VirtualBox

source: vbox/trunk/include/VBox/mm.h@ 17251

Last change on this file since 17251 was 17251, checked in by vboxsync, 16 years ago

VMM,REM,DevPcArch: VBOX_WITH_NEW_PHYS_CODE changes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 13.9 KB
Line 
1/** @file
2 * MM - The Memory Manager.
3 */
4
5/*
6 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
7 *
8 * This file is part of VirtualBox Open Source Edition (OSE), as
9 * available from http://www.virtualbox.org. This file is free software;
10 * you can redistribute it and/or modify it under the terms of the GNU
11 * General Public License (GPL) as published by the Free Software
12 * Foundation, in version 2 as it comes in the "COPYING" file of the
13 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
14 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
15 *
16 * The contents of this file may alternatively be used under the terms
17 * of the Common Development and Distribution License Version 1.0
18 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
19 * VirtualBox OSE distribution, in which case the provisions of the
20 * CDDL are applicable instead of those of the GPL.
21 *
22 * You may elect to license modified versions of this file under the
23 * terms and conditions of either the GPL or the CDDL or both.
24 *
25 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
26 * Clara, CA 95054 USA or visit http://www.sun.com if you need
27 * additional information or have any questions.
28 */
29
30#ifndef ___VBox_mm_h
31#define ___VBox_mm_h
32
33#include <VBox/cdefs.h>
34#include <VBox/types.h>
35#include <VBox/x86.h>
36#include <iprt/stdarg.h>
37#include <VBox/sup.h>
38
39
40__BEGIN_DECLS
41
42/** @defgroup grp_mm The Memory Manager API
43 * @{
44 */
45
46#ifndef VBOX_WITH_NEW_PHYS_CODE
47/** @name RAM Page Flags
48 * Since internal ranges have a byte granularity it's possible for a
49 * page be flagged for several uses. The access virtualization in PGM
50 * will choose the most restricted one and use EM to emulate access to
51 * the less restricted areas of the page.
52 *
53 * Bits 0-11 only since they are fitted into the offset part of a physical memory address.
54 * @{
55 */
56/** Reserved - Not RAM, ROM nor MMIO2.
57 * If this bit is cleared the memory is assumed to be some kind of RAM.
58 * Normal MMIO may set it but that depends on whether the RAM range was
59 * created specially for the MMIO or not.
60 *
61 * @remarks The current implementation will always reserve backing
62 * memory for reserved ranges to simplify things.
63 */
64#define MM_RAM_FLAGS_RESERVED RT_BIT(0)
65/** ROM - Read Only Memory.
66 * The page have a HC physical address which contains the BIOS code. All write
67 * access is trapped and ignored.
68 *
69 * HACK: Writable shadow ROM is indicated by both ROM and MMIO2 being
70 * set. (We're out of bits.)
71 */
72#define MM_RAM_FLAGS_ROM RT_BIT(1)
73/** MMIO - Memory Mapped I/O.
74 * All access is trapped and emulated. No physical backing is required, but
75 * might for various reasons be present.
76 */
77#define MM_RAM_FLAGS_MMIO RT_BIT(2)
78/** MMIO2 - Memory Mapped I/O, variation 2.
79 * The virtualization is performed using real memory and only catching
80 * a few accesses for like keeping track for dirty pages.
81 * @remark Involved in the shadow ROM hack.
