RTCCUINTREG) ASMGetCR0(void); #else DECLINLINE(RTCCUINTREG) ASMGetCR0(void) { RTCCUINTREG uCR0; # if RT_INLINE_ASM_USES_INTRIN uCR0 = __readcr0(); # elif RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ ("movq %%cr0, %0\t\n" : "=r" (uCR0)); # else __asm__ ("movl %%cr0, %0\t\n" : "=r" (uCR0)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, cr0 mov [uCR0], rax # else mov eax, cr0 mov [uCR0], eax # endif } # endif return uCR0; } #endif /** * Sets the CR0 register. * @param uCR0 The new CR0 value. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMSetCR0(RTCCUINTREG uCR0); #else DECLINLINE(void) ASMSetCR0(RTCCUINTREG uCR0) { # if RT_INLINE_ASM_USES_INTRIN __writecr0(uCR0); # elif RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ __volatile__("movq %0, %%cr0\n\t" :: "r" (uCR0)); # else __asm__ __volatile__("movl %0, %%cr0\n\t" :: "r" (uCR0)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [uCR0] mov cr0, rax # else mov eax, [uCR0] mov cr0, eax # endif } # endif } #endif /** * Get cr2. * @returns cr2. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(RTCCUINTREG) ASMGetCR2(void); #else DECLINLINE(RTCCUINTREG) ASMGetCR2(void) { RTCCUINTREG uCR2; # if RT_INLINE_ASM_USES_INTRIN uCR2 = __readcr2(); # elif RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ ("movq %%cr2, %0\t\n" : "=r" (uCR2)); # else __asm__ ("movl %%cr2, %0\t\n" : "=r" (uCR2)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, cr2 mov [uCR2], rax # else mov eax, cr2 mov [uCR2], eax # endif } # endif return uCR2; } #endif /** * Sets the CR2 register. * @param uCR2 The new CR0 value. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(void) ASMSetCR2(RTCCUINTREG uCR2); #else DECLINLINE(void) ASMSetCR2(RTCCUINTREG uCR2) { # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ __volatile__("movq %0, %%cr2\n\t" :: "r" (uCR2)); # else __asm__ __volatile__("movl %0, %%cr2\n\t" :: "r" (uCR2)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [uCR2] mov cr2, rax # else mov eax, [uCR2] mov cr2, eax # endif } # endif } #endif /** * Get cr3. * @returns cr3. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(RTCCUINTREG) ASMGetCR3(void); #else DECLINLINE(RTCCUINTREG) ASMGetCR3(void) { RTCCUINTREG uCR3; # if RT_INLINE_ASM_USES_INTRIN uCR3 = __readcr3(); # elif RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ ("movq %%cr3, %0\t\n" : "=r" (uCR3)); # else __asm__ ("movl %%cr3, %0\t\n" : "=r" (uCR3)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, cr3 mov [uCR3], rax # else mov eax, cr3 mov [uCR3], eax # endif } # endif return uCR3; } #endif /** * Sets the CR3 register. * * @param uCR3 New CR3 value. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMSetCR3(RTCCUINTREG uCR3); #else DECLINLINE(void) ASMSetCR3(RTCCUINTREG uCR3) { # if RT_INLINE_ASM_USES_INTRIN __writecr3(uCR3); # elif RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ __volatile__ ("movq %0, %%cr3\n\t" : : "r" (uCR3)); # else __asm__ __volatile__ ("movl %0, %%cr3\n\t" : : "r" (uCR3)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [uCR3] mov cr3, rax # else mov eax, [uCR3] mov cr3, eax # endif } # endif } #endif /** * Reloads the CR3 register. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMReloadCR3(void); #else DECLINLINE(void) ASMReloadCR3(void) { # if RT_INLINE_ASM_USES_INTRIN __writecr3(__readcr3()); # elif RT_INLINE_ASM_GNU_STYLE RTCCUINTREG u; # ifdef RT_ARCH_AMD64 __asm__ __volatile__ ("movq %%cr3, %0\n\t" "movq %0, %%cr3\n\t" : "=r" (u)); # else __asm__ __volatile__ ("movl %%cr3, %0\n\t" "movl %0, %%cr3\n\t" : "=r" (u)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, cr3 mov cr3, rax # else mov eax, cr3 mov cr3, eax # endif } # endif } #endif /** * Get cr4. * @returns cr4. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(RTCCUINTREG) ASMGetCR4(void); #else DECLINLINE(RTCCUINTREG) ASMGetCR4(void) { RTCCUINTREG uCR4; # if RT_INLINE_ASM_USES_INTRIN uCR4 = __readcr4(); # elif RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ ("movq %%cr4, %0\t\n" : "=r" (uCR4)); # else __asm__ ("movl %%cr4, %0\t\n" : "=r" (uCR4)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, cr4 mov [uCR4], rax # else push eax /* just in case */ /*mov eax, cr4*/ _emit 0x0f _emit 0x20 _emit 0xe0 mov [uCR4], eax pop eax # endif } # endif return uCR4; } #endif /** * Sets the CR4 register. * * @param uCR4 New CR4 value. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMSetCR4(RTCCUINTREG uCR4); #else DECLINLINE(void) ASMSetCR4(RTCCUINTREG uCR4) { # if RT_INLINE_ASM_USES_INTRIN __writecr4(uCR4); # elif RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ __volatile__ ("movq %0, %%cr4\n\t" : : "r" (uCR4)); # else __asm__ __volatile__ ("movl %0, %%cr4\n\t" : : "r" (uCR4)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [uCR4] mov cr4, rax # else mov eax, [uCR4] _emit 0x0F _emit 0x22 _emit 0xE0 /* mov cr4, eax */ # endif } # endif } #endif /** * Get cr8. * @returns cr8. * @remark The lock prefix hack for access from non-64-bit modes is NOT used and 0 is returned. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(RTCCUINTREG) ASMGetCR8(void); #else DECLINLINE(RTCCUINTREG) ASMGetCR8(void) { # ifdef RT_ARCH_AMD64 RTCCUINTREG uCR8; # if RT_INLINE_ASM_USES_INTRIN uCR8 = __readcr8(); # elif RT_INLINE_ASM_GNU_STYLE __asm__ ("movq %%cr8, %0\t\n" : "=r" (uCR8)); # else __asm { mov rax, cr8 mov [uCR8], rax } # endif return uCR8; # else /* !RT_ARCH_AMD64 */ return 0; # endif /* !RT_ARCH_AMD64 */ } #endif /** * Enables interrupts (EFLAGS.IF). */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMIntEnable(void); #else DECLINLINE(void) ASMIntEnable(void) { # if RT_INLINE_ASM_GNU_STYLE __asm("sti\n"); # elif RT_INLINE_ASM_USES_INTRIN _enable(); # else __asm sti # endif } #endif /** * Disables interrupts (!EFLAGS.IF). */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMIntDisable(void); #else DECLINLINE(void) ASMIntDisable(void) { # if RT_INLINE_ASM_GNU_STYLE __asm("cli\n"); # elif RT_INLINE_ASM_USES_INTRIN _disable(); # else __asm cli # endif } #endif /** * Disables interrupts and returns previous xFLAGS. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(RTCCUINTREG) ASMIntDisableFlags(void); #else DECLINLINE(RTCCUINTREG) ASMIntDisableFlags(void) { RTCCUINTREG xFlags; # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ __volatile__("pushfq\n\t" "cli\n\t" "popq %0\n\t" : "=rm" (xFlags)); # else __asm__ __volatile__("pushfl\n\t" "cli\n\t" "popl %0\n\t" : "=rm" (xFlags)); # endif # elif RT_INLINE_ASM_USES_INTRIN && !defined(RT_ARCH_X86) xFlags = ASMGetFlags(); _disable(); # else __asm { pushfd cli pop [xFlags] } # endif return xFlags; } #endif /** * Reads a machine specific register. * * @returns Register content. * @param uRegister Register to read. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint64_t) ASMRdMsr(uint32_t uRegister); #else DECLINLINE(uint64_t) ASMRdMsr(uint32_t uRegister) { RTUINT64U u; # if RT_INLINE_ASM_GNU_STYLE __asm__ ("rdmsr\n\t" : "=a" (u.s.Lo), "=d" (u.s.Hi) : "c" (uRegister)); # elif RT_INLINE_ASM_USES_INTRIN u.u = __readmsr(uRegister); # else __asm { mov ecx, [uRegister] rdmsr mov [u.s.Lo], eax mov [u.s.Hi], edx } # endif return u.u; } #endif /** * Writes a machine specific register. * * @returns Register content. * @param uRegister Register to write to. * @param u64Val Value to write. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMWrMsr(uint32_t uRegister, uint64_t u64Val); #else DECLINLINE(void) ASMWrMsr(uint32_t uRegister, uint64_t u64Val) { RTUINT64U u; u.u = u64Val; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("wrmsr\n\t" ::"a" (u.s.Lo), "d" (u.s.Hi), "c" (uRegister)); # elif RT_INLINE_ASM_USES_INTRIN __writemsr(uRegister, u.u); # else __asm { mov ecx, [uRegister] mov edx, [u.s.Hi] mov eax, [u.s.Lo] wrmsr } # endif } #endif /** * Reads low part of a machine specific register. * * @returns Register content. * @param uRegister Register to read. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMRdMsr_Low(uint32_t uRegister); #else DECLINLINE(uint32_t) ASMRdMsr_Low(uint32_t uRegister) { uint32_t u32; # if RT_INLINE_ASM_GNU_STYLE __asm__ ("rdmsr\n\t" : "=a" (u32) : "c" (uRegister) : "edx"); # elif RT_INLINE_ASM_USES_INTRIN u32 = (uint32_t)__readmsr(uRegister); #else __asm { mov ecx, [uRegister] rdmsr mov [u32], eax } # endif return u32; } #endif /** * Reads high part of a machine specific register. * * @returns Register content. * @param uRegister Register to read. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMRdMsr_High(uint32_t uRegister); #else DECLINLINE(uint32_t) ASMRdMsr_High(uint32_t uRegister) { uint32_t u32; # if RT_INLINE_ASM_GNU_STYLE __asm__ ("rdmsr\n\t" : "=d" (u32) : "c" (uRegister) : "eax"); # elif RT_INLINE_ASM_USES_INTRIN u32 = (uint32_t)(__readmsr(uRegister) >> 32); # else __asm { mov ecx, [uRegister] rdmsr mov [u32], edx } # endif return u32; } #endif /** * Gets dr7. * * @returns dr7. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTCCUINTREG) ASMGetDR7(void); #else DECLINLINE(RTCCUINTREG) ASMGetDR7(void) { RTCCUINTREG uDR7; # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ ("movq %%dr7, %0\n\t" : "=r" (uDR7)); # else __asm__ ("movl %%dr7, %0\n\t" : "=r" (uDR7)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, dr7 mov [uDR7], rax # else mov eax, dr7 mov [uDR7], eax # endif } # endif return uDR7; } #endif /** * Gets dr6. * * @returns dr6. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTCCUINTREG) ASMGetDR6(void); #else DECLINLINE(RTCCUINTREG) ASMGetDR6(void) { RTCCUINTREG uDR6; # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 __asm__ ("movq %%dr6, %0\n\t" : "=r" (uDR6)); # else __asm__ ("movl %%dr6, %0\n\t" : "=r" (uDR6)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, dr6 mov [uDR6], rax # else mov eax, dr6 mov [uDR6], eax # endif } # endif return uDR6; } #endif /** * Reads and clears DR6. * * @returns DR6. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(RTCCUINTREG) ASMGetAndClearDR6(void); #else DECLINLINE(RTCCUINTREG) ASMGetAndClearDR6(void) { RTCCUINTREG uDR6; # if RT_INLINE_ASM_GNU_STYLE RTCCUINTREG uNewValue = 0xffff0ff0; /* 31-16 and 4-11 are 1's, 12 and 63-31 are zero. */ # ifdef RT_ARCH_AMD64 __asm__ ("movq %%dr6, %0\n\t" "movq %1, %%dr6\n\t" : "=r" (uDR6) : "r" (uNewValue)); # else __asm__ ("movl %%dr6, %0\n\t" "movl %1, %%dr6\n\t" : "=r" (uDR6) : "r" (uNewValue)); # endif # else __asm { # ifdef RT_ARCH_AMD64 mov rax, dr6 mov [uDR6], rax mov rcx, rax mov ecx, 0ffff0ff0h; /* 31-16 and 4-11 are 1's, 12 and 63-31 are zero. */ mov dr6, rcx # else mov eax, dr6 mov [uDR6], eax mov ecx, 0ffff0ff0h; /* 31-16 and 4-11 are 1's, 12 is zero. */ mov dr6, ecx # endif } # endif return uDR6; } #endif /** * Compiler memory barrier. * * Ensure that the compiler does not use any cached (register/tmp stack) memory * values or any outstanding writes when returning from this function. * * This function must be used if non-volatile data is modified by a * device or the VMM. Typical cases are port access, MMIO access, * trapping instruction, etc. */ #if RT_INLINE_ASM_GNU_STYLE # define ASMCompilerBarrier() do { __asm__ __volatile__ ("" : : : "memory"); } while (0) #elif RT_INLINE_ASM_USES_INTRIN # define ASMCompilerBarrier() do { _ReadWriteBarrier(); } while (0) #else /* 2003 should have _ReadWriteBarrier() but I guess we're at 2002 level then... */ DECLINLINE(void) ASMCompilerBarrier(void) { __asm { } } #endif /** * Writes a 8-bit unsigned integer to an I/O port, ordered. * * @param Port I/O port to read from. * @param u8 8-bit integer to write. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMOutU8(RTIOPORT Port, uint8_t u8); #else DECLINLINE(void) ASMOutU8(RTIOPORT Port, uint8_t u8) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("outb %b1, %w0\n\t" :: "Nd" (Port), "a" (u8)); # elif RT_INLINE_ASM_USES_INTRIN __outbyte(Port, u8); # else __asm { mov dx, [Port] mov al, [u8] out dx, al } # endif } #endif /** * Gets a 8-bit unsigned integer from an I/O port, ordered. * * @returns 8-bit integer. * @param Port I/O port to read from. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint8_t) ASMInU8(RTIOPORT Port); #else DECLINLINE(uint8_t) ASMInU8(RTIOPORT Port) { uint8_t u8; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("inb %w1, %b0\n\t" : "=a" (u8) : "Nd" (Port)); # elif RT_INLINE_ASM_USES_INTRIN u8 = __inbyte(Port); # else __asm { mov dx, [Port] in al, dx mov [u8], al } # endif return u8; } #endif /** * Writes a 16-bit unsigned integer to an I/O port, ordered. * * @param Port I/O port to read from. * @param u16 16-bit integer to write. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMOutU16(RTIOPORT Port, uint16_t u16); #else DECLINLINE(void) ASMOutU16(RTIOPORT Port, uint16_t u16) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("outw %w1, %w0\n\t" :: "Nd" (Port), "a" (u16)); # elif RT_INLINE_ASM_USES_INTRIN __outword(Port, u16); # else __asm { mov dx, [Port] mov ax, [u16] out dx, ax } # endif } #endif /** * Gets a 16-bit unsigned integer from an I/O port, ordered. * * @returns 16-bit integer. * @param Port I/O port to read from. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint16_t) ASMInU16(RTIOPORT Port); #else DECLINLINE(uint16_t) ASMInU16(RTIOPORT Port) { uint16_t u16; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("inw %w1, %w0\n\t" : "=a" (u16) : "Nd" (Port)); # elif RT_INLINE_ASM_USES_INTRIN u16 = __inword(Port); # else __asm { mov dx, [Port] in ax, dx mov [u16], ax } # endif return u16; } #endif /** * Writes a 32-bit unsigned integer to an I/O port, ordered. * * @param Port I/O port to read from. * @param u32 32-bit integer to write. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMOutU32(RTIOPORT Port, uint32_t u32); #else DECLINLINE(void) ASMOutU32(RTIOPORT Port, uint32_t u32) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("outl %1, %w0\n\t" :: "Nd" (Port), "a" (u32)); # elif RT_INLINE_ASM_USES_INTRIN __outdword(Port, u32); # else __asm { mov dx, [Port] mov eax, [u32] out dx, eax } # endif } #endif /** * Gets a 32-bit unsigned integer from an I/O port, ordered. * * @returns 32-bit integer. * @param Port I/O port to read from. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMInU32(RTIOPORT Port); #else DECLINLINE(uint32_t) ASMInU32(RTIOPORT Port) { uint32_t u32; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("inl %w1, %0\n\t" : "=a" (u32) : "Nd" (Port)); # elif RT_INLINE_ASM_USES_INTRIN u32 = __indword(Port); # else __asm { mov dx, [Port] in eax, dx mov [u32], eax } # endif return u32; } #endif /** @todo string i/o */ /** * Atomically Exchange an unsigned 8-bit value, ordered. * * @returns Current *pu8 value * @param pu8 Pointer to the 8-bit variable to update. * @param u8 The 8-bit value to assign to *pu8. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(uint8_t) ASMAtomicXchgU8(volatile uint8_t *pu8, uint8_t u8); #else DECLINLINE(uint8_t) ASMAtomicXchgU8(volatile uint8_t *pu8, uint8_t u8) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("xchgb %0, %1\n\t" : "=m" (*pu8), "=r" (u8) : "1" (u8)); # else __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu8] mov al, [u8] xchg [rdx], al mov [u8], al # else mov edx, [pu8] mov al, [u8] xchg [edx], al mov [u8], al # endif } # endif return u8; } #endif /** * Atomically Exchange a signed 8-bit value, ordered. * * @returns Current *pu8 value * @param pi8 Pointer to the 8-bit variable to update. * @param i8 The 8-bit value to assign to *pi8. */ DECLINLINE(int8_t) ASMAtomicXchgS8(volatile int8_t *pi8, int8_t i8) { return (int8_t)ASMAtomicXchgU8((volatile uint8_t *)pi8, (uint8_t)i8); } /** * Atomically Exchange a bool value, ordered. * * @returns Current *pf value * @param pf Pointer to the 8-bit variable to update. * @param f The 8-bit value to assign to *pi8. */ DECLINLINE(bool) ASMAtomicXchgBool(volatile bool *pf, bool f) { #ifdef _MSC_VER return !!ASMAtomicXchgU8((volatile uint8_t *)pf, (uint8_t)f); #else return (bool)ASMAtomicXchgU8((volatile uint8_t *)pf, (uint8_t)f); #endif } /** * Atomically Exchange an unsigned 16-bit value, ordered. * * @returns Current *pu16 value * @param pu16 Pointer to the 16-bit variable to update. * @param u16 The 16-bit value to assign to *pu16. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(uint16_t) ASMAtomicXchgU16(volatile uint16_t *pu16, uint16_t u16); #else DECLINLINE(uint16_t) ASMAtomicXchgU16(volatile uint16_t *pu16, uint16_t u16) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("xchgw %0, %1\n\t" : "=m" (*pu16), "=r" (u16) : "1" (u16)); # else __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu16] mov ax, [u16] xchg [rdx], ax mov [u16], ax # else mov edx, [pu16] mov ax, [u16] xchg [edx], ax mov [u16], ax # endif } # endif return u16; } #endif /** * Atomically Exchange a signed 16-bit value, ordered. * * @returns Current *pu16 value * @param pi16 Pointer to the 16-bit variable to update. * @param i16 The 16-bit value to assign to *pi16. */ DECLINLINE(int16_t) ASMAtomicXchgS16(volatile int16_t *pi16, int16_t i16) { return (int16_t)ASMAtomicXchgU16((volatile uint16_t *)pi16, (uint16_t)i16); } /** * Atomically Exchange an unsigned 32-bit value, ordered. * * @returns Current *pu32 value * @param pu32 Pointer to the 32-bit variable to update. * @param u32 The 32-bit value to assign to *pu32. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMAtomicXchgU32(volatile uint32_t *pu32, uint32_t u32); #else DECLINLINE(uint32_t) ASMAtomicXchgU32(volatile uint32_t *pu32, uint32_t u32) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("xchgl %0, %1\n\t" : "=m" (*pu32), "=r" (u32) : "1" (u32)); # elif RT_INLINE_ASM_USES_INTRIN u32 = _InterlockedExchange((long *)pu32, u32); # else __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu32] mov eax, u32 xchg [rdx], eax mov [u32], eax # else mov edx, [pu32] mov eax, u32 xchg [edx], eax mov [u32], eax # endif } # endif return u32; } #endif /** * Atomically Exchange a signed 32-bit value, ordered. * * @returns Current *pu32 value * @param pi32 Pointer to the 32-bit variable to update. * @param i32 The 32-bit value to assign to *pi32. */ DECLINLINE(int32_t) ASMAtomicXchgS32(volatile int32_t *pi32, int32_t i32) { return (int32_t)ASMAtomicXchgU32((volatile uint32_t *)pi32, (uint32_t)i32); } /** * Atomically Exchange an unsigned 64-bit value, ordered. * * @returns Current *pu64 value * @param pu64 Pointer to the 64-bit variable to update. * @param u64 The 64-bit value to assign to *pu64. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint64_t) ASMAtomicXchgU64(volatile uint64_t *pu64, uint64_t u64); #else DECLINLINE(uint64_t) ASMAtomicXchgU64(volatile uint64_t *pu64, uint64_t u64) { # if defined(RT_ARCH_AMD64) # if RT_INLINE_ASM_USES_INTRIN u64 = _InterlockedExchange64((__int64 *)pu64, u64); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("xchgq %0, %1\n\t" : "=m" (*pu64), "=r" (u64) : "1" (u64)); # else __asm { mov rdx, [pu64] mov rax, [u64] xchg [rdx], rax mov [u64], rax } # endif # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE # if defined(PIC) || defined(RT_OS_DARWIN) /* darwin: 4.0.1 compiler option / bug? */ uint32_t u32 = (uint32_t)u64; __asm__ __volatile__(/*"xchgl %%esi, %5\n\t"*/ "xchgl %%ebx, %3\n\t" "1:\n\t" "lock; cmpxchg8b (%5)\n\t" "jnz 1b\n\t" "xchgl %%ebx, %3\n\t" /*"xchgl %%esi, %5\n\t"*/ : "=A" (u64), "=m" (*pu64) : "0" (*pu64), "m" ( u32 ), "c" ( (uint32_t)(u64 >> 32) ), "S" (pu64) ); # else /* !PIC */ __asm__ __volatile__("1:\n\t" "lock; cmpxchg8b %1\n\t" "jnz 1b\n\t" : "=A" (u64), "=m" (*pu64) : "0" (*pu64), "b" ( (uint32_t)u64 ), "c" ( (uint32_t)(u64 >> 32) )); # endif # else __asm { mov ebx, dword ptr [u64] mov ecx, dword ptr [u64 + 4] mov edi, pu64 mov eax, dword ptr [edi] mov edx, dword ptr [edi + 4] retry: lock cmpxchg8b [edi] jnz retry mov dword ptr [u64], eax mov dword ptr [u64 + 4], edx } # endif # endif /* !RT_ARCH_AMD64 */ return u64; } #endif /** * Atomically Exchange an signed 64-bit value, ordered. * * @returns Current *pi64 value * @param pi64 Pointer to the 64-bit variable to update. * @param i64 The 64-bit value to assign to *pi64. */ DECLINLINE(int64_t) ASMAtomicXchgS64(volatile int64_t *pi64, int64_t i64) { return (int64_t)ASMAtomicXchgU64((volatile uint64_t *)pi64, (uint64_t)i64); } #ifdef RT_ARCH_AMD64 /** * Atomically Exchange an unsigned 128-bit value, ordered. * * @returns Current *pu128. * @param pu128 Pointer to the 128-bit variable to update. * @param u128 The 128-bit value to assign to *pu128. * * @remark We cannot really assume that any hardware supports this. Nor do I have * GAS support for it. So, for the time being we'll BREAK the atomic * bit of this function and use two 64-bit exchanges instead. */ # if 0 /* see remark RT_INLINE_ASM_EXTERNAL */ DECLASM(uint128_t) ASMAtomicXchgU128(volatile uint128_t *pu128, uint128_t u128); # else DECLINLINE(uint128_t) ASMAtomicXchgU128(volatile uint128_t *pu128, uint128_t u128) { if (true)/*ASMCpuId_ECX(1) & RT_BIT(13))*/ { /** @todo this is clumsy code */ RTUINT128U u128Ret; u128Ret.u = u128; u128Ret.s.Lo = ASMAtomicXchgU64(&((PRTUINT128U)(uintptr_t)pu128)->s.Lo, u128Ret.s.Lo); u128Ret.s.Hi = ASMAtomicXchgU64(&((PRTUINT128U)(uintptr_t)pu128)->s.Hi, u128Ret.s.Hi); return