82 */
83#define MM_RAM_FLAGS_MMIO2 RT_BIT(3)
84
85/** Physical backing memory is allocated dynamically. Not set implies a one time static allocation. */
86#define MM_RAM_FLAGS_DYNAMIC_ALLOC RT_BIT(11)
87
88/** The shift used to get the reference count. */
89#define MM_RAM_FLAGS_CREFS_SHIFT 62
90/** The mask applied to the the page pool idx after using MM_RAM_FLAGS_CREFS_SHIFT to shift it down. */
91#define MM_RAM_FLAGS_CREFS_MASK 0x3
92/** The (shifted) cRef value used to indiciate that the idx is the head of a
93 * physical cross reference extent list. */
94#define MM_RAM_FLAGS_CREFS_PHYSEXT MM_RAM_FLAGS_CREFS_MASK
95/** The shift used to get the page pool idx. (Apply MM_RAM_FLAGS_IDX_MASK to the result when shifting down). */
96#define MM_RAM_FLAGS_IDX_SHIFT 48
97/** The mask applied to the the page pool idx after using MM_RAM_FLAGS_IDX_SHIFT to shift it down. */
98#define MM_RAM_FLAGS_IDX_MASK 0x3fff
99/** The idx value when we're out of of extents or there are simply too many mappings of this page. */
100#define MM_RAM_FLAGS_IDX_OVERFLOWED MM_RAM_FLAGS_IDX_MASK
101
102/** Mask for masking off any references to the page. */
103#define MM_RAM_FLAGS_NO_REFS_MASK UINT64_C(0x0000ffffffffffff)
104/** @} */
105
106/** @name MMR3PhysRegisterEx registration type
107 * @{
108 */
109typedef enum
110{
111 /** Normal physical region (flags specify exact page type) */
112 MM_PHYS_TYPE_NORMAL = 0,
113 /** Allocate part of a dynamically allocated physical region */
114 MM_PHYS_TYPE_DYNALLOC_CHUNK,
115
116 MM_PHYS_TYPE_32BIT_HACK = 0x7fffffff
117} MMPHYSREG;
118/** @} */
119#endif /* !VBOX_WITH_NEW_PHYS_CODE */
120
121/**
122 * Memory Allocation Tags.
123 * For use with MMHyperAlloc(), MMR3HeapAlloc(), MMR3HeapAllocEx(),
124 * MMR3HeapAllocZ() and MMR3HeapAllocZEx().
125 *
126 * @remark Don't forget to update the dump command in MMHeap.cpp!
127 */
128typedef enum MMTAG
129{
130 MM_TAG_INVALID = 0,
131
132 MM_TAG_CFGM,
133 MM_TAG_CFGM_BYTES,
134 MM_TAG_CFGM_STRING,
135 MM_TAG_CFGM_USER,
136
137 MM_TAG_CSAM,
138 MM_TAG_CSAM_PATCH,
139
140 MM_TAG_CPUM_CTX,
141
142 MM_TAG_DBGF,
143 MM_TAG_DBGF_INFO,
144 MM_TAG_DBGF_LINE,
145 MM_TAG_DBGF_LINE_DUP,
146 MM_TAG_DBGF_MODULE,
147 MM_TAG_DBGF_OS,
148 MM_TAG_DBGF_STACK,
149 MM_TAG_DBGF_SYMBOL,
150 MM_TAG_DBGF_SYMBOL_DUP,
151
152 MM_TAG_EM,
153
154 MM_TAG_IOM,
155 MM_TAG_IOM_STATS,
156
157 MM_TAG_MM,
158 MM_TAG_MM_LOOKUP_GUEST,
159 MM_TAG_MM_LOOKUP_PHYS,
160 MM_TAG_MM_LOOKUP_VIRT,
161 MM_TAG_MM_PAGE,
162
163 MM_TAG_PARAV,
164
165 MM_TAG_PATM,
166 MM_TAG_PATM_PATCH,
167
168 MM_TAG_PDM,
169 MM_TAG_PDM_ASYNC_COMPLETION,
170 MM_TAG_PDM_DEVICE,
171 MM_TAG_PDM_DEVICE_USER,
172 MM_TAG_PDM_DRIVER,
173 MM_TAG_PDM_DRIVER_USER,
174 MM_TAG_PDM_USB,
175 MM_TAG_PDM_USB_USER,
176 MM_TAG_PDM_LUN,
177 MM_TAG_PDM_QUEUE,
178 MM_TAG_PDM_THREAD,
179
180 MM_TAG_PGM,
181 MM_TAG_PGM_CHUNK_MAPPING,
182 MM_TAG_PGM_HANDLERS,