u128Ret.u; } #if 0 /* later? */ else { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("1:\n\t" "lock; cmpxchg8b %1\n\t" "jnz 1b\n\t" : "=A" (u128), "=m" (*pu128) : "0" (*pu128), "b" ( (uint64_t)u128 ), "c" ( (uint64_t)(u128 >> 64) )); # else __asm { mov rbx, dword ptr [u128] mov rcx, dword ptr [u128 + 4] mov rdi, pu128 mov rax, dword ptr [rdi] mov rdx, dword ptr [rdi + 4] retry: lock cmpxchg16b [rdi] jnz retry mov dword ptr [u128], rax mov dword ptr [u128 + 4], rdx } # endif } return u128; #endif } # endif #endif /* RT_ARCH_AMD64 */ /** * Atomically Exchange a value which size might differ * between platforms or compilers, ordered. * * @param pu Pointer to the variable to update. * @param uNew The value to assign to *pu. */ #define ASMAtomicXchgSize(pu, uNew) \ do { \ switch (sizeof(*(pu))) { \ case 1: ASMAtomicXchgU8((volatile uint8_t *)(void *)(pu), (uint8_t)(uNew)); break; \ case 2: ASMAtomicXchgU16((volatile uint16_t *)(void *)(pu), (uint16_t)(uNew)); break; \ case 4: ASMAtomicXchgU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew)); break; \ case 8: ASMAtomicXchgU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew)); break; \ default: AssertMsgFailed(("ASMAtomicXchgSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically Exchange a pointer value, ordered. * * @returns Current *ppv value * @param ppv Pointer to the pointer variable to update. * @param pv The pointer value to assign to *ppv. */ DECLINLINE(void *) ASMAtomicXchgPtr(void * volatile *ppv, void *pv) { #if ARCH_BITS == 32 return (void *)ASMAtomicXchgU32((volatile uint32_t *)(void *)ppv, (uint32_t)pv); #elif ARCH_BITS == 64 return (void *)ASMAtomicXchgU64((volatile uint64_t *)(void *)ppv, (uint64_t)pv); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically Compare and Exchange an unsigned 32-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pu32 Pointer to the value to update. * @param u32New The new value to assigned to *pu32. * @param u32Old The old value to *pu32 compare with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicCmpXchgU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old); #else DECLINLINE(bool) ASMAtomicCmpXchgU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old) { # if RT_INLINE_ASM_GNU_STYLE uint8_t u8Ret; __asm__ __volatile__("lock; cmpxchgl %2, %0\n\t" "setz %1\n\t" : "=m" (*pu32), "=qm" (u8Ret) : "r" (u32New), "a" (u32Old)); return (bool)u8Ret; # elif RT_INLINE_ASM_USES_INTRIN return _InterlockedCompareExchange((long *)pu32, u32New, u32Old) == u32Old; # else uint32_t u32Ret; __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu32] # else mov edx, [pu32] # endif mov eax, [u32Old] mov ecx, [u32New] # ifdef RT_ARCH_AMD64 lock cmpxchg [rdx], ecx # else lock cmpxchg [edx], ecx # endif setz al movzx eax, al mov [u32Ret], eax } return !!u32Ret; # endif } #endif /** * Atomically Compare and Exchange a signed 32-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pi32 Pointer to the value to update. * @param i32New The new value to assigned to *pi32. * @param i32Old The old value to *pi32 compare with. */ DECLINLINE(bool) ASMAtomicCmpXchgS32(volatile int32_t *pi32, const int32_t i32New, const int32_t i32Old) { return ASMAtomicCmpXchgU32((volatile uint32_t *)pi32, (uint32_t)i32New, (uint32_t)i32Old); } /** * Atomically Compare and exchange an unsigned 64-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pu64 Pointer to the 64-bit variable to update. * @param u64New The 64-bit value to assign to *pu64. * @param u64Old The value to compare with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicCmpXchgU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old); #else DECLINLINE(bool) ASMAtomicCmpXchgU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old) { # if RT_INLINE_ASM_USES_INTRIN return _InterlockedCompareExchange64((__int64 *)pu64, u64New, u64Old) == u64Old; # elif defined(RT_ARCH_AMD64) # if RT_INLINE_ASM_GNU_STYLE uint8_t u8Ret; __asm__ __volatile__("lock; cmpxchgq %2, %0\n\t" "setz %1\n\t" : "=m" (*pu64), "=qm" (u8Ret) : "r" (u64New), "a" (u64Old)); return (bool)u8Ret; # else bool fRet; __asm { mov rdx, [pu32] mov rax, [u64Old] mov rcx, [u64New] lock cmpxchg [rdx], rcx setz al mov [fRet], al } return fRet; # endif # else /* !RT_ARCH_AMD64 */ uint32_t u32Ret; # if RT_INLINE_ASM_GNU_STYLE # if defined(PIC) || defined(RT_OS_DARWIN) /* darwin: 4.0.1 compiler option / bug? */ uint32_t u32 = (uint32_t)u64New; uint32_t u32Spill; __asm__ __volatile__("xchgl %%ebx, %4\n\t" "lock; cmpxchg8b (%6)\n\t" "setz %%al\n\t" "xchgl %%ebx, %4\n\t" "movzbl %%al, %%eax\n\t" : "=a" (u32Ret), "=d" (u32Spill), "=m" (*pu64) : "A" (u64Old), "m" ( u32 ), "c" ( (uint32_t)(u64New >> 32) ), "S" (pu64) ); # else /* !PIC */ uint32_t u32Spill; __asm__ __volatile__("lock; cmpxchg8b %2\n\t" "setz %%al\n\t" "movzbl %%al, %%eax\n\t" : "=a" (u32Ret), "=d" (u32Spill), "=m" (*pu64) : "A" (u64Old), "b" ( (uint32_t)u64New ), "c" ( (uint32_t)(u64New >> 32) )); # endif return (bool)u32Ret; # else __asm { mov ebx, dword ptr [u64New] mov ecx, dword ptr [u64New + 4] mov edi, [pu64] mov eax, dword ptr [u64Old] mov edx, dword ptr [u64Old + 4] lock cmpxchg8b [edi] setz al movzx eax, al mov dword ptr [u32Ret], eax } return !!u32Ret; # endif # endif /* !RT_ARCH_AMD64 */ } #endif /** * Atomically Compare and exchange a signed 64-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pi64 Pointer to the 64-bit variable to update. * @param i64 The 64-bit value to assign to *pu64. * @param i64Old The value to compare with. */ DECLINLINE(bool) ASMAtomicCmpXchgS64(volatile int64_t *pi64, const int64_t i64, const int64_t i64Old) { return ASMAtomicCmpXchgU64((volatile uint64_t *)pi64, (uint64_t)i64, (uint64_t)i64Old); } /** @def ASMAtomicCmpXchgSize * Atomically Compare and Exchange a value which size might differ * between platforms or compilers, ordered. * * @param pu Pointer to the value to update. * @param uNew The new value to assigned to *pu. * @param uOld The old value to *pu compare with. * @param fRc Where to store the result. */ #define ASMAtomicCmpXchgSize(pu, uNew, uOld, fRc) \ do { \ switch (sizeof(*(pu))) { \ case 4: (fRc) = ASMAtomicCmpXchgU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew), (uint32_t)(uOld)); \ break; \ case 8: (fRc) = ASMAtomicCmpXchgU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew), (uint64_t)(uOld)); \ break; \ default: AssertMsgFailed(("ASMAtomicCmpXchgSize: size %d is not supported\n", sizeof(*(pu)))); \ (fRc) = false; \ break; \ } \ } while (0) /** * Atomically Compare and Exchange a pointer value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param ppv Pointer to the value to update. * @param pvNew The new value to assigned to *ppv. * @param pvOld The old value to *ppv compare with. */ DECLINLINE(bool) ASMAtomicCmpXchgPtr(void * volatile *ppv, void *pvNew, void *pvOld) { #if ARCH_BITS == 32 return ASMAtomicCmpXchgU32((volatile uint32_t *)(void *)ppv, (uint32_t)pvNew, (uint32_t)pvOld); #elif ARCH_BITS == 64 return ASMAtomicCmpXchgU64((volatile uint64_t *)(void *)ppv, (uint64_t)pvNew, (uint64_t)pvOld); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically Compare and Exchange an unsigned 32-bit value, additionally * passes back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pu32 Pointer to the value to update. * @param u32New The new value to assigned to *pu32. * @param u32Old The old value to *pu32 compare with. * @param pu32Old Pointer store the old value at. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicCmpXchgExU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old, uint32_t *pu32Old); #else DECLINLINE(bool) ASMAtomicCmpXchgExU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old, uint32_t *pu32Old) { # if RT_INLINE_ASM_GNU_STYLE uint8_t u8Ret; __asm__ __volatile__("lock; cmpxchgl %3, %0\n\t" "setz %1\n\t" : "=m" (*pu32), "=qm" (u8Ret), "=a" (*pu32Old) : "r" (u32New), "a" (u32Old)); return (bool)u8Ret; # elif RT_INLINE_ASM_USES_INTRIN return (*pu32Old =_InterlockedCompareExchange((long *)pu32, u32New, u32Old)) == u32Old; # else uint32_t u32Ret; __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu32] # else mov edx, [pu32] # endif mov eax, [u32Old] mov ecx, [u32New] # ifdef RT_ARCH_AMD64 lock cmpxchg [rdx], ecx mov rdx, [pu32Old] mov [rdx], eax # else lock cmpxchg [edx], ecx mov edx, [pu32Old] mov [edx], eax # endif setz al movzx eax, al mov [u32Ret], eax } return !!u32Ret; # endif } #endif /** * Atomically Compare and Exchange a signed 32-bit value, additionally * passes back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pi32 Pointer to the value to update. * @param i32New The new value to assigned to *pi32. * @param i32Old The old value to *pi32 compare with. * @param pi32Old Pointer store the old value at. */ DECLINLINE(bool) ASMAtomicCmpXchgExS32(volatile int32_t *pi32, const int32_t i32New, const int32_t i32Old, int32_t *pi32Old) { return ASMAtomicCmpXchgExU32((volatile uint32_t *)pi32, (uint32_t)i32New, (uint32_t)i32Old, (uint32_t *)pi32Old); } /** * Atomically Compare and exchange an unsigned 64-bit value, additionally * passing back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pu64 Pointer to the 64-bit variable to update. * @param u64New The 64-bit value to assign to *pu64. * @param u64Old The value to compare with. * @param pu32Old Pointer store the old value at. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicCmpXchgExU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old, uint64_t *pu64Old); #else DECLINLINE(bool) ASMAtomicCmpXchgExU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old, uint64_t *pu64Old) { # if RT_INLINE_ASM_USES_INTRIN return (*pu64Old =_InterlockedCompareExchange64((__int64 *)pu64, u64New, u64Old)) == u64Old; # elif defined(RT_ARCH_AMD64) # if RT_INLINE_ASM_GNU_STYLE uint8_t u8Ret; __asm__ __volatile__("lock; cmpxchgq %3, %0\n\t" "setz %1\n\t" : "=m" (*pu64), "=qm" (u8Ret), "=a" (*pu64Old) : "r" (u64New), "a" (u64Old)); return (bool)u8Ret; # else bool fRet; __asm { mov rdx, [pu32] mov rax, [u64Old] mov rcx, [u64New] lock cmpxchg [rdx], rcx mov rdx, [pu64Old] mov [rdx], rax setz al mov [fRet], al } return fRet; # endif # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE uint64_t u64Ret; # if defined(PIC) || defined(RT_OS_DARWIN) /* darwin: 4.0.1 compiler option / bug? */ /* NB: this code uses a memory clobber description, because the clean * solution with an output value for *pu64 makes gcc run out of registers. * This will cause suboptimal code, and anyone with a better solution is * welcome to improve this. */ __asm__ __volatile__("xchgl %%ebx, %1\n\t" "lock; cmpxchg8b %3\n\t" "xchgl %%ebx, %1\n\t" : "=A" (u64Ret) : "DS" ((uint32_t)u64New), "c" ((uint32_t)(u64New >> 32)), "m" (*pu64), "0" (u64Old) : "memory" ); # else /* !PIC */ __asm__ __volatile__("lock; cmpxchg8b %4\n\t" : "=A" (u64Ret), "=m" (*pu64) : "b" ((uint32_t)u64New), "c" ((uint32_t)(u64New >> 32)), "m" (*pu64), "0" (u64Old)); # endif *pu64Old = u64Ret; return u64Ret == u64Old; # else uint32_t u32Ret; __asm { mov ebx, dword ptr [u64New] mov ecx, dword ptr [u64New + 4] mov edi, [pu64] mov eax, dword ptr [u64Old] mov edx, dword ptr [u64Old + 4] lock cmpxchg8b [edi] mov ebx, [pu64Old] mov [ebx], eax setz al movzx eax, al add ebx, 4 mov [ebx], edx mov dword ptr [u32Ret], eax } return !!u32Ret; # endif # endif /* !RT_ARCH_AMD64 */ } #endif /** * Atomically Compare and exchange a signed 64-bit value, additionally * passing back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pi64 Pointer to the 64-bit variable to update. * @param i64 The 64-bit value to assign to *pu64. * @param i64Old The value to compare with. * @param pi64Old Pointer store the old value at. */ DECLINLINE(bool) ASMAtomicCmpXchgExS64(volatile int64_t *pi64, const int64_t i64, const int64_t i64Old, int64_t *pi64Old) { return ASMAtomicCmpXchgExU64((volatile uint64_t *)pi64, (uint64_t)i64, (uint64_t)i64Old, (uint64_t *)pi64Old); } /** @def ASMAtomicCmpXchgExSize * Atomically Compare and Exchange a value which size might differ * between platforms or compilers. Additionally passes back old value. * * @param pu Pointer to the value to update. * @param uNew The new value to assigned to *pu. * @param uOld The old value to *pu compare with. * @param fRc Where to store the result. * @param uOldVal Where to store the old value. */ #define ASMAtomicCmpXchgExSize(pu, uNew, uOld, fRc, uOldVal) \ do { \ switch (sizeof(*(pu))) { \ case 4: (fRc) = ASMAtomicCmpXchgExU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew), (uint32_t)(uOld), (uint32_t *)&(uOldVal)); \ break; \ case 8: (fRc) = ASMAtomicCmpXchgExU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew), (uint64_t)(uOld), (uint64_t *)&(uOldVal)); \ break; \ default: AssertMsgFailed(("ASMAtomicCmpXchgSize: size %d is not supported\n", sizeof(*(pu)))); \ (fRc) = false; \ (uOldVal) = 0; \ break; \ } \ } while (0) /** * Atomically Compare and Exchange a pointer value, additionally * passing back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param ppv Pointer to the value to update. * @param pvNew The new value to assigned to *ppv. * @param pvOld The old value to *ppv compare with. * @param ppvOld Pointer store the old value at. */ DECLINLINE(bool) ASMAtomicCmpXchgExPtr(void * volatile *ppv, void *pvNew, void *pvOld, void **ppvOld) { #if ARCH_BITS == 32 return ASMAtomicCmpXchgExU32((volatile uint32_t *)(void *)ppv, (uint32_t)pvNew, (uint32_t)pvOld, (uint32_t *)ppvOld); #elif ARCH_BITS == 64 return ASMAtomicCmpXchgExU64((volatile uint64_t *)(void *)ppv, (uint64_t)pvNew, (uint64_t)pvOld, (uint64_t *)ppvOld); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically increment a 32-bit value, ordered. * * @returns The new value. * @param pu32 Pointer to the value to increment. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMAtomicIncU32(uint32_t volatile *pu32); #else DECLINLINE(uint32_t) ASMAtomicIncU32(uint32_t volatile *pu32) { uint32_t u32; # if RT_INLINE_ASM_USES_INTRIN u32 = _InterlockedIncrement((long *)pu32); return u32; # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; xaddl %0, %1\n\t" : "=r" (u32), "=m" (*pu32) : "0" (1) : "memory"); return u32+1; # else __asm { mov eax, 1 # ifdef RT_ARCH_AMD64 mov rdx, [pu32] lock xadd [rdx], eax # else mov edx, [pu32] lock xadd [edx], eax # endif mov u32, eax } return u32+1; # endif } #endif /** * Atomically increment a signed 32-bit value, ordered. * * @returns The new value. * @param pi32 Pointer to the value to increment. */ DECLINLINE(int32_t) ASMAtomicIncS32(int32_t volatile *pi32) { return (int32_t)ASMAtomicIncU32((uint32_t volatile *)pi32); } /** * Atomically decrement an unsigned 32-bit value, ordered. * * @returns The new value. * @param pu32 Pointer to the value to decrement. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMAtomicDecU32(uint32_t volatile *pu32); #else DECLINLINE(uint32_t) ASMAtomicDecU32(uint32_t volatile *pu32) { uint32_t u32; # if RT_INLINE_ASM_USES_INTRIN u32 = _InterlockedDecrement((long *)pu32); return u32; # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; xaddl %0, %1\n\t" : "=r" (u32), "=m" (*pu32) : "0" (-1) : "memory"); return u32-1; # else __asm { mov eax, -1 # ifdef RT_ARCH_AMD64 mov rdx, [pu32] lock xadd [rdx], eax # else mov edx, [pu32] lock xadd [edx], eax # endif mov u32, eax } return u32-1; # endif } #endif /** * Atomically decrement a signed 32-bit value, ordered. * * @returns The new value. * @param pi32 Pointer to the value to decrement. */ DECLINLINE(int32_t) ASMAtomicDecS32(int32_t volatile *pi32) { return (int32_t)ASMAtomicDecU32((uint32_t volatile *)pi32); } /** * Atomically Or an unsigned 32-bit value, ordered. * * @param pu32 Pointer to the pointer variable to OR u32 with. * @param u32 The value to OR *pu32 with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMAtomicOrU32(uint32_t volatile *pu32, uint32_t u32); #else DECLINLINE(void) ASMAtomicOrU32(uint32_t volatile *pu32, uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN _InterlockedOr((long volatile *)pu32, (long)u32); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; orl %1, %0\n\t" : "=m" (*pu32) : "ir" (u32)); # else __asm { mov eax, [u32] # ifdef RT_ARCH_AMD64 mov rdx, [pu32] lock or [rdx], eax # else mov edx, [pu32] lock or [edx], eax # endif } # endif } #endif /** * Atomically Or a signed 32-bit value, ordered. * * @param pi32 Pointer to the pointer variable to OR u32 with. * @param i32 The value to OR *pu32 with. */ DECLINLINE(void) ASMAtomicOrS32(int32_t volatile *pi32, int32_t i32) { ASMAtomicOrU32((uint32_t volatile *)pi32, i32); } /** * Atomically And an unsigned 32-bit value, ordered. * * @param pu32 Pointer to the pointer variable to AND u32 with. * @param u32 The value to AND *pu32 with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMAtomicAndU32(uint32_t volatile *pu32, uint32_t u32); #else DECLINLINE(void) ASMAtomicAndU32(uint32_t volatile *pu32, uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN _InterlockedAnd((long volatile *)pu32, u32); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; andl %1, %0\n\t" : "=m" (*pu32) : "ir" (u32)); # else __asm { mov eax, [u32] # ifdef RT_ARCH_AMD64 mov rdx, [pu32] lock and [rdx], eax # else mov edx, [pu32] lock and [edx], eax # endif } # endif } #endif /** * Atomically And a signed 32-bit value, ordered. * * @param pi32 Pointer to the pointer variable to AND i32 with. * @param i32 The value to AND *pi32 with. */ DECLINLINE(void) ASMAtomicAndS32(int32_t volatile *pi32, int32_t i32) { ASMAtomicAndU32((uint32_t volatile *)pi32, (uint32_t)i32); } /** * Memory fence, waits for any pending writes and reads to complete. */ DECLINLINE(void) ASMMemoryFence(void) { /** @todo use mfence? check if all cpus we care for support it. */ uint32_t volatile u32; ASMAtomicXchgU32(&u32, 0); } /** * Write fence, waits for any pending writes to complete. */ DECLINLINE(void) ASMWriteFence(void) { /** @todo use sfence? check if all cpus we care for support it. */ ASMMemoryFence(); } /** * Read fence, waits for any pending reads to complete. */ DECLINLINE(void) ASMReadFence(void) { /** @todo use lfence? check if all cpus we care for support it. */ ASMMemoryFence(); } /** * Atomically reads an unsigned 8-bit value, ordered. * * @returns Current *pu8 value * @param pu8 Pointer to the 8-bit variable to read. */ DECLINLINE(uint8_t) ASMAtomicReadU8(volatile uint8_t *pu8) { ASMMemoryFence(); return *pu8; /* byte reads are atomic on x86 */ } /** * Atomically reads an unsigned 8-bit value, unordered. * * @returns Current *pu8 value * @param pu8 Pointer to the 8-bit variable to read. */ DECLINLINE(uint8_t) ASMAtomicUoReadU8(volatile uint8_t *pu8) { return *pu8; /* byte reads are atomic on x86 */ } /** * Atomically reads a signed 8-bit value, ordered. * * @returns Current *pi8 value * @param pi8 Pointer to the 8-bit variable to read. */ DECLINLINE(int8_t) ASMAtomicReadS8(volatile int8_t *pi8) { ASMMemoryFence(); return *pi8; /* byte reads are atomic on x86 */ } /** * Atomically reads a signed 8-bit value, unordered. * * @returns Current *pi8 value * @param pi8 Pointer to the 8-bit variable to read. */ DECLINLINE(int8_t) ASMAtomicUoReadS8(volatile int8_t *pi8) { return *pi8; /* byte reads are atomic on x86 */ } /** * Atomically reads an unsigned 16-bit value, ordered. * * @returns Current *pu16 value * @param pu16 Pointer to the 16-bit variable to read. */ DECLINLINE(uint16_t) ASMAtomicReadU16(volatile uint16_t *pu16) { ASMMemoryFence(); Assert(!((uintptr_t)pu16 & 1)); return *pu16; } /** * Atomically reads an unsigned 16-bit value, unordered. * * @returns Current *pu16 value * @param pu16 Pointer to the 16-bit variable to read. */ DECLINLINE(uint16_t) ASMAtomicUoReadU16(volatile uint16_t *pu16) { Assert(!((uintptr_t)pu16 & 1)); return *pu16; } /** * Atomically reads a signed 16-bit value, ordered. * * @returns Current *pi16 value * @param pi16 Pointer to the 16-bit variable to read. */ DECLINLINE(int16_t) ASMAtomicReadS16(volatile int16_t *pi16) { ASMMemoryFence(); Assert(!((uintptr_t)pi16 & 1)); return *pi16; } /** * Atomically reads a signed 16-bit value, unordered. * * @returns Current *pi16 value * @param pi16 Pointer to the 16-bit variable to read. */ DECLINLINE(int16_t) ASMAtomicUoReadS16(volatile int16_t *pi16) { Assert(!((uintptr_t)pi16 & 1)); return *pi16; } /** * Atomically reads an unsigned 32-bit value, ordered. * * @returns Current *pu32 value * @param pu32 Pointer to the 32-bit variable to read. */ DECLINLINE(uint32_t) ASMAtomicReadU32(volatile uint32_t *pu32) { ASMMemoryFence(); Assert(!((uintptr_t)pu32 & 3)); return *pu32; } /** * Atomically reads an unsigned 32-bit value, unordered. * * @returns Current *pu32 value * @param pu32 Pointer to the 32-bit variable to read. */ DECLINLINE(uint32_t) ASMAtomicUoReadU32(volatile uint32_t *pu32) { Assert(!((uintptr_t)pu32 & 3)); return *pu32; } /** * Atomically reads a signed 32-bit value, ordered. * * @returns Current *pi32 value * @param pi32 Pointer to the 32-bit variable to read. */ DECLINLINE(int32_t) ASMAtomicReadS32(volatile int32_t *pi32) { ASMMemoryFence(); Assert(!