183 MM_TAG_PGM_PHYS,
184 MM_TAG_PGM_POOL,
185
186 MM_TAG_REM,
187
188 MM_TAG_SELM,
189
190 MM_TAG_SSM,
191
192 MM_TAG_STAM,
193
194 MM_TAG_TM,
195
196 MM_TAG_TRPM,
197
198 MM_TAG_VM,
199 MM_TAG_VM_REQ,
200
201 MM_TAG_VMM,
202
203 MM_TAG_HWACCM,
204
205 MM_TAG_32BIT_HACK = 0x7fffffff
206} MMTAG;
207
208
209
210
211/** @defgroup grp_mm_hyper Hypervisor Memory Management
212 * @ingroup grp_mm
213 * @{ */
214
215VMMDECL(RTR3PTR) MMHyperR0ToR3(PVM pVM, RTR0PTR R0Ptr);
216VMMDECL(RTRCPTR) MMHyperR0ToRC(PVM pVM, RTR0PTR R0Ptr);
217#ifndef IN_RING0
218VMMDECL(void *) MMHyperR0ToCC(PVM pVM, RTR0PTR R0Ptr);
219#endif
220VMMDECL(RTR0PTR) MMHyperR3ToR0(PVM pVM, RTR3PTR R3Ptr);
221VMMDECL(RTRCPTR) MMHyperR3ToRC(PVM pVM, RTR3PTR R3Ptr);
222VMMDECL(RTR3PTR) MMHyperRCToR3(PVM pVM, RTRCPTR RCPtr);
223VMMDECL(RTR0PTR) MMHyperRCToR0(PVM pVM, RTRCPTR RCPtr);
224
225#ifndef IN_RING3
226VMMDECL(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr);
227#else
228DECLINLINE(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr)
229{
230 NOREF(pVM);
231 return R3Ptr;
232}
233#endif
234
235
236#ifndef IN_RC
237VMMDECL(void *) MMHyperRCToCC(PVM pVM, RTRCPTR RCPtr);
238#else
239DECLINLINE(void *) MMHyperRCToCC(PVM pVM, RTRCPTR RCPtr)
240{
241 NOREF(pVM);
242 return (void *)RCPtr;
243}
244#endif
245
246#ifndef IN_RING3
247VMMDECL(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv);
248#else
249DECLINLINE(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv)
250{
251 NOREF(pVM);
252 return pv;
253}
254#endif
255
256#ifndef IN_RING0
257VMMDECL(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv);
258#else
259DECLINLINE(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv)
260{
261 NOREF(pVM);
262 return pv;
263}
264#endif
265
266#ifndef IN_RC
267VMMDECL(RTRCPTR) MMHyperCCToRC(PVM pVM, void *pv);
268#else
269DECLINLINE(RTRCPTR) MMHyperCCToRC(PVM pVM, void *pv)
270{
271 NOREF(pVM);
272 return (RTRCPTR)pv;
273}
274#endif
275
276
277VMMDECL(int) MMHyperAlloc(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv);
278VMMDECL(int) MMHyperFree(PVM pVM, void *pv);
279VMMDECL(void) MMHyperHeapCheck(PVM pVM);
280#ifdef DEBUG
281VMMDECL(void) MMHyperHeapDump(PVM pVM);
282#endif
283VMMDECL(size_t) MMHyperHeapGetFreeSize(PVM pVM);
284VMMDECL(size_t) MMHyperHeapGetSize(PVM pVM);
285VMMDECL(RTGCPTR) MMHyperGetArea(PVM pVM, size_t *pcb);
286VMMDECL(bool) MMHyperIsInsideArea(PVM pVM, RTGCPTR GCPtr);
287
288
289VMMDECL(RTHCPHYS) MMPage2Phys(PVM pVM, void *pvPage);
290VMMDECL(void *) MMPagePhys2Page(PVM pVM, RTHCPHYS HCPhysPage);
291VMMDECL(int) MMPagePhys2PageEx(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage);
292VMMDECL(int) MMPagePhys2PageTry(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage);
293
294
295/** @def MMHYPER_RC_ASSERT_RCPTR
296 * Asserts that an address is either NULL or inside the hypervisor memory area.