((uintptr_t)pi32 & 3)); return *pi32; } /** * Atomically reads a signed 32-bit value, unordered. * * @returns Current *pi32 value * @param pi32 Pointer to the 32-bit variable to read. */ DECLINLINE(int32_t) ASMAtomicUoReadS32(volatile int32_t *pi32) { Assert(!((uintptr_t)pi32 & 3)); return *pi32; } /** * Atomically reads an unsigned 64-bit value, ordered. * * @returns Current *pu64 value * @param pu64 Pointer to the 64-bit variable to read. * The memory pointed to must be writable. * @remark This will fault if the memory is read-only! */ #if RT_INLINE_ASM_EXTERNAL DECLASM(uint64_t) ASMAtomicReadU64(volatile uint64_t *pu64); #else DECLINLINE(uint64_t) ASMAtomicReadU64(volatile uint64_t *pu64) { uint64_t u64; # ifdef RT_ARCH_AMD64 # if RT_INLINE_ASM_GNU_STYLE Assert(!((uintptr_t)pu64 & 7)); __asm__ __volatile__( "mfence\n\t" "movq %1, %0\n\t" : "=r" (u64) : "m" (*pu64)); # else __asm { mfence mov rdx, [pu64] mov rax, [rdx] mov [u64], rax } # endif # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE # if defined(PIC) || defined(RT_OS_DARWIN) /* darwin: 4.0.1 compiler option / bug? */ uint32_t u32EBX = 0; Assert(!((uintptr_t)pu64 & 7)); __asm__ __volatile__("xchgl %%ebx, %3\n\t" "lock; cmpxchg8b (%5)\n\t" "xchgl %%ebx, %3\n\t" : "=A" (u64), "=m" (*pu64) : "0" (0), "m" (u32EBX), "c" (0), "S" (pu64)); # else /* !PIC */ __asm__ __volatile__("lock; cmpxchg8b %1\n\t" : "=A" (u64), "=m" (*pu64) : "0" (0), "b" (0), "c" (0)); # endif # else Assert(!((uintptr_t)pu64 & 7)); __asm { xor eax, eax xor edx, edx mov edi, pu64 xor ecx, ecx xor ebx, ebx lock cmpxchg8b [edi] mov dword ptr [u64], eax mov dword ptr [u64 + 4], edx } # endif # endif /* !RT_ARCH_AMD64 */ return u64; } #endif /** * Atomically reads an unsigned 64-bit value, unordered. * * @returns Current *pu64 value * @param pu64 Pointer to the 64-bit variable to read. * The memory pointed to must be writable. * @remark This will fault if the memory is read-only! */ #if RT_INLINE_ASM_EXTERNAL DECLASM(uint64_t) ASMAtomicUoReadU64(volatile uint64_t *pu64); #else DECLINLINE(uint64_t) ASMAtomicUoReadU64(volatile uint64_t *pu64) { uint64_t u64; # ifdef RT_ARCH_AMD64 # if RT_INLINE_ASM_GNU_STYLE Assert(!((uintptr_t)pu64 & 7)); __asm__ __volatile__("movq %1, %0\n\t" : "=r" (u64) : "m" (*pu64)); # else __asm { mov rdx, [pu64] mov rax, [rdx] mov [u64], rax } # endif # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE # if defined(PIC) || defined(RT_OS_DARWIN) /* darwin: 4.0.1 compiler option / bug? */ uint32_t u32EBX = 0; Assert(!((uintptr_t)pu64 & 7)); __asm__ __volatile__("xchgl %%ebx, %3\n\t" "lock; cmpxchg8b (%5)\n\t" "xchgl %%ebx, %3\n\t" : "=A" (u64), "=m" (*pu64) : "0" (0), "m" (u32EBX), "c" (0), "S" (pu64)); # else /* !PIC */ __asm__ __volatile__("cmpxchg8b %1\n\t" : "=A" (u64), "=m" (*pu64) : "0" (0), "b" (0), "c" (0)); # endif # else Assert(!((uintptr_t)pu64 & 7)); __asm { xor eax, eax xor edx, edx mov edi, pu64 xor ecx, ecx xor ebx, ebx lock cmpxchg8b [edi] mov dword ptr [u64], eax mov dword ptr [u64 + 4], edx } # endif # endif /* !RT_ARCH_AMD64 */ return u64; } #endif /** * Atomically reads a signed 64-bit value, ordered. * * @returns Current *pi64 value * @param pi64 Pointer to the 64-bit variable to read. * The memory pointed to must be writable. * @remark This will fault if the memory is read-only! */ DECLINLINE(int64_t) ASMAtomicReadS64(volatile int64_t *pi64) { return (int64_t)ASMAtomicReadU64((volatile uint64_t *)pi64); } /** * Atomically reads a signed 64-bit value, unordered. * * @returns Current *pi64 value * @param pi64 Pointer to the 64-bit variable to read. * The memory pointed to must be writable. * @remark This will fault if the memory is read-only! */ DECLINLINE(int64_t) ASMAtomicUoReadS64(volatile int64_t *pi64) { return (int64_t)ASMAtomicUoReadU64((volatile uint64_t *)pi64); } /** * Atomically reads a pointer value, ordered. * * @returns Current *pv value * @param ppv Pointer to the pointer variable to read. */ DECLINLINE(void *) ASMAtomicReadPtr(void * volatile *ppv) { #if ARCH_BITS == 32 return (void *)ASMAtomicReadU32((volatile uint32_t *)(void *)ppv); #elif ARCH_BITS == 64 return (void *)ASMAtomicReadU64((volatile uint64_t *)(void *)ppv); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically reads a pointer value, unordered. * * @returns Current *pv value * @param ppv Pointer to the pointer variable to read. */ DECLINLINE(void *) ASMAtomicUoReadPtr(void * volatile *ppv) { #if ARCH_BITS == 32 return (void *)ASMAtomicUoReadU32((volatile uint32_t *)(void *)ppv); #elif ARCH_BITS == 64 return (void *)ASMAtomicUoReadU64((volatile uint64_t *)(void *)ppv); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically reads a boolean value, ordered. * * @returns Current *pf value * @param pf Pointer to the boolean variable to read. */ DECLINLINE(bool) ASMAtomicReadBool(volatile bool *pf) { ASMMemoryFence(); return *pf; /* byte reads are atomic on x86 */ } /** * Atomically reads a boolean value, unordered. * * @returns Current *pf value * @param pf Pointer to the boolean variable to read. */ DECLINLINE(bool) ASMAtomicUoReadBool(volatile bool *pf) { return *pf; /* byte reads are atomic on x86 */ } /** * Atomically read a value which size might differ * between platforms or compilers, ordered. * * @param pu Pointer to the variable to update. * @param puRes Where to store the result. */ #define ASMAtomicReadSize(pu, puRes) \ do { \ switch (sizeof(*(pu))) { \ case 1: *(uint8_t *)(puRes) = ASMAtomicReadU8( (volatile uint8_t *)(void *)(pu)); break; \ case 2: *(uint16_t *)(puRes) = ASMAtomicReadU16((volatile uint16_t *)(void *)(pu)); break; \ case 4: *(uint32_t *)(puRes) = ASMAtomicReadU32((volatile uint32_t *)(void *)(pu)); break; \ case 8: *(uint64_t *)(puRes) = ASMAtomicReadU64((volatile uint64_t *)(void *)(pu)); break; \ default: AssertMsgFailed(("ASMAtomicReadSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically read a value which size might differ * between platforms or compilers, unordered. * * @param pu Pointer to the variable to update. * @param puRes Where to store the result. */ #define ASMAtomicUoReadSize(pu, puRes) \ do { \ switch (sizeof(*(pu))) { \ case 1: *(uint8_t *)(puRes) = ASMAtomicUoReadU8( (volatile uint8_t *)(void *)(pu)); break; \ case 2: *(uint16_t *)(puRes) = ASMAtomicUoReadU16((volatile uint16_t *)(void *)(pu)); break; \ case 4: *(uint32_t *)(puRes) = ASMAtomicUoReadU32((volatile uint32_t *)(void *)(pu)); break; \ case 8: *(uint64_t *)(puRes) = ASMAtomicUoReadU64((volatile uint64_t *)(void *)(pu)); break; \ default: AssertMsgFailed(("ASMAtomicReadSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically writes an unsigned 8-bit value, ordered. * * @param pu8 Pointer to the 8-bit variable. * @param u8 The 8-bit value to assign to *pu8. */ DECLINLINE(void) ASMAtomicWriteU8(volatile uint8_t *pu8, uint8_t u8) { ASMAtomicXchgU8(pu8, u8); } /** * Atomically writes an unsigned 8-bit value, unordered. * * @param pu8 Pointer to the 8-bit variable. * @param u8 The 8-bit value to assign to *pu8. */ DECLINLINE(void) ASMAtomicUoWriteU8(volatile uint8_t *pu8, uint8_t u8) { *pu8 = u8; /* byte writes are atomic on x86 */ } /** * Atomically writes a signed 8-bit value, ordered. * * @param pi8 Pointer to the 8-bit variable to read. * @param u8 The 8-bit value to assign to *pu8. */ DECLINLINE(void) ASMAtomicWriteS8(volatile int8_t *pi8, int8_t i8) { ASMAtomicXchgS8(pi8, i8); } /** * Atomically writes a signed 8-bit value, unordered. * * @param pi8 Pointer to the 8-bit variable to read. * @param u8 The 8-bit value to assign to *pu8. */ DECLINLINE(void) ASMAtomicUoWriteS8(volatile int8_t *pi8, int8_t i8) { *pi8 = i8; /* byte writes are atomic on x86 */ } /** * Atomically writes an unsigned 16-bit value, ordered. * * @param pu16 Pointer to the 16-bit variable. * @param u16 The 16-bit value to assign to *pu16. */ DECLINLINE(void) ASMAtomicWriteU16(volatile uint16_t *pu16, uint16_t u16) { ASMAtomicXchgU16(pu16, u16); } /** * Atomically writes an unsigned 16-bit value, unordered. * * @param pu16 Pointer to the 16-bit variable. * @param u16 The 16-bit value to assign to *pu16. */ DECLINLINE(void) ASMAtomicUoWriteU16(volatile uint16_t *pu16, uint16_t u16) { Assert(!((uintptr_t)pu16 & 1)); *pu16 = u16; } /** * Atomically writes a signed 16-bit value, ordered. * * @param pi16 Pointer to the 16-bit variable to read. * @param u16 The 16-bit value to assign to *pu16. */ DECLINLINE(void) ASMAtomicWriteS16(volatile int16_t *pi16, int16_t i16) { ASMAtomicXchgS16(pi16, i16); } /** * Atomically writes a signed 16-bit value, unordered. * * @param pi16 Pointer to the 16-bit variable to read. * @param u16 The 16-bit value to assign to *pu16. */ DECLINLINE(void) ASMAtomicUoWriteS16(volatile int16_t *pi16, int16_t i16) { Assert(!((uintptr_t)pi16 & 1)); *pi16 = i16; } /** * Atomically writes an unsigned 32-bit value, ordered. * * @param pu32 Pointer to the 32-bit variable. * @param u32 The 32-bit value to assign to *pu32. */ DECLINLINE(void) ASMAtomicWriteU32(volatile uint32_t *pu32, uint32_t u32) { ASMAtomicXchgU32(pu32, u32); } /** * Atomically writes an unsigned 32-bit value, unordered. * * @param pu32 Pointer to the 32-bit variable. * @param u32 The 32-bit value to assign to *pu32. */ DECLINLINE(void) ASMAtomicUoWriteU32(volatile uint32_t *pu32, uint32_t u32) { Assert(!((uintptr_t)pu32 & 3)); *pu32 = u32; } /** * Atomically writes a signed 32-bit value, ordered. * * @param pi32 Pointer to the 32-bit variable to read. * @param u32 The 32-bit value to assign to *pu32. */ DECLINLINE(void) ASMAtomicWriteS32(volatile int32_t *pi32, int32_t i32) { ASMAtomicXchgS32(pi32, i32); } /** * Atomically writes a signed 32-bit value, unordered. * * @param pi32 Pointer to the 32-bit variable to read. * @param u32 The 32-bit value to assign to *pu32. */ DECLINLINE(void) ASMAtomicUoWriteS32(volatile int32_t *pi32, int32_t i32) { Assert(!((uintptr_t)pi32 & 3)); *pi32 = i32; } /** * Atomically writes an unsigned 64-bit value, ordered. * * @param pu64 Pointer to the 64-bit variable. * @param u64 The 64-bit value to assign to *pu64. */ DECLINLINE(void) ASMAtomicWriteU64(volatile uint64_t *pu64, uint64_t u64) { ASMAtomicXchgU64(pu64, u64); } /** * Atomically writes an unsigned 64-bit value, unordered. * * @param pu64 Pointer to the 64-bit variable. * @param u64 The 64-bit value to assign to *pu64. */ DECLINLINE(void) ASMAtomicUoWriteU64(volatile uint64_t *pu64, uint64_t u64) { Assert(!