297 * This assertion only works while IN_RC, it's a NOP everywhere else.
298 * @thread The Emulation Thread.
299 */
300#ifdef IN_RC
301# define MMHYPER_RC_ASSERT_RCPTR(pVM, RCPtr) Assert(MMHyperIsInsideArea((pVM), (RTRCUINTPTR)(RCPtr)) || !(RCPtr))
302#else
303# define MMHYPER_RC_ASSERT_RCPTR(pVM, RCPtr) do { } while (0)
304#endif
305
306/** @} */
307
308
309#ifdef IN_RING3
310/** @defgroup grp_mm_r3 The MM Host Context Ring-3 API
311 * @ingroup grp_mm
312 * @{
313 */
314
315VMMR3DECL(int) MMR3InitUVM(PUVM pUVM);
316VMMR3DECL(int) MMR3Init(PVM pVM);
317VMMR3DECL(int) MMR3InitPaging(PVM pVM);
318VMMR3DECL(int) MMR3HyperInitFinalize(PVM pVM);
319VMMR3DECL(int) MMR3Term(PVM pVM);
320VMMR3DECL(void) MMR3TermUVM(PUVM pUVM);
321VMMR3DECL(void) MMR3Reset(PVM pVM);
322VMMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages);
323VMMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc);
324VMMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages);
325
326VMMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv);
327VMMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb);
328VMMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb);
329
330
331/** @defgroup grp_mm_r3_hyper Hypervisor Memory Manager (HC R3 Portion)
332 * @ingroup grp_mm_r3
333 * @{ */
334VMMDECL(int) MMR3HyperAllocOnceNoRel(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv);
335VMMR3DECL(int) MMR3HyperMapHCPhys(PVM pVM, void *pvR3, RTR0PTR pvR0, RTHCPHYS HCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr);
336VMMR3DECL(int) MMR3HyperMapGCPhys(PVM pVM, RTGCPHYS GCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr);
337VMMR3DECL(int) MMR3HyperMapMMIO2(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTRCPTR pRCPtr);
338VMMR3DECL(int) MMR3HyperMapPages(PVM pVM, void *pvR3, RTR0PTR pvR0, size_t cPages, PCSUPPAGE paPages, const char *pszDesc, PRTGCPTR pGCPtr);
339VMMR3DECL(int) MMR3HyperReserve(PVM pVM, unsigned cb, const char *pszDesc, PRTGCPTR pGCPtr);
340VMMR3DECL(RTHCPHYS) MMR3HyperHCVirt2HCPhys(PVM pVM, void *pvHC);
341VMMR3DECL(int) MMR3HyperHCVirt2HCPhysEx(PVM pVM, void *pvHC, PRTHCPHYS pHCPhys);
342VMMR3DECL(void *) MMR3HyperHCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys);
343VMMR3DECL(int) MMR3HyperHCPhys2HCVirtEx(PVM pVM, RTHCPHYS HCPhys, void **ppv);
344VMMR3DECL(int) MMR3HyperReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb);
345/** @} */
346
347
348/** @defgroup grp_mm_phys Guest Physical Memory Manager
349 * @ingroup grp_mm_r3
350 * @{ */
351#ifndef VBOX_WITH_NEW_PHYS_CODE
352VMMR3DECL(int) MMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, const char *pszDesc);
353VMMR3DECL(int) MMR3PhysRegisterEx(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, MMPHYSREG enmType, const char *pszDesc);
354VMMR3DECL(int) MMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTUINT cbRange, const void *pvBinary, bool fShadow, const char *pszDesc);