((uintptr_t)pu64 & 7)); #if ARCH_BITS == 64 *pu64 = u64; #else ASMAtomicXchgU64(pu64, u64); #endif } /** * Atomically writes a signed 64-bit value, ordered. * * @param pi64 Pointer to the 64-bit variable. * @param u64 The 64-bit value to assign to *pu64. */ DECLINLINE(void) ASMAtomicWriteS64(volatile int64_t *pi64, int64_t i64) { ASMAtomicXchgS64(pi64, i64); } /** * Atomically writes a signed 64-bit value, unordered. * * @param pi64 Pointer to the 64-bit variable. * @param u64 The 64-bit value to assign to *pu64. */ DECLINLINE(void) ASMAtomicUoWriteS64(volatile int64_t *pi64, int64_t i64) { Assert(!((uintptr_t)pi64 & 7)); #if ARCH_BITS == 64 *pi64 = i64; #else ASMAtomicXchgS64(pi64, i64); #endif } /** * Atomically writes a boolean value, unordered. * * @param pf Pointer to the boolean variable. * @param f The boolean value to assign to *pf. */ DECLINLINE(void) ASMAtomicWriteBool(volatile bool *pf, bool f) { ASMAtomicWriteU8((uint8_t volatile *)pf, f); } /** * Atomically writes a boolean value, unordered. * * @param pf Pointer to the boolean variable. * @param f The boolean value to assign to *pf. */ DECLINLINE(void) ASMAtomicUoWriteBool(volatile bool *pf, bool f) { *pf = f; /* byte writes are atomic on x86 */ } /** * Atomically writes a pointer value, ordered. * * @returns Current *pv value * @param ppv Pointer to the pointer variable. * @param pv The pointer value to assigne to *ppv. */ DECLINLINE(void) ASMAtomicWritePtr(void * volatile *ppv, void *pv) { #if ARCH_BITS == 32 ASMAtomicWriteU32((volatile uint32_t *)(void *)ppv, (uint32_t)pv); #elif ARCH_BITS == 64 ASMAtomicWriteU64((volatile uint64_t *)(void *)ppv, (uint64_t)pv); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically writes a pointer value, unordered. * * @returns Current *pv value * @param ppv Pointer to the pointer variable. * @param pv The pointer value to assigne to *ppv. */ DECLINLINE(void) ASMAtomicUoWritePtr(void * volatile *ppv, void *pv) { #if ARCH_BITS == 32 ASMAtomicUoWriteU32((volatile uint32_t *)(void *)ppv, (uint32_t)pv); #elif ARCH_BITS == 64 ASMAtomicUoWriteU64((volatile uint64_t *)(void *)ppv, (uint64_t)pv); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically write a value which size might differ * between platforms or compilers, ordered. * * @param pu Pointer to the variable to update. * @param uNew The value to assign to *pu. */ #define ASMAtomicWriteSize(pu, uNew) \ do { \ switch (sizeof(*(pu))) { \ case 1: ASMAtomicWriteU8( (volatile uint8_t *)(void *)(pu), (uint8_t )(uNew)); break; \ case 2: ASMAtomicWriteU16((volatile uint16_t *)(void *)(pu), (uint16_t)(uNew)); break; \ case 4: ASMAtomicWriteU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew)); break; \ case 8: ASMAtomicWriteU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew)); break; \ default: AssertMsgFailed(("ASMAtomicWriteSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically write a value which size might differ * between platforms or compilers, unordered. * * @param pu Pointer to the variable to update. * @param uNew The value to assign to *pu. */ #define ASMAtomicUoWriteSize(pu, uNew) \ do { \ switch (sizeof(*(pu))) { \ case 1: ASMAtomicUoWriteU8( (volatile uint8_t *)(void *)(pu), (uint8_t )(uNew)); break; \ case 2: ASMAtomicUoWriteU16((volatile uint16_t *)(void *)(pu), (uint16_t)(uNew)); break; \ case 4: ASMAtomicUoWriteU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew)); break; \ case 8: ASMAtomicUoWriteU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew)); break; \ default: AssertMsgFailed(("ASMAtomicWriteSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Invalidate page. * * @param pv Address of the page to invalidate. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMInvalidatePage(void *pv); #else DECLINLINE(void) ASMInvalidatePage(void *pv) { # if RT_INLINE_ASM_USES_INTRIN __invlpg(pv); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("invlpg %0\n\t" : : "m" (*(uint8_t *)pv)); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pv] invlpg [rax] # else mov eax, [pv] invlpg [eax] # endif } # endif } #endif #if defined(PAGE_SIZE) && !defined(NT_INCLUDED) # if PAGE_SIZE != 0x1000 # error "PAGE_SIZE is not 0x1000!" # endif #endif /** * Zeros a 4K memory page. * * @param pv Pointer to the memory block. This must be page aligned. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMMemZeroPage(volatile void *pv); # else DECLINLINE(void) ASMMemZeroPage(volatile void *pv) { # if RT_INLINE_ASM_USES_INTRIN # ifdef RT_ARCH_AMD64 __stosq((unsigned __int64 *)pv, 0, /*PAGE_SIZE*/0x1000 / 8); # else __stosd((unsigned long *)pv, 0, /*PAGE_SIZE*/0x1000 / 4); # endif # elif RT_INLINE_ASM_GNU_STYLE RTUINTREG uDummy; # ifdef RT_ARCH_AMD64 __asm__ __volatile__ ("rep stosq" : "=D" (pv), "=c" (uDummy) : "0" (pv), "c" (0x1000 >> 3), "a" (0) : "memory"); # else __asm__ __volatile__ ("rep stosl" : "=D" (pv), "=c" (uDummy) : "0" (pv), "c" (0x1000 >> 2), "a" (0) : "memory"); # endif # else __asm { # ifdef RT_ARCH_AMD64 xor rax, rax mov ecx, 0200h mov rdi, [pv] rep stosq # else xor eax, eax mov ecx, 0400h mov edi, [pv] rep stosd # endif } # endif } # endif /** * Zeros a memory block with a 32-bit aligned size. * * @param pv Pointer to the memory block. * @param cb Number of bytes in the block. This MUST be aligned on 32-bit! */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMMemZero32(volatile void *pv, size_t cb); #else DECLINLINE(void) ASMMemZero32(volatile void *pv, size_t cb) { # if RT_INLINE_ASM_USES_INTRIN __stosd((unsigned long *)pv, 0, cb >> 2); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("rep stosl" : "=D" (pv), "=c" (cb) : "0" (pv), "1" (cb >> 2), "a" (0) : "memory"); # else __asm { xor eax, eax # ifdef RT_ARCH_AMD64 mov rcx, [cb] shr rcx, 2 mov rdi, [pv] # else mov ecx, [cb] shr ecx, 2 mov edi, [pv] # endif rep stosd } # endif } #endif /** * Fills a memory block with a 32-bit aligned size. * * @param pv Pointer to the memory block. * @param cb Number of bytes in the block. This MUST be aligned on 32-bit! * @param u32 The value to fill with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMMemFill32(volatile void *pv, size_t cb, uint32_t u32); #else DECLINLINE(void) ASMMemFill32(volatile void *pv, size_t cb, uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN __stosd((unsigned long *)pv, 0, cb >> 2); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("rep stosl" : "=D" (pv), "=c" (cb) : "0" (pv), "1" (cb >> 2), "a" (u32) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rcx, [cb] shr rcx, 2 mov rdi, [pv] # else mov ecx, [cb] shr ecx, 2 mov edi, [pv] # endif mov eax, [u32] rep stosd } # endif } #endif /** * Checks if a memory block is filled with the specified byte. * * This is a sort of inverted memchr. * * @returns Pointer to the byte which doesn't equal u8. * @returns NULL if all equal to u8. * * @param pv Pointer to the memory block. * @param cb Number of bytes in the block. This MUST be aligned on 32-bit! * @param u8 The value it's supposed to be filled with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void *) ASMMemIsAll8(void const *pv, size_t cb, uint8_t u8); #else DECLINLINE(void *) ASMMemIsAll8(void const *pv, size_t cb, uint8_t u8) { /** @todo rewrite this in inline assembly. */ uint8_t const *pb = (uint8_t const *)pv; for (; cb; cb--, pb++) if (RT_UNLIKELY(*pb != u8)) return (void *)pb; return NULL; } #endif /** * Multiplies two unsigned 32-bit values returning an unsigned 64-bit result. * * @returns u32F1 * u32F2. */ #if RT_INLINE_ASM_EXTERNAL && !defined(RT_ARCH_AMD64) DECLASM(uint64_t) ASMMult2xU32RetU64(uint32_t u32F1, uint32_t u32F2); #else DECLINLINE(uint64_t) ASMMult2xU32RetU64(uint32_t u32F1, uint32_t u32F2) { # ifdef RT_ARCH_AMD64 return (uint64_t)u32F1 * u32F2; # else /* !RT_ARCH_AMD64 */ uint64_t u64; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("mull %%edx" : "=A" (u64) : "a" (u32F2), "d" (u32F1)); # else __asm { mov edx, [u32F1] mov eax, [u32F2] mul edx mov dword ptr [u64], eax mov dword ptr [u64 + 4], edx } # endif return u64; # endif /* !RT_ARCH_AMD64 */ } #endif /** * Multiplies two signed 32-bit values returning a signed 64-bit result. * * @returns u32F1 * u32F2. */ #if RT_INLINE_ASM_EXTERNAL && !defined(RT_ARCH_AMD64) DECLASM(int64_t) ASMMult2xS32RetS64(int32_t i32F1, int32_t i32F2); #else DECLINLINE(int64_t) ASMMult2xS32RetS64(int32_t i32F1, int32_t i32F2) { # ifdef RT_ARCH_AMD64 return (int64_t)i32F1 * i32F2; # else /* !RT_ARCH_AMD64 */ int64_t i64; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("imull %%edx" : "=A" (i64) : "a" (i32F2), "d" (i32F1)); # else __asm { mov edx, [i32F1] mov eax, [i32F2] imul edx mov dword ptr [i64], eax mov dword ptr [i64 + 4], edx } # endif return i64; # endif /* !RT_ARCH_AMD64 */ } #endif /** * Devides a 64-bit unsigned by a 32-bit unsigned returning an unsigned 32-bit result. * * @returns u64 / u32. */ #if RT_INLINE_ASM_EXTERNAL && !defined(RT_ARCH_AMD64) DECLASM(uint32_t) ASMDivU64ByU32RetU32(uint64_t u64, uint32_t u32); #else DECLINLINE(uint32_t) ASMDivU64ByU32RetU32(uint64_t u64, uint32_t u32) { # ifdef RT_ARCH_AMD64 return (uint32_t)(u64 / u32); # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE RTUINTREG uDummy; __asm__ __volatile__("divl %3" : "=a" (u32), "=d"(uDummy) : "A" (u64), "r" (u32)); # else __asm { mov eax, dword ptr [u64] mov edx, dword ptr [u64 + 4] mov ecx, [u32] div ecx mov [u32], eax } # endif return u32; # endif /* !RT_ARCH_AMD64 */ } #endif /** * Devides a 64-bit signed by a 32-bit signed returning a signed 32-bit result. * * @returns u64 / u32. */ #if RT_INLINE_ASM_EXTERNAL && !defined(RT_ARCH_AMD64) DECLASM(int32_t) ASMDivS64ByS32RetS32(int64_t i64, int32_t i32); #else DECLINLINE(int32_t) ASMDivS64ByS32RetS32(int64_t i64, int32_t i32) { # ifdef RT_ARCH_AMD64 return (int32_t)(i64 / i32); # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE RTUINTREG iDummy; __asm__ __volatile__("idivl %3" : "=a" (i32), "=d"(iDummy) : "A" (i64), "r" (i32)); # else __asm { mov eax, dword ptr [i64] mov edx, dword ptr [i64 + 4] mov ecx, [i32] idiv ecx mov [i32], eax } # endif return i32; # endif /* !RT_ARCH_AMD64 */ } #endif /** * Multiple a 64-bit by a 32-bit integer and divide the result by a 32-bit integer * using a 96 bit intermediate result. * @note Don't use 64-bit C arithmetic here since some gcc compilers generate references to * __udivdi3 and __umoddi3 even if this inline function is not used. * * @returns (u64A * u32B) / u32C. * @param u64A The 64-bit value. * @param u32B The 32-bit value to multiple by A. * @param u32C The 32-bit value to divide A*B by. */ #if RT_INLINE_ASM_EXTERNAL || !defined(__GNUC__) DECLASM(uint64_t) ASMMultU64ByU32DivByU32(uint64_t u64A, uint32_t u32B, uint32_t u32C); #else DECLINLINE(uint64_t) ASMMultU64ByU32DivByU32(uint64_t u64A, uint32_t u32B, uint32_t u32C) { # if RT_INLINE_ASM_GNU_STYLE # ifdef RT_ARCH_AMD64 uint64_t u64Result, u64Spill; __asm__ __volatile__("mulq %2\n\t" "divq %3\n\t" : "=a" (u64Result), "=d" (u64Spill) : "r" ((uint64_t)u32B), "r" ((uint64_t)u32C), "0" (u64A), "1" (0)); return u64Result; # else uint32_t u32Dummy; uint64_t u64Result; __asm__ __volatile__("mull %%ecx \n\t" /* eax = u64Lo.lo = (u64A.lo * u32B).lo edx = u64Lo.hi = (u64A.lo * u32B).hi */ "xchg %%eax,%%esi \n\t" /* esi = u64Lo.lo eax = u64A.hi */ "xchg %%edx,%%edi \n\t" /* edi = u64Low.hi edx = u32C */ "xchg %%edx,%%ecx \n\t" /* ecx = u32C edx = u32B */ "mull %%edx \n\t" /* eax = u64Hi.lo = (u64A.hi * u32B).lo edx = u64Hi.hi = (u64A.hi * u32B).hi */ "addl %%edi,%%eax \n\t" /* u64Hi.lo += u64Lo.hi */ "adcl $0,%%edx \n\t" /* u64Hi.hi += carry */ "divl %%ecx \n\t" /* eax = u64Hi / u32C edx = u64Hi % u32C */ "movl %%eax,%%edi \n\t" /* edi = u64Result.hi = u64Hi / u32C */ "movl %%esi,%%eax \n\t" /* eax = u64Lo.lo */ "divl %%ecx \n\t" /* u64Result.lo */ "movl %%edi,%%edx \n\t" /* u64Result.hi */ : "=A"(u64Result), "=c"(u32Dummy), "=S"(u32Dummy), "=D"(u32Dummy) : "a"((uint32_t)u64A), "S"((uint32_t)(u64A >> 32)), "c"(u32B), "D"(u32C)); return u64Result; # endif # else RTUINT64U u; uint64_t u64Lo = (uint64_t)(u64A & 0xffffffff) * u32B; uint64_t u64Hi = (uint64_t)(u64A >> 32) * u32B; u64Hi += (u64Lo >> 32); u.s.Hi = (uint32_t)(u64Hi / u32C); u.s.Lo = (uint32_t)((((u64Hi % u32C) << 32) + (u64Lo & 0xffffffff)) / u32C); return u.u; # endif } #endif /** * Probes a byte pointer for read access. * * While the function will not fault if the byte is not read accessible, * the idea is to do this in a safe place like before acquiring locks * and such like. * * Also, this functions guarantees that an eager compiler is not going * to optimize the probing away. * * @param pvByte Pointer to the byte. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(uint8_t) ASMProbeReadByte(const void *pvByte); #else DECLINLINE(uint8_t) ASMProbeReadByte(const void *pvByte) { /** @todo verify that the compiler actually doesn't optimize this away. (intel & gcc) */ uint8_t u8; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("movb (%1), %0\n\t" : "=r" (u8) : "r" (pvByte)); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvByte] mov al, [rax] # else mov eax, [pvByte] mov al, [eax] # endif mov [u8], al } # endif return u8; } #endif /** * Probes a buffer for read access page by page. * * While the function will fault if the buffer is not fully read * accessible, the idea is to do this in a safe place like before * acquiring locks and such like. * * Also, this functions guarantees that an eager compiler is not going * to optimize the probing away. * * @param pvBuf Pointer to the buffer. * @param cbBuf The size of the buffer in bytes. Must be >= 1. */ DECLINLINE(void) ASMProbeReadBuffer(const void *pvBuf, size_t cbBuf) { /** @todo verify that the compiler actually doesn't optimize this away. (intel & gcc) */ /* the first byte */ const uint8_t *pu8 = (const uint8_t *)pvBuf; ASMProbeReadByte(pu8); /* the pages in between pages. */ while (cbBuf > /*PAGE_SIZE*/0x1000) { ASMProbeReadByte(pu8); cbBuf -= /*PAGE_SIZE*/0x1000; pu8 += /*PAGE_SIZE*/0x1000; } /* the last byte */ ASMProbeReadByte(pu8 + cbBuf - 1); } /** @def ASMBreakpoint * Debugger Breakpoint. * @remark In the gnu world we add a nop instruction after the int3 to * force gdb to remain at the int3 source line. * @remark The L4 kernel will try make sense of the breakpoint, thus the jmp. * @internal */ #if RT_INLINE_ASM_GNU_STYLE # ifndef __L4ENV__ # define ASMBreakpoint() do { __asm__ __volatile__ ("int3\n\tnop"); } while (0) # else # define ASMBreakpoint() do { __asm__ __volatile__ ("int3; jmp 1f; 1:"); } while (0) # endif #else # define ASMBreakpoint() __debugbreak() #endif /** @defgroup grp_inline_bits Bit Operations * @{ */ /** * Sets a bit in a bitmap. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to set. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMBitSet(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMBitSet(volatile void *pvBitmap, int32_t iBit) { # if RT_INLINE_ASM_USES_INTRIN _bittestandset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("btsl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] bts [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] bts [eax], edx # endif } # endif } #endif /** * Atomically sets a bit in a bitmap, ordered. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to set. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMAtomicBitSet(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMAtomicBitSet(volatile void *pvBitmap, int32_t iBit) { # if RT_INLINE_ASM_USES_INTRIN _interlockedbittestandset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("lock; btsl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] lock bts [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] lock bts [eax], edx # endif } # endif } #endif /** * Clears a bit in a bitmap. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to clear. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMBitClear(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMBitClear(volatile void *pvBitmap, int32_t iBit) { # if RT_INLINE_ASM_USES_INTRIN _bittestandreset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("btrl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] btr [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] btr [eax], edx # endif } # endif } #endif /** * Atomically clears a bit in a bitmap, ordered. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to toggle set. * @remark No memory barrier, take care on smp. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(void) ASMAtomicBitClear(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMAtomicBitClear(volatile void *pvBitmap, int32_t iBit) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("lock; btrl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] lock btr [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] lock btr [eax], edx # endif } # endif } #endif /** * Toggles a bit in a bitmap. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to toggle. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMBitToggle(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMBitToggle(volatile void *pvBitmap, int32_t iBit) { # if RT_INLINE_ASM_USES_INTRIN _bittestandcomplement((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("btcl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] btc [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] btc [eax], edx # endif } # endif } #endif /** * Atomically toggles a bit in a bitmap, ordered. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test and set. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(void) ASMAtomicBitToggle(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMAtomicBitToggle(volatile void *pvBitmap, int32_t iBit) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("lock; btcl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] lock btc [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] lock btc [eax], edx # endif } # endif } #endif /** * Tests and sets a bit in a bitmap. * * @returns true if the bit was set. * @returns false if the bit was clear. * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test and set. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMBitTestAndSet(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMBitTestAndSet(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _bittestandset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("btsl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] bts [rax], edx # else mov eax, [pvBitmap] bts [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Atomically tests and sets a bit in a bitmap, ordered. * * @returns true if the bit was set. * @returns false if the bit was clear. * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to set. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicBitTestAndSet(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMAtomicBitTestAndSet(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _interlockedbittestandset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("lock; btsl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] lock bts [rax], edx # else mov eax, [pvBitmap] lock bts [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Tests and clears a bit in a bitmap. * * @returns true if the bit was set. * @returns false if the bit was clear. * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test and clear. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMBitTestAndClear(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMBitTestAndClear(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _bittestandreset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("btrl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] btr [rax], edx # else mov eax, [pvBitmap] btr [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Atomically tests and clears a bit in a bitmap, ordered. * * @returns true if the bit was set. * @returns false if the bit was clear. * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test and clear. * @remark No memory barrier, take care on smp. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicBitTestAndClear(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMAtomicBitTestAndClear(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _interlockedbittestandreset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("lock; btrl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] lock btr [rax], edx # else mov eax, [pvBitmap] lock btr [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Tests and toggles a bit in a bitmap. * * @returns true if the bit was set. * @returns false if the bit was clear. * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test and toggle. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLINLINE(bool) ASMBitTestAndToggle(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMBitTestAndToggle(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _bittestandcomplement((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("btcl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] btc [rax], edx # else mov eax, [pvBitmap] btc [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Atomically tests and toggles a bit in a bitmap, ordered. * * @returns true if the bit was set. * @returns false if the bit was clear. * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test and toggle. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(bool) ASMAtomicBitTestAndToggle(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMAtomicBitTestAndToggle(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("lock; btcl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] lock btc [rax], edx # else mov eax, [pvBitmap] lock btc [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Tests if a bit in a bitmap is set. * * @returns true if the bit is set. * @returns false if the bit is clear. * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMBitTest(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMBitTest(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u32 = _bittest((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__ ("btl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] bt [rax], edx # else mov eax, [pvBitmap] bt [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Clears a bit range within a bitmap. * * @param pvBitmap Pointer to the bitmap. * @param iBitStart The First bit to clear. * @param iBitEnd The first bit not to clear. */ DECLINLINE(void) ASMBitClearRange(volatile void *pvBitmap, int32_t iBitStart, int32_t iBitEnd) { if (iBitStart < iBitEnd) { volatile uint32_t *pu32 = (volatile uint32_t *)pvBitmap + (iBitStart >> 5); int iStart = iBitStart & ~31; int iEnd = iBitEnd & ~31; if (iStart == iEnd) *pu32 &= ((1 << (iBitStart & 31)) - 1) | ~((1 << (iBitEnd & 31)) - 1); else { /* bits in first dword. */ if (iBitStart & 31) { *pu32 &= (1 << (iBitStart & 31)) - 1; pu32++; iBitStart = iStart + 32; } /* whole dword. */ if (iBitStart != iEnd) ASMMemZero32(pu32, (iEnd - iBitStart) >> 3); /* bits in last dword. */ if (iBitEnd & 31) { pu32 = (volatile uint32_t *)pvBitmap + (iBitEnd >> 5); *pu32 &= ~((1 << (iBitEnd & 31)) - 1); } } } } /** * Finds the first clear bit in a bitmap. * * @returns Index of the first zero bit. * @returns -1 if no clear bit was found. * @param pvBitmap Pointer to the bitmap. * @param cBits The number of bits in the bitmap. Multiple of 32. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(int) ASMBitFirstClear(volatile void *pvBitmap, uint32_t cBits); #else DECLINLINE(int) ASMBitFirstClear(volatile void *pvBitmap, uint32_t cBits) { if (cBits) { int32_t iBit; # if RT_INLINE_ASM_GNU_STYLE RTCCUINTREG uEAX, uECX, uEDI; cBits = RT_ALIGN_32(cBits, 32); __asm__ __volatile__("repe; scasl\n\t" "je 1f\n\t" # ifdef RT_ARCH_AMD64 "lea -4(%%rdi), %%rdi\n\t" "xorl (%%rdi), %%eax\n\t" "subq %5, %%rdi\n\t" # else "lea -4(%%edi), %%edi\n\t" "xorl (%%edi), %%eax\n\t" "subl %5, %%edi\n\t" # endif "shll $3, %%edi\n\t" "bsfl %%eax, %%edx\n\t" "addl %%edi, %%edx\n\t" "1:\t\n" : "=d" (iBit), "=&c" (uECX), "=&D" (uEDI), "=&a" (uEAX) : "0" (0xffffffff), "mr" (pvBitmap), "1" (cBits >> 5), "2" (pvBitmap), "3" (0xffffffff)); # else cBits = RT_ALIGN_32(cBits, 32); __asm { # ifdef RT_ARCH_AMD64 mov rdi, [pvBitmap] mov rbx, rdi # else mov edi, [pvBitmap] mov ebx, edi # endif mov edx, 0ffffffffh mov eax, edx mov ecx, [cBits] shr ecx, 5 repe scasd je done # ifdef RT_ARCH_AMD64 lea rdi, [rdi - 4] xor eax, [rdi] sub rdi, rbx # else lea edi, [edi - 4] xor eax, [edi] sub edi, ebx # endif shl edi, 3 bsf edx, eax add edx, edi done: mov [iBit], edx } # endif return iBit; } return -1; } #endif /** * Finds the next clear bit in a bitmap. * * @returns Index of the first zero bit. * @returns -1 if no clear bit was found. * @param pvBitmap Pointer to the bitmap. * @param cBits The number of bits in the bitmap. Multiple of 32. * @param iBitPrev The bit returned from the last search. * The search will start at iBitPrev + 1. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(int) ASMBitNextClear(volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev); #else DECLINLINE(int) ASMBitNextClear(volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev) { int iBit = ++iBitPrev & 31; pvBitmap = (volatile char *)pvBitmap + ((iBitPrev >> 5) << 2); cBits -= iBitPrev & ~31; if (iBit) { /* inspect the first dword. */ uint32_t u32 = (~*(volatile uint32_t *)pvBitmap) >> iBit; # if RT_INLINE_ASM_USES_INTRIN unsigned long ulBit = 0; if (_BitScanForward(&ulBit, u32)) return ulBit + iBitPrev; iBit = -1; # else # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("bsf %1, %0\n\t" "jnz 1f\n\t" "movl $-1, %0\n\t" "1:\n\t" : "=r" (iBit) : "r" (u32)); # else __asm { mov edx, [u32] bsf eax, edx jnz done mov eax, 0ffffffffh done: mov [iBit], eax } # endif if (iBit >= 0) return iBit + iBitPrev; # endif /* Search the rest of the bitmap, if there is anything. */ if (cBits > 32) { iBit = ASMBitFirstClear((volatile char *)pvBitmap + sizeof(uint32_t), cBits - 32); if (iBit >= 0) return iBit + (iBitPrev & ~31) + 32; } } else { /* Search the rest of the bitmap. */ iBit = ASMBitFirstClear(pvBitmap, cBits); if (iBit >= 0) return iBit + (iBitPrev & ~31); } return iBit; } #endif /** * Finds the first set bit in a bitmap. * * @returns Index of the first set bit. * @returns -1 if no clear bit was found. * @param pvBitmap Pointer to the bitmap. * @param cBits The number of bits in the bitmap. Multiple of 32. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(int) ASMBitFirstSet(volatile void *pvBitmap, uint32_t cBits); #else DECLINLINE(int) ASMBitFirstSet(volatile void *pvBitmap, uint32_t cBits) { if (cBits) { int32_t iBit; # if RT_INLINE_ASM_GNU_STYLE RTCCUINTREG uEAX, uECX, uEDI; cBits = RT_ALIGN_32(cBits, 32); __asm__ __volatile__("repe; scasl\n\t" "je 1f\n\t" # ifdef RT_ARCH_AMD64 "lea -4(%%rdi), %%rdi\n\t" "movl (%%rdi), %%eax\n\t" "subq %5, %%rdi\n\t" # else "lea -4(%%edi), %%edi\n\t" "movl (%%edi), %%eax\n\t" "subl %5, %%edi\n\t" # endif "shll $3, %%edi\n\t" "bsfl %%eax, %%edx\n\t" "addl %%edi, %%edx\n\t" "1:\t\n" : "=d" (iBit), "=&c" (uECX), "=&D" (uEDI), "=&a" (uEAX) : "0" (0xffffffff), "mr" (pvBitmap), "1" (cBits >> 5), "2" (pvBitmap), "3" (0)); # else cBits = RT_ALIGN_32(cBits, 32); __asm { # ifdef RT_ARCH_AMD64 mov rdi, [pvBitmap] mov rbx, rdi # else mov edi, [pvBitmap] mov ebx, edi # endif mov edx, 0ffffffffh xor eax, eax mov ecx, [cBits] shr ecx, 5 repe scasd je done # ifdef RT_ARCH_AMD64 lea rdi, [rdi - 4] mov eax, [rdi] sub rdi, rbx # else lea edi, [edi - 4] mov eax, [edi] sub edi, ebx # endif shl edi, 3 bsf edx, eax add edx, edi done: mov [iBit], edx } # endif return iBit; } return -1; } #endif /** * Finds the next set bit in a bitmap. * * @returns Index of the next set bit. * @returns -1 if no set bit was found. * @param pvBitmap Pointer to the bitmap. * @param cBits The number of bits in the bitmap. Multiple of 32. * @param iBitPrev The bit returned from the last search. * The search will start at iBitPrev + 1. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(int) ASMBitNextSet(volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev); #else DECLINLINE(int) ASMBitNextSet(volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev) { int iBit = ++iBitPrev & 31; pvBitmap = (volatile char *)pvBitmap + ((iBitPrev >> 5) << 2); cBits -= iBitPrev & ~31; if (iBit) { /* inspect the first dword. */ uint32_t u32 = *(volatile uint32_t *)pvBitmap >> iBit; # if RT_INLINE_ASM_USES_INTRIN unsigned long ulBit = 0; if (_BitScanForward(&ulBit, u32)) return ulBit + iBitPrev; iBit = -1; # else # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("bsf %1, %0\n\t" "jnz 1f\n\t" "movl $-1, %0\n\t" "1:\n\t" : "=r" (iBit) : "r" (u32)); # else __asm { mov edx, u32 bsf eax, edx jnz done mov eax, 0ffffffffh done: mov [iBit], eax } # endif if (iBit >= 0) return iBit + iBitPrev; # endif /* Search the rest of the bitmap, if there is anything. */ if (cBits > 32) { iBit = ASMBitFirstSet((volatile char *)pvBitmap + sizeof(uint32_t), cBits - 32); if (iBit >= 0) return iBit + (iBitPrev & ~31) + 32; } } else { /* Search the rest of the bitmap. */ iBit = ASMBitFirstSet(pvBitmap, cBits); if (iBit >= 0) return iBit + (iBitPrev & ~31); } return iBit; } #endif /** * Finds the first bit which is set in the given 32-bit integer. * Bits are numbered from 1 (least significant) to 32. * * @returns index [1..32] of the first set bit. * @returns 0 if all bits are cleared. * @param u32 Integer to search for set bits. * @remark Similar to ffs() in BSD. */ DECLINLINE(unsigned) ASMBitFirstSetU32(uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN unsigned long iBit; if (_BitScanForward(&iBit, u32)) iBit++; else iBit = 0; # elif RT_INLINE_ASM_GNU_STYLE uint32_t iBit; __asm__ __volatile__("bsf %1, %0\n\t" "jnz 1f\n\t" "xorl %0, %0\n\t" "jmp 2f\n" "1:\n\t" "incl %0\n" "2:\n\t" : "=r" (iBit) : "rm" (u32)); # else uint32_t iBit; _asm { bsf eax, [u32] jnz found xor eax, eax jmp done found: inc eax done: mov [iBit], eax } # endif return iBit; } /** * Finds the first bit which is set in the given 32-bit integer. * Bits are numbered from 1 (least significant) to 32. * * @returns index [1..32] of the first set bit. * @returns 0 if all bits are cleared. * @param i32 Integer to search for set bits. * @remark Similar to ffs() in BSD. */ DECLINLINE(unsigned) ASMBitFirstSetS32(int32_t i32) { return ASMBitFirstSetU32((uint32_t)i32); } /** * Finds the last bit which is set in the given 32-bit integer. * Bits are numbered from 1 (least significant) to 32. * * @returns index [1..32] of the last set bit. * @returns 0 if all bits are cleared. * @param u32 Integer to search for set bits. * @remark Similar to fls() in BSD. */ DECLINLINE(unsigned) ASMBitLastSetU32(uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN unsigned long iBit; if (_BitScanReverse(&iBit, u32)) iBit++; else iBit = 0; # elif RT_INLINE_ASM_GNU_STYLE uint32_t iBit; __asm__ __volatile__("bsrl %1, %0\n\t" "jnz 1f\n\t" "xorl %0, %0\n\t" "jmp 2f\n" "1:\n\t" "incl %0\n" "2:\n\t" : "=r" (iBit) : "rm" (u32)); # else uint32_t iBit; _asm { bsr eax, [u32] jnz found xor eax, eax jmp done found: inc eax done: mov [iBit], eax } # endif return iBit; } /** * Finds the last bit which is set in the given 32-bit integer. * Bits are numbered from 1 (least significant) to 32. * * @returns index [1..32] of the last set bit. * @returns 0 if all bits are cleared. * @param i32 Integer to search for set bits. * @remark Similar to fls() in BSD. */ DECLINLINE(unsigned) ASMBitLastSetS32(int32_t i32) { return ASMBitLastSetS32((uint32_t)i32); } /** * Reverse the byte order of the given 32-bit integer. * @param u32 Integer */ DECLINLINE(uint32_t) ASMByteSwapU32(uint32_t u32) { #if RT_INLINE_ASM_USES_INTRIN u32 = _byteswap_ulong(u32); #elif RT_INLINE_ASM_GNU_STYLE __asm__ ("bswapl %0" : "=r" (u32) : "0" (u32)); #else _asm { mov eax, [u32] bswap eax mov [u32], eax } #endif return u32; } /** @} */ /** @} */ #endif