355VMMR3DECL(int) MMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange);
356VMMR3DECL(int) MMR3PhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, const char *pszDesc);
357#endif
358VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM);
359/** @} */
360
361
362/** @defgroup grp_mm_page Physical Page Pool
363 * @ingroup grp_mm_r3
364 * @{ */
365VMMR3DECL(void *) MMR3PageAlloc(PVM pVM);
366VMMR3DECL(RTHCPHYS) MMR3PageAllocPhys(PVM pVM);
367VMMR3DECL(void) MMR3PageFree(PVM pVM, void *pvPage);
368VMMR3DECL(void *) MMR3PageAllocLow(PVM pVM);
369VMMR3DECL(void) MMR3PageFreeLow(PVM pVM, void *pvPage);
370VMMR3DECL(void) MMR3PageFreeByPhys(PVM pVM, RTHCPHYS HCPhysPage);
371VMMR3DECL(void *) MMR3PageDummyHCPtr(PVM pVM);
372VMMR3DECL(RTHCPHYS) MMR3PageDummyHCPhys(PVM pVM);
373/** @} */
374
375
376/** @defgroup grp_mm_heap Heap Manager
377 * @ingroup grp_mm_r3
378 * @{ */
379VMMR3DECL(void *) MMR3HeapAlloc(PVM pVM, MMTAG enmTag, size_t cbSize);
380VMMR3DECL(void *) MMR3HeapAllocU(PUVM pUVM, MMTAG enmTag, size_t cbSize);
381VMMR3DECL(int) MMR3HeapAllocEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv);
382VMMR3DECL(int) MMR3HeapAllocExU(PUVM pUVM, MMTAG enmTag, size_t cbSize, void **ppv);
383VMMR3DECL(void *) MMR3HeapAllocZ(PVM pVM, MMTAG enmTag, size_t cbSize);
384VMMR3DECL(void *) MMR3HeapAllocZU(PUVM pUVM, MMTAG enmTag, size_t cbSize);
385VMMR3DECL(int) MMR3HeapAllocZEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv);
386VMMR3DECL(int) MMR3HeapAllocZExU(PUVM pUVM, MMTAG enmTag, size_t cbSize, void **ppv);
387VMMR3DECL(void *) MMR3HeapRealloc(void *pv, size_t cbNewSize);
388VMMR3DECL(char *) MMR3HeapStrDup(PVM pVM, MMTAG enmTag, const char *psz);
389VMMR3DECL(char *) MMR3HeapStrDupU(PUVM pUVM, MMTAG enmTag, const char *psz);
390VMMR3DECL(char *) MMR3HeapAPrintf(PVM pVM, MMTAG enmTag, const char *pszFormat, ...);
391VMMR3DECL(char *) MMR3HeapAPrintfU(PUVM pUVM, MMTAG enmTag, const char *pszFormat, ...);
392VMMR3DECL(char *) MMR3HeapAPrintfV(PVM pVM, MMTAG enmTag, const char *pszFormat, va_list va);
393VMMR3DECL(char *) MMR3HeapAPrintfVU(PUVM pUVM, MMTAG enmTag, const char *pszFormat, va_list va);
394VMMR3DECL(void) MMR3HeapFree(void *pv);
395/** @} */
396
397/** @} */
398#endif /* IN_RING3 */
399
400
401
402#ifdef IN_RC
403/** @defgroup grp_mm_gc The MM Guest Context API
404 * @ingroup grp_mm
405 * @{
406 */
407
408VMMRCDECL(void) MMGCRamRegisterTrapHandler(PVM pVM);
409VMMRCDECL(void) MMGCRamDeregisterTrapHandler(PVM pVM);
410VMMRCDECL(int) MMGCRamReadNoTrapHandler(void *pDst, void *pSrc, size_t cb);
411VMMRCDECL(int) MMGCRamWriteNoTrapHandler(void *pDst, void *pSrc, size_t cb);
412VMMRCDECL(int) MMGCRamRead(PVM pVM, void *pDst, void *pSrc, size_t cb);
413VMMRCDECL(int) MMGCRamWrite(PVM pVM, void *pDst, void *pSrc, size_t cb);
414
415/** @} */
416#endif /* IN_RC */
417
418/** @} */
419__END_DECLS
420
421
422#endif
423
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette